# -*- Mode: Python -*- # vim: filetype=python # # This work is licensed under the terms of the GNU GPL, version 2 or later. # See the COPYING file in the top-level directory. ## # = Machines ## { 'include': 'common.json' } { 'include': 'machine-common.json' } ## # @SysEmuTarget: # # The comprehensive enumeration of QEMU system emulation ("softmmu") # targets. Run "./configure --help" in the project root directory, # and look for the \*-softmmu targets near the "--target-list" option. # The individual target constants are not documented here, for the # time being. # # @rx: since 5.0 # # @avr: since 5.1 # # Notes: The resulting QMP strings can be appended to the # "qemu-system-" prefix to produce the corresponding QEMU # executable name. This is true even for "qemu-system-x86_64". # # Since: 3.0 ## { 'enum' : 'SysEmuTarget', 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64', 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc', 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4', 'sh4eb', 'sparc', 'sparc64', 'tricore', 'x86_64', 'xtensa', 'xtensaeb' ] } ## # @CpuS390State: # # An enumeration of cpu states that can be assumed by a virtual S390 # CPU # # Since: 2.12 ## { 'enum': 'CpuS390State', 'prefix': 'S390_CPU_STATE', 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] } ## # @CpuInfoS390: # # Additional information about a virtual S390 CPU # # @cpu-state: the virtual CPU's state # # @dedicated: the virtual CPU's dedication (since 8.2) # # @entitlement: the virtual CPU's entitlement (since 8.2) # # Since: 2.12 ## { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State', '*dedicated': 'bool', '*entitlement': 'CpuS390Entitlement' } } ## # @CpuInfoFast: # # Information about a virtual CPU # # @cpu-index: index of the virtual CPU # # @qom-path: path to the CPU object in the QOM tree # # @thread-id: ID of the underlying host thread # # @props: properties associated with a virtual CPU, e.g. the socket id # # @target: the QEMU system emulation target, which determines which # additional fields will be listed (since 3.0) # # Since: 2.12 ## { 'union' : 'CpuInfoFast', 'base' : { 'cpu-index' : 'int', 'qom-path' : 'str', 'thread-id' : 'int', '*props' : 'CpuInstanceProperties', 'target' : 'SysEmuTarget' }, 'discriminator' : 'target', 'data' : { 's390x' : 'CpuInfoS390' } } ## # @query-cpus-fast: # # Returns information about all virtual CPUs. # # Returns: list of @CpuInfoFast # # Since: 2.12 # # Example: # # -> { "execute": "query-cpus-fast" } # <- { "return": [ # { # "thread-id": 25627, # "props": { # "core-id": 0, # "thread-id": 0, # "socket-id": 0 # }, # "qom-path": "/machine/unattached/device[0]", # "target":"x86_64", # "cpu-index": 0 # }, # { # "thread-id": 25628, # "props": { # "core-id": 0, # "thread-id": 0, # "socket-id": 1 # }, # "qom-path": "/machine/unattached/device[2]", # "target":"x86_64", # "cpu-index": 1 # } # ] # } ## { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] } ## # @MachineInfo: # # Information describing a machine. # # @name: the name of the machine # # @alias: an alias for the machine name # # @is-default: whether the machine is default # # @cpu-max: maximum number of CPUs supported by the machine type # (since 1.5) # # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7) # # @numa-mem-supported: true if '-numa node,mem' option is supported by # the machine type and false otherwise (since 4.1) # # @deprecated: if true, the machine type is deprecated and may be # removed in future versions of QEMU according to the QEMU # deprecation policy (since 4.1) # # @default-cpu-type: default CPU model typename if none is requested # via the -cpu argument. (since 4.2) # # @default-ram-id: the default ID of initial RAM memory backend (since # 5.2) # # @acpi: machine type supports ACPI (since 8.0) # # Since: 1.2 ## { 'struct': 'MachineInfo', 'data': { 'name': 'str', '*alias': 'str', '*is-default': 'bool', 'cpu-max': 'int', 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool', 'deprecated': 'bool', '*default-cpu-type': 'str', '*default-ram-id': 'str', 'acpi': 'bool' } } ## # @query-machines: # # Return a list of supported machines # # Returns: a list of MachineInfo # # Since: 1.2 ## { 'command': 'query-machines', 'returns': ['MachineInfo'] } ## # @CurrentMachineParams: # # Information describing the running machine parameters. # # @wakeup-suspend-support: true if the machine supports wake up from # suspend # # Since: 4.0 ## { 'struct': 'CurrentMachineParams', 'data': { 'wakeup-suspend-support': 'bool'} } ## # @query-current-machine: # # Return information on the current virtual machine. # # Returns: CurrentMachineParams # # Since: 4.0 ## { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' } ## # @TargetInfo: # # Information describing the QEMU target. # # @arch: the target architecture # # Since: 1.2 ## { 'struct': 'TargetInfo', 'data': { 'arch': 'SysEmuTarget' } } ## # @query-target: # # Return information about the target for this QEMU # # Returns: TargetInfo # # Since: 1.2 ## { 'command': 'query-target', 'returns': 'TargetInfo' } ## # @UuidInfo: # # Guest UUID information (Universally Unique Identifier). # # @UUID: the UUID of the guest # # Since: 0.14 # # Notes: If no UUID was specified for the guest, a null UUID is # returned. ## { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} } ## # @query-uuid: # # Query the guest UUID information. # # Returns: The @UuidInfo for the guest # # Since: 0.14 # # Example: # # -> { "execute": "query-uuid" } # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } } ## { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true } ## # @GuidInfo: # # GUID information. # # @guid: the globally unique identifier # # Since: 2.9 ## { 'struct': 'GuidInfo', 'data': {'guid': 'str'} } ## # @query-vm-generation-id: # # Show Virtual Machine Generation ID # # Since: 2.9 ## { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' } ## # @system_reset: # # Performs a hard reset of a guest. # # Since: 0.14 # # Example: # # -> { "execute": "system_reset" } # <- { "return": {} } ## { 'command': 'system_reset' } ## # @system_powerdown: # # Requests that a guest perform a powerdown operation. # # Since: 0.14 # # Notes: A guest may or may not respond to this command. This command # returning does not indicate that a guest has accepted the # request or that it has shut down. Many guests will respond to # this command by prompting the user in some way. # # Example: # # -> { "execute": "system_powerdown" } # <- { "return": {} } ## { 'command': 'system_powerdown' } ## # @system_wakeup: # # Wake up guest from suspend. If the guest has wake-up from suspend # support enabled (wakeup-suspend-support flag from # query-current-machine), wake-up guest from suspend if the guest is # in SUSPENDED state. Return an error otherwise. # # Since: 1.1 # # Note: prior to 4.0, this command does nothing in case the guest # isn't suspended. # # Example: # # -> { "execute": "system_wakeup" } # <- { "return": {} } ## { 'command': 'system_wakeup' } ## # @LostTickPolicy: # # Policy for handling lost ticks in timer devices. Ticks end up # getting lost when, for example, the guest is paused. # # @discard: throw away the missed ticks and continue with future # injection normally. The guest OS will see the timer jump ahead # by a potentially quite significant amount all at once, as if the # intervening chunk of time had simply not existed; needless to # say, such a sudden jump can easily confuse a guest OS which is # not specifically prepared to deal with it. Assuming the guest # OS can deal correctly with the time jump, the time in the guest # and in the host should now match. # # @delay: continue to deliver ticks at the normal rate. The guest OS # will not notice anything is amiss, as from its point of view # time will have continued to flow normally. The time in the # guest should now be behind the time in the host by exactly the # amount of time during which ticks have been missed. # # @slew: deliver ticks at a higher rate to catch up with the missed # ticks. The guest OS will not notice anything is amiss, as from # its point of view time will have continued to flow normally. # Once the timer has managed to catch up with all the missing # ticks, the time in the guest and in the host should match. # # Since: 2.0 ## { 'enum': 'LostTickPolicy', 'data': ['discard', 'delay', 'slew' ] } ## # @inject-nmi: # # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or # all CPUs (ppc64). The command fails when the guest doesn't support # injecting. # # Since: 0.14 # # Note: prior to 2.1, this command was only supported for x86 and s390 # VMs # # Example: # # -> { "execute": "inject-nmi" } # <- { "return": {} } ## { 'command': 'inject-nmi' } ## # @KvmInfo: # # Information about support for KVM acceleration # # @enabled: true if KVM acceleration is active # # @present: true if KVM acceleration is built into this executable # # Since: 0.14 ## { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} } ## # @query-kvm: # # Returns information about KVM acceleration # # Returns: @KvmInfo # # Since: 0.14 # # Example: # # -> { "execute": "query-kvm" } # <- { "return": { "enabled": true, "present": true } } ## { 'command': 'query-kvm', 'returns': 'KvmInfo' } ## # @NumaOptionsType: # # @node: NUMA nodes configuration # # @dist: NUMA distance configuration (since 2.10) # # @cpu: property based CPU(s) to node mapping (Since: 2.10) # # @hmat-lb: memory latency and bandwidth information (Since: 5.0) # # @hmat-cache: memory side cache information (Since: 5.0) # # Since: 2.1 ## { 'enum': 'NumaOptionsType', 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] } ## # @NumaOptions: # # A discriminated record of NUMA options. (for OptsVisitor) # # @type: NUMA option type # # Since: 2.1 ## { 'union': 'NumaOptions', 'base': { 'type': 'NumaOptionsType' }, 'discriminator': 'type', 'data': { 'node': 'NumaNodeOptions', 'dist': 'NumaDistOptions', 'cpu': 'NumaCpuOptions', 