/* * ARM Generic Interrupt Controller v3 (emulation) * * Copyright (c) 2016 Linaro Limited * Written by Peter Maydell * * This code is licensed under the GPL, version 2 or (at your option) * any later version. */ /* This file contains the code for the system register interface * portions of the GICv3. */ #include "qemu/osdep.h" #include "qemu/bitops.h" #include "qemu/log.h" #include "qemu/main-loop.h" #include "trace.h" #include "gicv3_internal.h" #include "hw/irq.h" #include "cpu.h" #include "target/arm/cpregs.h" #include "sysemu/tcg.h" #include "sysemu/qtest.h" /* * Special case return value from hppvi_index(); must be larger than * the architecturally maximum possible list register index (which is 15) */ #define HPPVI_INDEX_VLPI 16 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) { return env->gicv3state; } static bool gicv3_use_ns_bank(CPUARMState *env) { /* Return true if we should use the NonSecure bank for a banked GIC * CPU interface register. Note that this differs from the * access_secure_reg() function because GICv3 banked registers are * banked even for AArch64, unlike the other CPU system registers. */ return !arm_is_secure_below_el3(env); } /* The minimum BPR for the virtual interface is a configurable property */ static inline int icv_min_vbpr(GICv3CPUState *cs) { return 7 - cs->vprebits; } static inline int ich_num_aprs(GICv3CPUState *cs) { /* Return the number of virtual APR registers (1, 2, or 4) */ int aprmax = 1 << (cs->vprebits - 5); assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); return aprmax; } /* Simple accessor functions for LR fields */ static uint32_t ich_lr_vintid(uint64_t lr) { return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); } static uint32_t ich_lr_pintid(uint64_t lr) { return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); } static uint32_t ich_lr_prio(uint64_t lr) { return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); } static int ich_lr_state(uint64_t lr) { return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); } static bool icv_access(CPUARMState *env, int hcr_flags) { /* Return true if this ICC_ register access should really be * directed to an ICV_ access. hcr_flags is a mask of * HCR_EL2 bits to check: we treat this as an ICV_ access * if we are in NS EL1 and at least one of the specified * HCR_EL2 bits is set. * * ICV registers fall into four categories: * * access if NS EL1 and HCR_EL2.FMO == 1: * all ICV regs with '0' in their name * * access if NS EL1 and HCR_EL2.IMO == 1: * all ICV regs with '1' in their name * * access if NS EL1 and either IMO or FMO == 1: * CTLR, DIR, PMR, RPR */ uint64_t hcr_el2 = arm_hcr_el2_eff(env); bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO); return flagmatch && arm_current_el(env) == 1 && !arm_is_secure_below_el3(env); } static int read_vbpr(GICv3CPUState *cs, int grp) { /* Read VBPR value out of the VMCR field (caller must handle * VCBPR effects if required) */ if (grp == GICV3_G0) { return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, ICH_VMCR_EL2_VBPR0_LENGTH); } else { return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, ICH_VMCR_EL2_VBPR1_LENGTH); } } static void write_vbpr(GICv3CPUState *cs, int grp, int value) { /* Write new VBPR1 value, handling the "writing a value less than * the minimum sets it to the minimum" semantics. */ int min = icv_min_vbpr(cs); if (grp != GICV3_G0) { min++; } value = MAX(value, min); if (grp == GICV3_G0) { cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, ICH_VMCR_EL2_VBPR0_LENGTH, value); } else { cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, ICH_VMCR_EL2_VBPR1_LENGTH, value); } } static uint32_t icv_fullprio_mask(GICv3CPUState *cs) { /* Return a mask word which clears the unimplemented priority bits * from a priority value for a virtual interrupt. (Not to be confused * with the group priority, whose mask depends on the value of VBPR * for the interrupt group.) */ return ~0U << (8 - cs->vpribits); } static int ich_highest_active_virt_prio(GICv3CPUState *cs) { /* Calculate the current running priority based on the set bits * in the ICH Active Priority Registers. */ int i; int aprmax = ich_num_aprs(cs); for (i = 0; i < aprmax; i++) { uint32_t apr = cs->ich_apr[GICV3_G0][i] | cs->ich_apr[GICV3_G1NS][i]; if (!apr) { continue; } return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); } /* No current active interrupts: return idle priority */ return 0xff; } static int hppvi_index(GICv3CPUState *cs) { /* * Return the list register index of the highest priority pending * virtual interrupt, as per the HighestPriorityVirtualInterrupt * pseudocode. If no pending virtual interrupts, return -1. * If the highest priority pending virtual interrupt is a vLPI, * return HPPVI_INDEX_VLPI. * (The pseudocode handles checking whether the vLPI is higher * priority than the highest priority list register at every * callsite of HighestPriorityVirtualInterrupt; we check it here.) */ ARMCPU *cpu = ARM_CPU(cs->cpu); CPUARMState *env = &cpu->env; int idx = -1; int i; /* Note that a list register entry with a priority of 0xff will * never be reported by this function; this is the architecturally * correct behaviour. */ int prio = 0xff; if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { /* Both groups disabled, definitely nothing to do */ return idx; } for (i = 0; i < cs->num_list_regs; i++) { uint64_t lr = cs->ich_lr_el2[i]; int thisprio; if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { /* Not Pending */ continue; } /* Ignore interrupts if relevant group enable not set */ if (lr & ICH_LR_EL2_GROUP) { if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { continue; } } else { if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { continue; } } thisprio = ich_lr_prio(lr); if (thisprio < prio) { prio = thisprio; idx = i; } } /* * "no pending vLPI" is indicated with prio = 0xff, which always * fails the priority check here. vLPIs are only considered * when we are in Non-Secure state. */ if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) { if (cs->hppvlpi.grp == GICV3_G0) { if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) { return HPPVI_INDEX_VLPI; } } else { if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) { return HPPVI_INDEX_VLPI; } } } return idx; } static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) { /* Return a mask word which clears the subpriority bits from * a priority value for a virtual interrupt in the specified group. * This depends on the VBPR value. * If using VBPR0 then: * a BPR of 0 means the group priority bits are [7:1]; * a BPR of 1 means they are [7:2], and so on down to * a BPR of 7 meaning no group priority bits at all. * If using VBPR1 then: * a BPR of 0 is impossible (the minimum value is 1) * a BPR of 1 means the group priority bits are [7:1]; * a BPR of 2 means they are [7:2], and so on down to * a BPR of 7 meaning the group priority is [7]. * * Which BPR to use depends on the group of the interrupt and * the current ICH_VMCR_EL2.VCBPR settings. * * This corresponds to the VGroupBits() pseudocode. */ int bpr; if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { group = GICV3_G0; } bpr = read_vbpr(cs, group); if (group == GICV3_G1NS) { assert(bpr > 0); bpr--; } return ~0U << (bpr + 1); } static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) { /* Return true if we can signal this virtual interrupt defined by * the given list register value; see the pseudocode functions * CanSignalVirtualInterrupt and CanSignalVirtualInt. * Compare also icc_hppi_can_preempt() which is the non-virtual * equivalent of these checks. */ int grp; uint32_t mask, prio, rprio, vpmr; if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { /* Virtual interface disabled */ return false; } /* We don't need to check that this LR is in Pending state because * that has already been done in hppvi_index(). */ prio = ich_lr_prio(lr); vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, ICH_VMCR_EL2_VPMR_LENGTH); if (prio >= vpmr) { /* Priority mask masks this interrupt */ return false; } rprio = ich_highest_active_virt_prio(cs); if (rprio == 0xff) { /* No running interrupt so we can preempt */ return true; } grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; mask = icv_gprio_mask(cs, grp); /* We only preempt a running interrupt if the pending interrupt's * group priority is sufficient (the subpriorities are not considered). */ if ((prio & mask) < (rprio & mask)) { return true; } return false; } static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs) { /* * Return true if we can signal the highest priority pending vLPI. * We can assume we're Non-secure because hppvi_index() already * tested for that. */ uint32_t mask, rprio, vpmr; if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { /* Virtual interface disabled */ return false; } vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, ICH_VMCR_EL2_VPMR_LENGTH); if (cs->hppvlpi.prio >= vpmr) { /* Priority mask masks this interrupt */ return false; } rprio = ich_highest_active_virt_prio(cs); if (rprio == 0xff) { /* No running interrupt so we can preempt */ return true; } mask = icv_gprio_mask(cs, cs->hppvlpi.grp); /* * We only preempt a running interrupt if the pending interrupt's * group priority is sufficient (the subpriorities are not considered). */ if ((cs->hppvlpi.prio & mask) < (rprio & mask)) { return true; } return false; } static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, uint32_t *misr) { /* Return a set of bits indicating the EOI maintenance interrupt status * for each list register. The EOI maintenance interrupt status is * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 * (see the GICv3 spec for the ICH_EISR_EL2 register). * If misr is not NULL then we should also collect the information * about the MISR.EOI, MISR.NP and MISR.U bits. */ uint32_t value = 0; int validcount = 0; bool seenpending = false; int i; for (i = 0; i < cs->num_list_regs; i++) { uint64_t lr = cs->ich_lr_el2[i]; if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) == ICH_LR_EL2_EOI) { value |= (1 << i); } if ((lr & ICH_LR_EL2_STATE_MASK)) { validcount++; } if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { seenpending = true; } } if (misr) { if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { *misr |= ICH_MISR_EL2_U; } if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { *misr |= ICH_MISR_EL2_NP; } if (value) { *misr |= ICH_MISR_EL2_EOI; } } return value; } static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) { /* Return a set of bits indicating the maintenance interrupt status * (as seen in the ICH_MISR_EL2 register). */ uint32_t value = 0; /* Scan list registers and fill in the U, NP and EOI bits */ eoi_maintenance_interrupt_state(cs, &value); if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) && (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) { value |= ICH_MISR_EL2_LRENP; } if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { value |= ICH_MISR_EL2_VGRP0E; } if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { value |= ICH_MISR_EL2_VGRP0D; } if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { value |= ICH_MISR_EL2_VGRP1E; } if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { value |= ICH_MISR_EL2_VGRP1D; } return value; } void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs) { /* * Tell the CPU about any pending virtual interrupts. * This should only be called for changes that affect the * vIRQ and vFIQ status and do not change the maintenance * interrupt status. This means that unlike gicv3_cpuif_virt_update() * this function won't recursively call back into the GIC code. * The main use of this is when the redistributor has changed the * highest priority pending virtual LPI. */ int idx; int irqlevel = 0; int fiqlevel = 0; idx = hppvi_index(cs); trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx, cs->hppvlpi.irq, cs->hppvlpi.grp, cs->hppvlpi.prio); if (idx == HPPVI_INDEX_VLPI) { if (icv_hppvlpi_can_preempt(cs)) { if (cs->hppvlpi.grp == GICV3_G0) { fiqlevel = 1; } else { irqlevel = 1; } } } else if (idx >= 0) { uint64_t lr = cs->ich_lr_el2[idx]; if (icv_hppi_can_preempt(cs, lr)) { /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ if (lr & ICH_LR_EL2_GROUP) { irqlevel = 1; } else { fiqlevel = 1; } } } trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); qemu_set_irq(cs->parent_vfiq, fiqlevel); qemu_set_irq(cs->parent_virq, irqlevel); } static void gicv3_cpuif_virt_update(GICv3CPUState *cs) { /* * Tell the CPU about any pending virtual interrupts or * maintenance interrupts, following a change to the state * of the CPU interface relevant to virtual interrupts. * * CAUTION: this function will call qemu_set_irq() on the * CPU maintenance IRQ line, which is typically wired up * to the GIC as a per-CPU interrupt. This means that it * will recursively call back into the GIC code via * gicv3_redist_set_irq() and thus into the CPU interface code's * gicv3_cpuif_update(). It is therefore important that this * function is only called as the final action of a CPU interface * register write implementation, after all the GIC state * fields have been updated. gicv3_cpuif_update() also must * not cause this function to be called, but that happens * naturally as a result of there being no architectural * linkage between the physical and virtual GIC logic. */ ARMCPU *cpu = ARM_CPU(cs->cpu); int maintlevel = 0; gicv3_cpuif_virt_irq_fiq_update(cs); if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) && maintenance_interrupt_state(cs) != 0) { maintlevel = 1; } trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel); qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel); } static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); int regno = ri->opc2 & 3; int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; uint64_t value = cs->ich_apr[grp][regno]; trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); return value; } static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { GICv3CPUState *cs = icc_cs_from_env(env); int regno = ri->opc2 & 3; int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; gicv3_cpuif_virt_irq_fiq_update(cs); return; } static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; uint64_t bpr; bool satinc = false; if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { /* reads return bpr0 + 1 saturated to 7, writes ignored */ grp = GICV3_G0; satinc = true; } bpr = read_vbpr(cs, grp); if (satinc) { bpr++; bpr = MIN(bpr, 7); } trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); return bpr; } static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { GICv3CPUState *cs = icc_cs_from_env(env); int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), value); if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { /* reads return bpr0 + 1 saturated to 7, writes ignored */ return; } write_vbpr(cs, grp, value); gicv3_cpuif_virt_irq_fiq_update(cs); } static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); uint64_t value; value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, ICH_VMCR_EL2_VPMR_LENGTH); trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); return value; } static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { GICv3CPUState *cs = icc_cs_from_env(env); trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); value &= icv_fullprio_mask(cs); cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, ICH_VMCR_EL2_VPMR_LENGTH, value); gicv3_cpuif_virt_irq_fiq_update(cs); } static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); int enbit; uint64_t value; enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; value = extract64(cs->ich_vmcr_el2, enbit, 1); trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, gicv3_redist_affid(cs), value); return value; } static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { GICv3CPUState *cs = icc_cs_from_env(env); int enbit; trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, gicv3_redist_affid(cs), value); enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); gicv3_cpuif_virt_update(cs); } static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); uint64_t value; /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) * should match the ones reported in ich_vtr_read(). */ value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { value |= ICC_CTLR_EL1_EOIMODE; } if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { value |= ICC_CTLR_EL1_CBPR; } trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); return value; } static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { GICv3CPUState *cs = icc_cs_from_env(env); trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); gicv3_cpuif_virt_irq_fiq_update(cs); } static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); int prio = ich_highest_active_virt_prio(cs); trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); return prio; } static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; int idx = hppvi_index(cs); uint64_t value = INTID_SPURIOUS; if (idx == HPPVI_INDEX_VLPI) { if (cs->hppvlpi.grp == grp) { value = cs->hppvlpi.irq; } } else if (idx >= 0) { uint64_t lr = cs->ich_lr_el2[idx]; int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; if (grp == thisgrp) { value = ich_lr_vintid(lr); } } trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), value); return value; } static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) { /* Activate the interrupt in the specified list register * by moving it from Pending to Active state, and update the * Active Priority Registers. */ uint32_t mask = icv_gprio_mask(cs, grp); int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; int aprbit = prio >> (8 - cs->vprebits); int regno = aprbit / 32; int regbit = aprbit % 32; cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; cs->ich_apr[grp][regno] |= (1 << regbit); } static void icv_activate_vlpi(GICv3CPUState *cs) { uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp); int prio = cs->hppvlpi.prio & mask; int aprbit = prio >> (8 - cs->vprebits); int regno = aprbit / 32; int regbit = aprbit % 32; cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit); gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0); } static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; int