'hmat-lb': 'NumaHmatLBOptions', 'hmat-cache': 'NumaHmatCacheOptions' }} ## # @NumaNodeOptions: # # Create a guest NUMA node. (for OptsVisitor) # # @nodeid: NUMA node ID (increase by 1 from 0 if omitted) # # @cpus: VCPUs belonging to this node (assign VCPUS round-robin if # omitted) # # @mem: memory size of this node; mutually exclusive with @memdev. # Equally divide total memory among nodes if both @mem and @memdev # are omitted. # # @memdev: memory backend object. If specified for one node, it must # be specified for all nodes. # # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points # to the nodeid which has the memory controller responsible for # this NUMA node. This field provides additional information as # to the initiator node that is closest (as in directly attached) # to this node, and therefore has the best performance (since 5.0) # # Since: 2.1 ## { 'struct': 'NumaNodeOptions', 'data': { '*nodeid': 'uint16', '*cpus': ['uint16'], '*mem': 'size', '*memdev': 'str', '*initiator': 'uint16' }} ## # @NumaDistOptions: # # Set the distance between 2 NUMA nodes. # # @src: source NUMA node. # # @dst: destination NUMA node. # # @val: NUMA distance from source node to destination node. When a # node is unreachable from another node, set the distance between # them to 255. # # Since: 2.10 ## { 'struct': 'NumaDistOptions', 'data': { 'src': 'uint16', 'dst': 'uint16', 'val': 'uint8' }} ## # @CXLFixedMemoryWindowOptions: # # Create a CXL Fixed Memory Window # # @size: Size of the Fixed Memory Window in bytes. Must be a multiple # of 256MiB. # # @interleave-granularity: Number of contiguous bytes for which # accesses will go to a given interleave target. Accepted values # [256, 512, 1k, 2k, 4k, 8k, 16k] # # @targets: Target root bridge IDs from -device ...,id= for each # root bridge. # # Since: 7.1 ## { 'struct': 'CXLFixedMemoryWindowOptions', 'data': { 'size': 'size', '*interleave-granularity': 'size', 'targets': ['str'] }} ## # @CXLFMWProperties: # # List of CXL Fixed Memory Windows. # # @cxl-fmw: List of CXLFixedMemoryWindowOptions # # Since: 7.1 ## { 'struct' : 'CXLFMWProperties', 'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] } } ## # @X86CPURegister32: # # A X86 32-bit register # # Since: 1.5 ## { 'enum': 'X86CPURegister32', 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] } ## # @X86CPUFeatureWordInfo: # # Information about a X86 CPU feature word # # @cpuid-input-eax: Input EAX value for CPUID instruction for that # feature word # # @cpuid-input-ecx: Input ECX value for CPUID instruction for that # feature word # # @cpuid-register: Output register containing the feature bits # # @features: value of output register, containing the feature bits # # Since: 1.5 ## { 'struct': 'X86CPUFeatureWordInfo', 'data': { 'cpuid-input-eax': 'int', '*cpuid-input-ecx': 'int', 'cpuid-register': 'X86CPURegister32', 'features': 'int' } } ## # @DummyForceArrays: # # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList # internally # # Since: 2.5 ## { 'struct': 'DummyForceArrays', 'data': { 'unused': ['X86CPUFeatureWordInfo'] } } ## # @NumaCpuOptions: # # Option "-numa cpu" overrides default cpu to node mapping. It # accepts the same set of cpu properties as returned by # query-hotpluggable-cpus[].props, where node-id could be used to # override default node mapping. # # Since: 2.10 ## { 'struct': 'NumaCpuOptions', 'base': 'CpuInstanceProperties', 'data' : {} } ## # @HmatLBMemoryHierarchy: # # The memory hierarchy in the System Locality Latency and Bandwidth # Information Structure of HMAT (Heterogeneous Memory Attribute Table) # # For more information about @HmatLBMemoryHierarchy, see chapter # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec. # # @memory: the structure represents the memory performance # # @first-level: first level of memory side cache # # @second-level: second level of memory side cache # # @third-level: third level of memory side cache # # Since: 5.0 ## { 'enum': 'HmatLBMemoryHierarchy', 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] } ## # @HmatLBDataType: # # Data type in the System Locality Latency and Bandwidth Information # Structure of HMAT (Heterogeneous Memory Attribute Table) # # For more information about @HmatLBDataType, see chapter 5.2.27.4: # Table 5-146: Field "Data Type" of ACPI 6.3 spec. # # @access-latency: access latency (nanoseconds) # # @read-latency: read latency (nanoseconds) # # @write-latency: write latency (nanoseconds) # # @access-bandwidth: access bandwidth (Bytes per second) # # @read-bandwidth: read bandwidth (Bytes per second) # # @write-bandwidth: write bandwidth (Bytes per second) # # Since: 5.0 ## { 'enum': 'HmatLBDataType', 'data': [ 'access-latency', 'read-latency', 'write-latency', 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] } ## # @NumaHmatLBOptions: # # Set the system locality latency and bandwidth information between # Initiator and Target proximity Domains. # # For more information about @NumaHmatLBOptions, see chapter 5.2.27.4: # Table 5-146 of ACPI 6.3 spec. # # @initiator: the Initiator Proximity Domain. # # @target: the Target Proximity Domain. # # @hierarchy: the Memory Hierarchy. Indicates the performance of # memory or side cache. # # @data-type: presents the type of data, access/read/write latency or # hit latency. # # @latency: the value of latency from @initiator to @target proximity # domain, the latency unit is "ns(nanosecond)". # # @bandwidth: the value of bandwidth between @initiator and @target # proximity domain, the bandwidth unit is "Bytes per second". # # Since: 5.0 ## { 'struct': 'NumaHmatLBOptions', 'data': { 'initiator': 'uint16', 'target': 'uint16', 'hierarchy': 'HmatLBMemoryHierarchy', 'data-type': 'HmatLBDataType', '*latency': 'uint64', '*bandwidth': 'size' }} ## # @HmatCacheAssociativity: # # Cache associativity in the Memory Side Cache Information Structure # of HMAT # # For more information of @HmatCacheAssociativity, see chapter # 5.2.27.5: Table 5-147 of ACPI 6.3 spec. # # @none: None (no memory side cache in this proximity domain, or cache # associativity unknown) # # @direct: Direct Mapped # # @complex: Complex Cache Indexing (implementation specific) # # Since: 5.0 ## { 'enum': 'HmatCacheAssociativity', 'data': [ 'none', 'direct', 'complex' ] } ## # @HmatCacheWritePolicy: # # Cache write policy in the Memory Side Cache Information Structure of # HMAT # # For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5: # Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. # # @none: None (no memory side cache in this proximity domain, or cache # write policy unknown) # # @write-back: Write Back (WB) # # @write-through: Write Through (WT) # # Since: 5.0 ## { 'enum': 'HmatCacheWritePolicy', 'data': [ 'none', 'write-back', 'write-through' ] } ## # @NumaHmatCacheOptions: # # Set the memory side cache information for a given memory domain. # # For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5: # Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec. # # @node-id: the memory proximity domain to which the memory belongs. # # @size: the size of memory side cache in bytes. # # @level: the cache level described in this structure. # # @associativity: the cache associativity, # none/direct-mapped/complex(complex cache indexing). # # @policy: the write policy, none/write-back/write-through. # # @line: the cache Line size in bytes. # # Since: 5.0 ## { 'struct': 'NumaHmatCacheOptions', 'data': { 'node-id': 'uint32', 'size': 'size', 'level': 'uint8', 'associativity': 'HmatCacheAssociativity', 'policy': 'HmatCacheWritePolicy', 'line': 'uint16' }} ## # @memsave: # # Save a portion of guest memory to a file. # # @val: the virtual address of the guest to start from # # @size: the size of memory region to save # # @filename: the file to save the memory to as binary data # # @cpu-index: the index of the virtual CPU to use for translating the # virtual address (defaults to CPU 0) # # Since: 0.14 # # Notes: Errors were not reliably returned until 1.1 # # Example: # # -> { "execute": "memsave", # "arguments": { "val": 10, # "size": 100, # "filename": "/tmp/virtual-mem-dump" } } # <- { "return": {} } ## { 'command': 'memsave', 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} } ## # @pmemsave: # # Save a portion of guest physical memory to a file. # # @val: the physical address of the guest to start from # # @size: the size of memory region to save # # @filename: the file to save the memory to as binary data # # Since: 0.14 # # Notes: Errors were not reliably returned until 1.1 # # Example: # # -> { "execute": "pmemsave", # "arguments": { "val": 10, # "size": 100, # "filename": "/tmp/physical-mem-dump" } } # <- { "return": {} } ## { 'command': 'pmemsave', 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} } ## # @Memdev: # # Information about memory backend # # @id: backend's ID if backend has 'id' property (since 2.9) # # @size: memory backend size # # @merge: whether memory merge support is enabled # # @dump: whether memory backend's memory is included in a core dump # # @prealloc: whether memory was preallocated # # @share: whether memory is private to QEMU or shared (since 6.1) # # @reserve: whether swap space (or huge pages) was reserved if # applicable. This corresponds to the user configuration and not # the actual behavior implemented in the OS to perform the # reservation. For example, Linux will never reserve swap space # for shared file mappings. (since 6.1) # # @host-nodes: host nodes for its memory policy # # @policy: memory policy of memory backend # # Since: 2.1 ## { 'struct': 'Memdev', 'data': { '*id': 'str', 'size': 'size', 'merge': 'bool', 'dump': 'bool', 'prealloc': 'bool', 'share': 'bool', '*reserve': 'bool', 'host-nodes': ['uint16'], 'policy': 'HostMemPolicy' }} ## # @query-memdev: # # Returns information for all memory backends. # # Returns: a list of @Memdev. # # Since: 2.1 # # Example: # # -> { "execute": "query-memdev" } # <- { "return": [ # { # "id": "mem1", # "size": 536870912, # "merge": false, # "dump": true, # "prealloc": false, # "share": false, # "host-nodes": [0, 1], # "policy": "bind" # }, # { # "size": 536870912, # "merge": false, # "dump": true, # "prealloc": true, # "share": false, # "host-nodes": [2, 3], # "policy": "preferred" # } # ] # } ## { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true } ## # @CpuInstanceProperties: # # List of properties to be used for hotplugging a CPU instance, it # should be passed by management with device_add command when a CPU is # being hotplugged. # # Which members are optional and which mandatory depends on the # architecture and board. # # For s390x see :ref:`cpu-topology-s390x`. # # The ids other than the node-id specify the position of the CPU # within the CPU topology (as defined by the machine property "smp", # thus see also type @SMPConfiguration) # # @node-id: NUMA node ID the CPU belongs to # # @drawer-id: drawer number within CPU topology the CPU belongs to # (since 8.2) # # @book-id: book number within parent container the CPU belongs to # (since 8.2) # # @socket-id: socket number within parent container the CPU belongs to # # @die-id: die number within the parent container the CPU belongs to # (since 4.1) # # @cluster-id: cluster number within the parent container the CPU # belongs to (since 7.1) # # @core-id: core number within the parent container the CPU # belongs to # # @thread-id: thread number within the core the CPU belongs to # # Note: management should be prepared to pass through additional # properties with device_add. # # Since: 2.7 ## { 'struct': 'CpuInstanceProperties', # Keep these in sync with the properties device_add accepts 'data': { '*node-id': 'int', '*drawer-id': 'int', '*book-id': 'int', '*socket-id': 'int', '*die-id': 'int', '*cluster-id': 'int', '*core-id': 'int', '*thread-id': 'int' } } ## # @HotpluggableCPU: # # @type: CPU object type for usage with device_add command # # @props: list of properties to be used for hotplugging CPU # # @vcpus-count: number of logical VCPU threads @HotpluggableCPU # provides # # @qom-path: link to existing CPU object if CPU is present or omitted # if CPU is not present. # # Since: 2.7 ## { 'struct': 'HotpluggableCPU', 'data': { 'type': 'str', 'vcpus-count': 'int', 'props': 'CpuInstanceProperties', '*qom-path': 'str' } } ## # @query-hotpluggable-cpus: # # TODO: Better documentation; currently there is none. # # Returns: a list of HotpluggableCPU objects. # # Since: 2.7 # # Examples: # # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu # POWER8: # # -> { "execute": "query-hotpluggable-cpus" } # <- {"return": [ # { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core", # "vcpus-count": 1 }, # { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core", # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"} # ]}' # # For pc machine type started with -smp 1,maxcpus=2: # # -> { "execute": "query-hotpluggable-cpus" } # <- {"return": [ # { # "type": "qemu64-x86_64-cpu", "vcpus-count": 1, # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0} # }, # { # "qom-path": "/machine/unattached/device[0]", # "type": "qemu64-x86_64-cpu", "vcpus-count": 1, # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0} # } # ]} # # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu # qemu (Since: 2.11): # # -> { "execute": "query-hotpluggable-cpus" } # <- {"return": [ # { # "type": "qemu-s390x-cpu", "vcpus-count": 1, # "props": { "core-id": 1 } # }, # { # "qom-path": "/machine/unattached/device[0]", # "type": "qemu-s390x-cpu", "vcpus-count": 1, # "props": { "core-id": 0 } # } # ]} ## { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'], 'allow-preconfig': true } ## # @set-numa-node: # # Runtime equivalent of '-numa' CLI option, available at preconfigure # stage to configure numa mapping before initializing machine. # # Since: 3.0 ## { 'command': 'set-numa-node', 'boxed': true, 'data': 'NumaOptions', 'allow-preconfig': true } ## # @balloon: # # Request the balloon driver to change its balloon size. # # @value: the target logical size of the VM in bytes. We can deduce # the size of the balloon using this formula: # # logical_vm_size = vm_ram_size - balloon_size # # From it we have: balloon_size = vm_ram_size - @value # # Errors: # - If the balloon driver is enabled but not functional because # the KVM kernel module cannot support it, KVMMissingCap # - If no balloon device is present, DeviceNotActive # # Notes: This command just issues a request to the guest. When it # returns, the balloon size may not have changed. A guest can # change the balloon size independent of this command. # # Since: 0.14 # # Example: # # -> { "execute": "balloon", "arguments": { "value": 536870912 } } # <- { "return": {} } # # With a 2.5GiB guest this command inflated the ballon to 3GiB. ## { 'command': 'balloon', 'data': {'value': 'int'} } ## # @BalloonInfo: # # Information about the guest balloon device. # # @actual: the logical size