idx = hppvi_index(cs); uint64_t intid = INTID_SPURIOUS; if (idx == HPPVI_INDEX_VLPI) { if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) { intid = cs->hppvlpi.irq; icv_activate_vlpi(cs); } } else if (idx >= 0) { uint64_t lr = cs->ich_lr_el2[idx]; int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { intid = ich_lr_vintid(lr); if (!gicv3_intid_is_special(intid)) { icv_activate_irq(cs, idx, grp); } else { /* Interrupt goes from Pending to Invalid */ cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; /* We will now return the (bogus) ID from the list register, * as per the pseudocode. */ } } } trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), intid); gicv3_cpuif_virt_update(cs); return intid; } static uint32_t icc_fullprio_mask(GICv3CPUState *cs) { /* * Return a mask word which clears the unimplemented priority bits * from a priority value for a physical interrupt. (Not to be confused * with the group priority, whose mask depends on the value of BPR * for the interrupt group.) */ return ~0U << (8 - cs->pribits); } static inline int icc_min_bpr(GICv3CPUState *cs) { /* The minimum BPR for the physical interface. */ return 7 - cs->prebits; } static inline int icc_min_bpr_ns(GICv3CPUState *cs) { return icc_min_bpr(cs) + 1; } static inline int icc_num_aprs(GICv3CPUState *cs) { /* Return the number of APR registers (1, 2, or 4) */ int aprmax = 1 << MAX(cs->prebits - 5, 0); assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0])); return aprmax; } static int icc_highest_active_prio(GICv3CPUState *cs) { /* Calculate the current running priority based on the set bits * in the Active Priority Registers. */ int i; for (i = 0; i < icc_num_aprs(cs); i++) { uint32_t apr = cs->icc_apr[GICV3_G0][i] | cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; if (!apr) { continue; } return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1); } /* No current active interrupts: return idle priority */ return 0xff; } static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) { /* Return a mask word which clears the subpriority bits from * a priority value for an interrupt in the specified group. * This depends on the BPR value. For CBPR0 (S or NS): * a BPR of 0 means the group priority bits are [7:1]; * a BPR of 1 means they are [7:2], and so on down to * a BPR of 7 meaning no group priority bits at all. * For CBPR1 NS: * a BPR of 0 is impossible (the minimum value is 1) * a BPR of 1 means the group priority bits are [7:1]; * a BPR of 2 means they are [7:2], and so on down to * a BPR of 7 meaning the group priority is [7]. * * Which BPR to use depends on the group of the interrupt and * the current ICC_CTLR.CBPR settings. * * This corresponds to the GroupBits() pseudocode. */ int bpr; if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || (group == GICV3_G1NS && cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { group = GICV3_G0; } bpr = cs->icc_bpr[group] & 7; if (group == GICV3_G1NS) { assert(bpr > 0); bpr--; } return ~0U << (bpr + 1); } static bool icc_no_enabled_hppi(GICv3CPUState *cs) { /* Return true if there is no pending interrupt, or the * highest priority pending interrupt is in a group which has been * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. */ return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); } static bool icc_hppi_can_preempt(GICv3CPUState *cs) { /* Return true if we have a pending interrupt of sufficient * priority to preempt. */ int rprio; uint32_t mask; if (icc_no_enabled_hppi(cs)) { return false; } if (cs->hppi.prio >= cs->icc_pmr_el1) { /* Priority mask masks this interrupt */ return false; } rprio = icc_highest_active_prio(cs); if (rprio == 0xff) { /* No currently running interrupt so we can preempt */ return true; } mask = icc_gprio_mask(cs, cs->hppi.grp); /* We only preempt a running interrupt if the pending interrupt's * group priority is sufficient (the subpriorities are not considered). */ if ((cs->hppi.prio & mask) < (rprio & mask)) { return true; } return false; } void gicv3_cpuif_update(GICv3CPUState *cs) { /* Tell the CPU about its highest priority pending interrupt */ int irqlevel = 0; int fiqlevel = 0; ARMCPU *cpu = ARM_CPU(cs->cpu); CPUARMState *env = &cpu->env; g_assert(qemu_mutex_iothread_locked()); trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, cs->hppi.grp, cs->hppi.prio); if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { /* If a Security-enabled GIC sends a G1S interrupt to a * Security-disabled CPU, we must treat it as if it were G0. */ cs->hppi.grp = GICV3_G0; } if (icc_hppi_can_preempt(cs)) { /* We have an interrupt: should we signal it as IRQ or FIQ? * This is described in the GICv3 spec section 4.6.2. */ bool isfiq; switch (cs->hppi.grp) { case GICV3_G0: isfiq = true; break; case GICV3_G1: isfiq = (!arm_is_secure(env) || (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); break; case GICV3_G1NS: isfiq = arm_is_secure(env); break; default: g_assert_not_reached(); } if (isfiq) { fiqlevel = 1; } else { irqlevel = 1; } } trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); qemu_set_irq(cs->parent_fiq, fiqlevel); qemu_set_irq(cs->parent_irq, irqlevel); } static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); uint32_t value = cs->icc_pmr_el1; if (icv_access(env, HCR_FMO | HCR_IMO)) { return icv_pmr_read(env, ri); } if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { /* NS access and Group 0 is inaccessible to NS: return the * NS view of the current priority */ if ((value & 0x80) == 0) { /* Secure priorities not visible to NS */ value = 0; } else if (value != 0xff) { value = (value << 1) & 0xff; } } trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); return value; } static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { GICv3CPUState *cs = icc_cs_from_env(env); if (icv_access(env, HCR_FMO | HCR_IMO)) { return icv_pmr_write(env, ri, value); } trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { /* NS access and Group 0 is inaccessible to NS: return the * NS view of the current priority */ if (!(cs->icc_pmr_el1 & 0x80)) { /* Current PMR in the secure range, don't allow NS to change it */ return; } value = (value >> 1) | 0x80; } value &= icc_fullprio_mask(cs); cs->icc_pmr_el1 = value; gicv3_cpuif_update(cs); } static void icc_activate_irq(GICv3CPUState *cs, int irq) { /* Move the interrupt from the Pending state to Active, and update * the Active Priority Registers */ uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); int prio = cs->hppi.prio & mask; int aprbit = prio >> (8 - cs->prebits); int regno = aprbit / 32; int regbit = aprbit % 32; cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); if (irq < GIC_INTERNAL) { cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); gicv3_redist_update(cs); } else if (irq < GICV3_LPI_INTID_START) { gicv3_gicd_active_set(cs->gic, irq); gicv3_gicd_pending_clear(cs->gic, irq); gicv3_update(cs->gic, irq, 1); } else { gicv3_redist_lpi_pending(cs, irq, 0); } } static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) { /* Return the highest priority pending interrupt register value * for group 0. */ bool irq_is_secure; if (cs->hppi.prio == 0xff) { return INTID_SPURIOUS; } /* Check whether we can return the interrupt or if we should return * a special identifier, as per the CheckGroup0ForSpecialIdentifiers * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM * is always zero.) */ irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && (cs->hppi.grp != GICV3_G1NS)); if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { return INTID_SPURIOUS; } if (irq_is_secure && !arm_is_secure(env)) { /* Secure interrupts not visible to Nonsecure */ return INTID_SPURIOUS; } if (cs->hppi.grp != GICV3_G0) { /* Indicate to EL3 that there's a Group 1 interrupt for the other * state pending. */ return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; } return cs->hppi.irq; } static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) { /* Return the highest priority pending interrupt register value * for group 1. */ bool irq_is_secure; if (cs->hppi.prio == 0xff) { return INTID_SPURIOUS; } /* Check whether we can return the interrupt or if we should return * a special identifier, as per the CheckGroup1ForSpecialIdentifiers * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM * is always zero.) */ irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && (cs->hppi.grp != GICV3_G1NS)); if (cs->hppi.grp == GICV3_G0) { /* Group 0 interrupts not visible via HPPIR1 */ return INTID_SPURIOUS; } if (irq_is_secure) { if (!arm_is_secure(env)) { /* Secure interrupts not visible in Non-secure */ return INTID_SPURIOUS; } } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { /* Group 1 non-secure interrupts not visible in Secure EL1 */ return INTID_SPURIOUS; } return cs->hppi.irq; } static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); uint64_t intid; if (icv_access(env, HCR_FMO)) { return icv_iar_read(env, ri); } if (!icc_hppi_can_preempt(cs)) { intid = INTID_SPURIOUS; } else { intid = icc_hppir0_value(cs, env); } if (!gicv3_intid_is_special(intid)) { icc_activate_irq(cs, intid); } trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); return intid; } static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); uint64_t intid; if (icv_access(env, HCR_IMO)) { return icv_iar_read(env, ri); } if (!icc_hppi_can_preempt(cs)) { intid = INTID_SPURIOUS; } else { intid = icc_hppir1_value(cs, env); } if (!gicv3_intid_is_special(intid)) { icc_activate_irq(cs, intid); } trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); return intid; } static void icc_drop_prio(GICv3CPUState *cs, int grp) { /* Drop the priority of the currently active interrupt in * the specified group. * * Note that we can guarantee (because of the requirement to nest * ICC_IAR reads [which activate an interrupt and raise priority] * with ICC_EOIR writes [which drop the priority for the interrupt]) * that the interrupt we're being called for is the highest priority * active interrupt, meaning that it has the lowest set bit in the * APR registers. * * If the guest does not honour the ordering constraints then the * behaviour of the GIC is UNPREDICTABLE, which for us means that * the values of the APR registers might become incorrect and the * running priority will be wrong, so interrupts that should preempt * might not do so, and interrupts that should not preempt might do so. */ int i; for (i = 0; i < icc_num_aprs(cs); i++) { uint64_t *papr = &cs->icc_apr[grp][i]; if (!*papr) { continue; } /* Clear the lowest set bit */ *papr &= *papr - 1; break; } /* running priority change means we need an update for this cpu i/f */ gicv3_cpuif_update(cs); } static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) { /* Return true if we should split priority drop and interrupt * deactivation, ie whether the relevant EOIMode bit is set. */ if (arm_is_el3_or_mon(env)) { return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; } if (arm_is_secure_below_el3(env)) { return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; } else { return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; } } static int icc_highest_active_group(GICv3CPUState *cs) { /* Return the group with the highest priority active interrupt. * We can do this by just comparing the APRs to see which one * has the lowest set bit. * (If more than one group is active at the same priority then * we're in UNPREDICTABLE territory.) */ int i; for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); if (g1nsctz < g0ctz && g1nsctz < g1ctz) { return GICV3_G1NS; } if (g1ctz < g0ctz) { return GICV3_G1; } if (g0ctz < 32) { return GICV3_G0; } } /* No set active bits? UNPREDICTABLE; return -1 so the caller * ignores the spurious EOI attempt. */ return -1; } static void icc_deactivate_irq(GICv3CPUState *cs, int irq) { if (irq < GIC_INTERNAL) { cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); gicv3_redist_update(cs); } else { gicv3_gicd_active_clear(cs->gic, irq); gicv3_update(cs->gic, irq, 1); } } static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) { /* Return true if we should