of the VM in bytes Formula used: # logical_vm_size = vm_ram_size - balloon_size # # Since: 0.14 ## { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } } ## # @query-balloon: # # Return information about the balloon device. # # Returns: # @BalloonInfo # # Errors: # - If the balloon driver is enabled but not functional because # the KVM kernel module cannot support it, KVMMissingCap # - If no balloon device is present, DeviceNotActive # # Since: 0.14 # # Example: # # -> { "execute": "query-balloon" } # <- { "return": { # "actual": 1073741824 # } # } ## { 'command': 'query-balloon', 'returns': 'BalloonInfo' } ## # @BALLOON_CHANGE: # # Emitted when the guest changes the actual BALLOON level. This value # is equivalent to the @actual field return by the 'query-balloon' # command # # @actual: the logical size of the VM in bytes Formula used: # logical_vm_size = vm_ram_size - balloon_size # # Note: this event is rate-limited. # # Since: 1.2 # # Example: # # <- { "event": "BALLOON_CHANGE", # "data": { "actual": 944766976 }, # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } ## { 'event': 'BALLOON_CHANGE', 'data': { 'actual': 'int' } } ## # @HvBalloonInfo: # # hv-balloon guest-provided memory status information. # # @committed: the amount of memory in use inside the guest plus the # amount of the memory unusable inside the guest (ballooned out, # offline, etc.) # # @available: the amount of the memory inside the guest available for # new allocations ("free") # # Since: 8.2 ## { 'struct': 'HvBalloonInfo', 'data': { 'committed': 'size', 'available': 'size' } } ## # @query-hv-balloon-status-report: # # Returns the hv-balloon driver data contained in the last received "STATUS" # message from the guest. # # Returns: # @HvBalloonInfo # # Errors: # - If no hv-balloon device is present, guest memory status # reporting is not enabled or no guest memory status report # received yet, GenericError # # Since: 8.2 # # Example: # # -> { "execute": "query-hv-balloon-status-report" } # <- { "return": { # "committed": 816640000, # "available": 3333054464 # } # } ## { 'command': 'query-hv-balloon-status-report', 'returns': 'HvBalloonInfo' } ## # @HV_BALLOON_STATUS_REPORT: # # Emitted when the hv-balloon driver receives a "STATUS" message from # the guest. # # Note: this event is rate-limited. # # Since: 8.2 # # Example: # # <- { "event": "HV_BALLOON_STATUS_REPORT", # "data": { "committed": 816640000, "available": 3333054464 }, # "timestamp": { "seconds": 1600295492, "microseconds": 661044 } } # ## { 'event': 'HV_BALLOON_STATUS_REPORT', 'data': 'HvBalloonInfo' } ## # @MemoryInfo: # # Actual memory information in bytes. # # @base-memory: size of "base" memory specified with command line # option -m. # # @plugged-memory: size of memory that can be hot-unplugged. This # field is omitted if target doesn't support memory hotplug (i.e. # CONFIG_MEM_DEVICE not defined at build time). # # Since: 2.11 ## { 'struct': 'MemoryInfo', 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } } ## # @query-memory-size-summary: # # Return the amount of initially allocated and present hotpluggable # (if enabled) memory in bytes. # # Example: # # -> { "execute": "query-memory-size-summary" } # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } } # # Since: 2.11 ## { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' } ## # @PCDIMMDeviceInfo: # # PCDIMMDevice state information # # @id: device's ID # # @addr: physical address, where device is mapped # # @size: size of memory that the device provides # # @slot: slot number at which device is plugged in # # @node: NUMA node number where device is plugged in # # @memdev: memory backend linked with device # # @hotplugged: true if device was hotplugged # # @hotpluggable: true if device if could be added/removed while # machine is running # # Since: 2.1 ## { 'struct': 'PCDIMMDeviceInfo', 'data': { '*id': 'str', 'addr': 'int', 'size': 'int', 'slot': 'int', 'node': 'int', 'memdev': 'str', 'hotplugged': 'bool', 'hotpluggable': 'bool' } } ## # @VirtioPMEMDeviceInfo: # # VirtioPMEM state information # # @id: device's ID # # @memaddr: physical address in memory, where device is mapped # # @size: size of memory that the device provides # # @memdev: memory backend linked with device # # Since: 4.1 ## { 'struct': 'VirtioPMEMDeviceInfo', 'data': { '*id': 'str', 'memaddr': 'size', 'size': 'size', 'memdev': 'str' } } ## # @VirtioMEMDeviceInfo: # # VirtioMEMDevice state information # # @id: device's ID # # @memaddr: physical address in memory, where device is mapped # # @requested-size: the user requested size of the device # # @size: the (current) size of memory that the device provides # # @max-size: the maximum size of memory that the device can provide # # @block-size: the block size of memory that the device provides # # @node: NUMA node number where device is assigned to # # @memdev: memory backend linked with the region # # Since: 5.1 ## { 'struct': 'VirtioMEMDeviceInfo', 'data': { '*id': 'str', 'memaddr': 'size', 'requested-size': 'size', 'size': 'size', 'max-size': 'size', 'block-size': 'size', 'node': 'int', 'memdev': 'str' } } ## # @SgxEPCDeviceInfo: # # Sgx EPC state information # # @id: device's ID # # @memaddr: physical address in memory, where device is mapped # # @size: size of memory that the device provides # # @memdev: memory backend linked with device # # @node: the numa node (Since: 7.0) # # Since: 6.2 ## { 'struct': 'SgxEPCDeviceInfo', 'data': { '*id': 'str', 'memaddr': 'size', 'size': 'size', 'node': 'int', 'memdev': 'str' } } ## # @HvBalloonDeviceInfo: # # hv-balloon provided memory state information # # @id: device's ID # # @memaddr: physical address in memory, where device is mapped # # @max-size: the maximum size of memory that the device can provide # # @memdev: memory backend linked with device # # Since: 8.2 ## { 'struct': 'HvBalloonDeviceInfo', 'data': { '*id': 'str', '*memaddr': 'size', 'max-size': 'size', '*memdev': 'str' } } ## # @MemoryDeviceInfoKind: # # @nvdimm: since 2.12 # # @virtio-pmem: since 4.1 # # @virtio-mem: since 5.1 # # @sgx-epc: since 6.2. # # @hv-balloon: since 8.2. # # Since: 2.1 ## { 'enum': 'MemoryDeviceInfoKind', 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc', 'hv-balloon' ] } ## # @PCDIMMDeviceInfoWrapper: # # @data: PCDIMMDevice state information # # Since: 2.1 ## { 'struct': 'PCDIMMDeviceInfoWrapper', 'data': { 'data': 'PCDIMMDeviceInfo' } } ## # @VirtioPMEMDeviceInfoWrapper: # # @data: VirtioPMEM state information # # Since: 2.1 ## { 'struct': 'VirtioPMEMDeviceInfoWrapper', 'data': { 'data': 'VirtioPMEMDeviceInfo' } } ## # @VirtioMEMDeviceInfoWrapper: # # @data: VirtioMEMDevice state information # # Since: 2.1 ## { 'struct': 'VirtioMEMDeviceInfoWrapper', 'data': { 'data': 'VirtioMEMDeviceInfo' } } ## # @SgxEPCDeviceInfoWrapper: # # @data: Sgx EPC state information # # Since: 6.2 ## { 'struct': 'SgxEPCDeviceInfoWrapper', 'data': { 'data': 'SgxEPCDeviceInfo' } } ## # @HvBalloonDeviceInfoWrapper: # # @data: hv-balloon provided memory state information # # Since: 8.2 ## { 'struct': 'HvBalloonDeviceInfoWrapper', 'data': { 'data': 'HvBalloonDeviceInfo' } } ## # @MemoryDeviceInfo: # # Union containing information about a memory device # # @type: memory device type # # Since: 2.1 ## { 'union': 'MemoryDeviceInfo', 'base': { 'type': 'MemoryDeviceInfoKind' }, 'discriminator': 'type', 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper', 'nvdimm': 'PCDIMMDeviceInfoWrapper', 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper', 'virtio-mem': 'VirtioMEMDeviceInfoWrapper', 'sgx-epc': 'SgxEPCDeviceInfoWrapper', 'hv-balloon': 'HvBalloonDeviceInfoWrapper' } } ## # @SgxEPC: # # Sgx EPC cmdline information # # @memdev: memory backend linked with device # # @node: the numa node (Since: 7.0) # # Since: 6.2 ## { 'struct': 'SgxEPC', 'data': { 'memdev': 'str', 'node': 'int' } } ## # @SgxEPCProperties: # # SGX properties of machine types. # # @sgx-epc: list of ids of memory-backend-epc objects. # # Since: 6.2 ## { 'struct': 'SgxEPCProperties', 'data': { 'sgx-epc': ['SgxEPC'] } } ## # @query-memory-devices: # # Lists available memory devices and their state # # Since: 2.1 # # Example: # # -> { "execute": "query-memory-devices" } # <- { "return": [ { "data": # { "addr": 5368709120, # "hotpluggable": true, # "hotplugged": true, # "id": "d1", # "memdev": "/objects/memX", # "node": 0, # "size": 1073741824, # "slot": 0}, # "type": "dimm" # } ] } ## { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] } ## # @MEMORY_DEVICE_SIZE_CHANGE: # # Emitted when the size of a memory device changes. Only emitted for # memory devices that can actually change the size (e.g., virtio-mem # due to guest action). # # @id: device's ID # # @size: the new size of memory that the device provides # # @qom-path: path to the device object in the QOM tree (since 6.2) # # Note: this event is rate-limited. # # Since: 5.1 # # Example: # # <- { "event": "MEMORY_DEVICE_SIZE_CHANGE", # "data": { "id": "vm0", "size": 1073741824, # "qom-path": "/machine/unattached/device[2]" }, # "timestamp": { "seconds": 1588168529, "microseconds": 201316 } } ## { 'event': 'MEMORY_DEVICE_SIZE_CHANGE', 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} } ## # @MEM_UNPLUG_ERROR: # # Emitted when memory hot unplug error occurs. # # @device: device name # # @msg: Informative message # # Features: # # @deprecated: This event is deprecated. Use # @DEVICE_UNPLUG_GUEST_ERROR instead. # # Since: 2.4 # # Example: # # <- { "event": "MEM_UNPLUG_ERROR", # "data": { "device": "dimm1", # "msg": "acpi: device unplug for unsupported device" # }, # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } ## { 'event': 'MEM_UNPLUG_ERROR', 'data': { 'device': 'str', 'msg': 'str' }, 'features': ['deprecated'] } ## # @BootConfiguration: # # Schema for virtual machine boot configuration. # # @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network) # # @once: Boot order to apply on first boot # # @menu: Whether to show a boot menu # # @splash: The name of the file to be passed to the firmware as logo # picture, if @menu is true. # # @splash-time: How long to show the logo picture, in milliseconds # # @reboot-timeout: Timeout before guest reboots after boot fails # # @strict: Whether to attempt booting from devices not included in the # boot order # # Since: 7.1 ## { 'struct': 'BootConfiguration', 'data': { '*order': 'str', '*once': 'str', '*menu': 'bool', '*splash': 'str', '*splash-time': 'int', '*reboot-timeout': 'int', '*strict': 'bool' } } ## # @SMPConfiguration: # # Schema for CPU topology configuration. A missing value lets QEMU # figure out a suitable value based on the ones that are provided. # # The members other than @cpus and @maxcpus define a topology of # containers. # # The ordering from highest/coarsest to lowest/finest is: # @drawers, @books, @sockets, @dies, @clusters, @cores, @threads. # # Different architectures support different subsets of topology # containers. # # For example, s390x does not have clusters and dies, and the socket # is the parent container of cores. # # @cpus: number of virtual CPUs in the virtual machine # # @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual # machine # # @drawers: number of drawers in the CPU topology (since 8.2) # # @books: number of books in the CPU topology (since 8.2) # # @sockets: number of sockets per parent container # # @dies: number of dies per parent container # # @clusters: number of clusters per parent container (since 7.0) # # @cores: number of cores per parent container # # @threads: number of threads per core # # Since: 6.1 ## { 'struct': 'SMPConfiguration', 'data': { '*cpus': 'int', '*drawers': 'int', '*books': 'int', '*sockets': 'int', '*dies': 'int', '*clusters': 'int', '*cores': 'int', '*threads': 'int', '*maxcpus': 'int' } } ## # @x-query-irq: # # Query interrupt statistics # # Features: # # @unstable: This command is meant for debugging. # # Returns: interrupt statistics # # Since: 6.2 ## { 'command': 'x-query-irq', 'returns': 'HumanReadableText', 'features': [ 'unstable' ] } ## # @x-query-jit: # # Query TCG compiler statistics # # Features: # # @unstable: This command is meant for debugging. # # Returns: TCG compiler statistics # # Since: 6.2 ## { 'command': 'x-query-jit', 'returns': 'HumanReadableText', 'if': 'CONFIG_TCG', 'features': [ 'unstable' ] } ## # @x-query-numa: # # Query NUMA topology information # # Features: # # @unstable: This command is meant for debugging. # # Returns: topology information # # Since: 6.2 ## { 'command': 'x-query-numa', 'returns': 'HumanReadableText', 'features': [ 'unstable' ] } ## # @x-query-opcount: # # Query TCG opcode counters # # Features: # # @unstable: This command is meant for debugging. # # Returns: TCG opcode counters # # Since: 6.2 ## { 'command': 'x-query-opcount', 'returns': 'HumanReadableText', 'if': 'CONFIG_TCG', 'features': [ 'unstable' ] } ## # @x-query-ramblock: # # Query system ramblock information # # Features: # # @unstable: This command is meant for debugging. # # Returns: system ramblock information # # Since: 6.2 ## { 'command': 'x-query-ramblock', 'returns': 'HumanReadableText', 'features': [ 'unstable' ] } ## # @x-query-rdma: # # Query RDMA state # # Features: # # @unstable: This command is meant for debugging. # # Returns: RDMA state # # Since: 6.2 ## { 'command': 'x-query-rdma', 'returns': 'HumanReadableText', 'features': [ 'unstable' ] } ## # @x-query-roms: # # Query information on the registered ROMS # # Features: # # @unstable: This command is meant for debugging. # # Returns: registered ROMs # # Since: 6.2 ## { 'command': 'x-query-roms', 'returns': 'HumanReadableText', 'features': [ 'unstable' ] } ## # @x-query-usb: # # Query information on the USB devices # # Features: # # @unstable: This command is meant for debugging. # # Returns: USB device information # # Since: 6.2 ## { 'command': 'x-query-usb', 'returns': 'HumanReadableText', 'features': [ 'unstable' ] } ## # @SmbiosEntryPointType: # # @32: SMBIOS version 2.1 (32-bit) Entry Point # # @64: SMBIOS version 3.0 (64-bit) Entry Point # # @auto: Either 2.x or 3.x SMBIOS version, 2.x if configuration can be # described by it and 3.x otherwise (since: 9.0) # # Since: 7.0 ## { 'enum': 'SmbiosEntryPointType', 'data': [ '32', '64', 'auto' ] } ## # @MemorySizeConfiguration: # # Schema for memory size configuration. # # @size: memory size in bytes # # @max-size: maximum hotpluggable memory size in bytes # # @slots: number of available memory slots for hotplug # # Since: 7.1 ## { 'struct': 'MemorySizeConfiguration', 'data': { '*size': 'size', '*max-size': 'size', '*slots': 'uint64' } } ## # @dumpdtb: # # Save the FDT in dtb format. # # @filename: name of the dtb file to be created # # Since: 7.2 # # Example: # # -> { "execute": "dumpdtb" } # "arguments": { "filename": "fdt.dtb" } } # <- { "return": {} } ## { 'command': 'dumpdtb', 'data': { 'filename': 'str' }, 'if': 'CONFIG_FDT' }