split priority drop and interrupt * deactivation, ie whether the virtual EOIMode bit is set. */ return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; } static int icv_find_active(GICv3CPUState *cs, int irq) { /* Given an interrupt number for an active interrupt, return the index * of the corresponding list register, or -1 if there is no match. * Corresponds to FindActiveVirtualInterrupt pseudocode. */ int i; for (i = 0; i < cs->num_list_regs; i++) { uint64_t lr = cs->ich_lr_el2[i]; if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { return i; } } return -1; } static void icv_deactivate_irq(GICv3CPUState *cs, int idx) { /* Deactivate the interrupt in the specified list register index */ uint64_t lr = cs->ich_lr_el2[idx]; if (lr & ICH_LR_EL2_HW) { /* Deactivate the associated physical interrupt */ int pirq = ich_lr_pintid(lr); if (pirq < INTID_SECURE) { icc_deactivate_irq(cs, pirq); } } /* Clear the 'active' part of the state, so ActivePending->Pending * and Active->Invalid. */ lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; cs->ich_lr_el2[idx] = lr; } static void icv_increment_eoicount(GICv3CPUState *cs) { /* Increment the EOICOUNT field in ICH_HCR_EL2 */ int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, ICH_HCR_EL2_EOICOUNT_LENGTH); cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); } static int icv_drop_prio(GICv3CPUState *cs) { /* Drop the priority of the currently active virtual interrupt * (favouring group 0 if there is a set active bit at * the same priority for both group 0 and group 1). * Return the priority value for the bit we just cleared, * or 0xff if no bits were set in the AP registers at all. * Note that though the ich_apr[] are uint64_t only the low * 32 bits are actually relevant. */ int i; int aprmax = ich_num_aprs(cs); for (i = 0; i < aprmax; i++) { uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; int apr0count, apr1count; if (!*papr0 && !*papr1) { continue; } /* We can't just use the bit-twiddling hack icc_drop_prio() does * because we need to return the bit number we cleared so * it can be compared against the list register's priority field. */ apr0count = ctz32(*papr0); apr1count = ctz32(*papr1); if (apr0count <= apr1count) { *papr0 &= *papr0 - 1; return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); } else { *papr1 &= *papr1 - 1; return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); } } return 0xff; } static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Deactivate interrupt */ GICv3CPUState *cs = icc_cs_from_env(env); int idx; int irq = value & 0xffffff; trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); if (irq >= GICV3_MAXIRQ) { /* Also catches special interrupt numbers and LPIs */ return; } if (!icv_eoi_split(env, cs)) { return; } idx = icv_find_active(cs, irq); if (idx < 0) { /* No list register matching this, so increment the EOI count * (might trigger a maintenance interrupt) */ icv_increment_eoicount(cs); } else { icv_deactivate_irq(cs, idx); } gicv3_cpuif_virt_update(cs); } static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* End of Interrupt */ GICv3CPUState *cs = icc_cs_from_env(env); int irq = value & 0xffffff; int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; int idx, dropprio; trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), value); if (gicv3_intid_is_special(irq)) { return; } /* We implement the IMPDEF choice of "drop priority before doing * error checks" (because that lets us avoid scanning the AP * registers twice). */ dropprio = icv_drop_prio(cs); if (dropprio == 0xff) { /* No active interrupt. It is CONSTRAINED UNPREDICTABLE * whether the list registers are checked in this * situation; we choose not to. */ return; } idx = icv_find_active(cs, irq); if (idx < 0) { /* No valid list register corresponding to EOI ID */ icv_increment_eoicount(cs); } else { uint64_t lr = cs->ich_lr_el2[idx]; int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); if (thisgrp == grp && lr_gprio == dropprio) { if (!icv_eoi_split(env, cs)) { /* Priority drop and deactivate not split: deactivate irq now */ icv_deactivate_irq(cs, idx); } } } gicv3_cpuif_virt_update(cs); } static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* End of Interrupt */ GICv3CPUState *cs = icc_cs_from_env(env); int irq = value & 0xffffff; int grp; bool is_eoir0 = ri->crm == 8; if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) { icv_eoir_write(env, ri, value); return; } trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1, gicv3_redist_affid(cs), value); if ((irq >= cs->gic->num_irq) && !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) { /* This handles two cases: * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] * to the GICC_EOIR, the GIC ignores that write. * 2. If software writes the number of a non-existent interrupt * this must be a subcase of "value written does not match the last * valid interrupt value read from the Interrupt Acknowledge * register" and so this is UNPREDICTABLE. We choose to ignore it. */ return; } grp = icc_highest_active_group(cs); switch (grp) { case GICV3_G0: if (!is_eoir0) { return; } if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { return; } break; case GICV3_G1: if (is_eoir0) { return; } if (!arm_is_secure(env)) { return; } break; case GICV3_G1NS: if (is_eoir0) { return; } if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { return; } break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: IRQ %d isn't active\n", __func__, irq); return; } icc_drop_prio(cs, grp); if (!icc_eoi_split(env, cs)) { /* Priority drop and deactivate not split: deactivate irq now */ icc_deactivate_irq(cs, irq); } } static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); uint64_t value; if (icv_access(env, HCR_FMO)) { return icv_hppir_read(env, ri); } value = icc_hppir0_value(cs, env); trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); return value; } static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); uint64_t value; if (icv_access(env, HCR_IMO)) { return icv_hppir_read(env, ri); } value = icc_hppir1_value(cs, env); trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); return value; } static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; bool satinc = false; uint64_t bpr; if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { return icv_bpr_read(env, ri); } if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { grp = GICV3_G1NS; } if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses * modify BPR0 */ grp = GICV3_G0; } if (grp == GICV3_G1NS && arm_current_el(env) < 3 && (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { /* reads return bpr0 + 1 sat to 7, writes ignored */ grp = GICV3_G0; satinc = true; } bpr = cs->icc_bpr[grp]; if (satinc) { bpr++; bpr = MIN(bpr, 7); } trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); return bpr; } static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { GICv3CPUState *cs = icc_cs_from_env(env); int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; uint64_t minval; if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { icv_bpr_write(env, ri, value); return; } trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), value); if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { grp = GICV3_G1NS; } if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses * modify BPR0 */ grp = GICV3_G0; } if (grp == GICV3_G1NS && arm_current_el(env) < 3 && (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { /* reads return bpr0 + 1 sat to 7, writes ignored */ return; } minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs); if (value < minval) { value = minval; } cs->icc_bpr[grp] = value & 7; gicv3_cpuif_update(cs); } static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); uint64_t value; int regno = ri->opc2 & 3; int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { return icv_ap_read(env, ri); } if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { grp = GICV3_G1NS; } value = cs->icc_apr[grp][regno]; trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); return value; } static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { GICv3CPUState *cs = icc_cs_from_env(env); int regno = ri->opc2 & 3; int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { icv_ap_write(env, ri, value); return; } trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { grp = GICV3_G1NS; } /* It's not possible to claim that a Non-secure interrupt is active * at a priority outside the Non-secure range (128..255), since this * would otherwise allow malicious NS code to block delivery of S interrupts * by writing a bad value to these registers. */ if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { return; } cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; gicv3_cpuif_update(cs); } static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Deactivate interrupt */ GICv3CPUState *cs = icc_cs_from_env(env); int irq = value & 0xffffff; bool irq_is_secure, single_sec_state, irq_is_grp0; bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; if (icv_access(env, HCR_FMO | HCR_IMO)) { icv_dir_write(env, ri, value); return; } trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); if (irq >= cs->gic->num_irq) { /* Also catches special interrupt numbers and LPIs */ return; } if (!icc_eoi_split(env, cs)) { return; } int grp = gicv3_irq_group(cs->gic, cs, irq); single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); irq_is_grp0 = grp == GICV3_G0; /* Check whether we're allowed to deactivate this interrupt based * on its group and the current CPU state. * These checks are laid out to correspond to the spec's pseudocode. */ route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; /* No need to include !IsSecure in route_*_to_el2 as it's only * tested in cases where we know !IsSecure is true. */ uint64_t hcr_el2 = arm_hcr_el2_eff(env); route_fiq_to_el2 = hcr_el2 & HCR_FMO; route_irq_to_el2 = hcr_el2 & HCR_IMO; switch (arm_current_el(env)) { case 3: break; case 2: if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { break; } if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { break; } return; case 1: if (!arm_is_secure_below_el3(env)) { if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3 && !route_fiq_to_el2) { break; } if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3 && !route_irq_to_el2) { break; } } else { if (irq_is_grp0 && !route_fiq_to_el3) { break; } if (!irq_is_grp0 && (!irq_is_secure || !single_sec_state) && !route_irq_to_el3) { break; } } return; default: g_assert_not_reached(); } icc_deactivate_irq(cs, irq); } static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); int prio; if (icv_access(env, HCR_FMO | HCR_IMO)) { return icv_rpr_read(env, ri); } prio = icc_highest_active_prio(cs); if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { /* NS GIC access and Group 0 is inaccessible to NS */ if ((prio & 0x80) == 0) { /* NS mustn't see priorities in the Secure half of the range */ prio = 0; } else if (prio != 0xff) { /* Non-idle priority: show the Non-secure view of it */ prio = (prio << 1) & 0xff; } } trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); return prio; } static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, uint64_t value, int grp, bool ns) { GICv3State *s = cs->gic; /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ uint64_t aff = extract64(value, 48, 8) << 16 | extract64(value, 32, 8) << 8 | extract64(value, 16, 8); uint32_t targetlist = extract64(value, 0, 16); uint32_t irq = extract64(value, 24, 4); bool irm = extract64(value, 40, 1); int i; if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 * interrupts as Group 0 interrupts and must send Secure Group 0 * interrupts to the target CPUs. */ grp = GICV3_G0; } trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, aff, targetlist); for (i = 0; i < s->num_cpu; i++) { GICv3CPUState *ocs = &s->cpu[i]; if (irm) { /* IRM == 1 : route to all CPUs except self */ if (cs == ocs) { continue; } } else { /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] * where the corresponding bit is set in targetlist */ int aff0; if (ocs->gicr_typer >> 40 != aff) { continue; } aff0 = extract64(ocs->gicr_typer, 32, 8); if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { continue; } } /* The redistributor will check against its own GICR_NSACR as needed */ gicv3_redist_send_sgi(ocs, grp, irq, ns); } } static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Generate Secure Group 0 SGI. */ GICv3CPUState *cs = icc_cs_from_env(env); bool ns = !arm_is_secure(env); icc_generate_sgi(env, cs, value, GICV3_G0, ns); } static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Generate Group 1 SGI for the current Security state */ GICv3CPUState *cs = icc_cs_from_env(env); int grp; bool ns = !arm_is_secure(env); grp = ns ? GICV3_G1NS : GICV3_G1; icc_generate_sgi(env, cs, value, grp, ns); } static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Generate Group 1 SGI for the Security state that is not * the current state */ GICv3CPUState *cs = icc_cs_from_env(env); int grp; bool ns = !arm_is_secure(env); grp = ns ? GICV3_G1 : GICV3_G1NS; icc_generate_sgi(env, cs, value, grp, ns); } static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; uint64_t value; if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { return icv_igrpen_read(env, ri); } if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { grp = GICV3_G1NS; } value = cs->icc_igrpen[grp]; trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, gicv3_redist_affid(cs), value); return value; } static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { GICv3CPUState *cs = icc_cs_from_env(env); int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { icv_igrpen_write(env, ri, value); return; } trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, gicv3_redist_affid(cs), value); if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { grp = GICV3_G1NS; } cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; gicv3_cpuif_update(cs); } static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); uint64_t value; /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); return value; } static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { GICv3CPUState *cs = icc_cs_from_env(env); trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); gicv3_cpuif_update(cs); } static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; uint64_t value; if (icv_access(env, HCR_FMO | HCR_IMO)) { return icv_ctlr_read(env, ri); } value = cs->icc_ctlr_el1[bank]; trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); return value; } static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { GICv3CPUState *cs = icc_cs_from_env(env); int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; uint64_t mask; if (icv_access(env, HCR_FMO | HCR_IMO)) { icv_ctlr_write(env, ri, value); return; } trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); /* Only CBPR and EOIMODE can be RW; * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or * the asseciated priority-based routing of them); * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. */ if (arm_feature(env, ARM_FEATURE_EL3) && ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { mask = ICC_CTLR_EL1_EOIMODE; } else { mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; } cs->icc_ctlr_el1[bank] &= ~mask; cs->icc_ctlr_el1[bank] |= (value & mask); gicv3_cpuif_update(cs); } static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); uint64_t value; value = cs->icc_ctlr_el3; if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { value |= ICC_CTLR_EL3_EOIMODE_EL1NS; } if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { value |= ICC_CTLR_EL3_CBPR_EL1NS; } if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { value |= ICC_CTLR_EL3_EOIMODE_EL1S; } if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { value |= ICC_CTLR_EL3_CBPR_EL1S; } trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); return value; } static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { GICv3CPUState *cs = icc_cs_from_env(env); uint64_t mask; trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; } if (value & ICC_CTLR_EL3_CBPR_EL1NS) { cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; } cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; } if (value & ICC_CTLR_EL3_CBPR_EL1S) { cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; } /* The only bit stored in icc_ctlr_el3 which is writable is EOIMODE_EL3: */ mask = ICC_CTLR_EL3_EOIMODE_EL3; cs->icc_ctlr_el3 &= ~mask; cs->icc_ctlr_el3 |= (value & mask); gicv3_cpuif_update(cs); } static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { CPAccessResult r = CP_ACCESS_OK; GICv3CPUState *cs = icc_cs_from_env(env); int el = arm_current_el(env); if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && el == 1 && !arm_is_secure_below_el3(env)) { /* Takes priority over a possible EL3 trap */ return CP_ACCESS_TRAP_EL2; } if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { switch (el) { case 1: /* Note that arm_hcr_el2_eff takes secure state into account. */ if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) { r = CP_ACCESS_TRAP_EL3; } break; case 2: r = CP_ACCESS_TRAP_EL3; break; case 3: if (!is_a64(env) && !arm_is_el3_or_mon(env)) { r = CP_ACCESS_TRAP_EL3; } break; default: g_assert_not_reached(); } } if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { r = CP_ACCESS_TRAP; } return r; } static CPAccessResult gicv3_dir_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { GICv3CPUState *cs = icc_cs_from_env(env); if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { /* Takes priority over a possible EL3 trap */ return CP_ACCESS_TRAP_EL2; } return gicv3_irqfiq_access(env, ri, isread); } static CPAccessResult gicv3_sgi_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) { /* Takes priority over a possible EL3 trap */ return CP_ACCESS_TRAP_EL2; } return gicv3_irqfiq_access(env, ri, isread); } static CPAccessResult gicv3_fiq_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { CPAccessResult r = CP_ACCESS_OK; GICv3CPUState *cs = icc_cs_from_env(env); int el = arm_current_el(env); if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && el == 1 && !arm_is_secure_below_el3(env)) { /* Takes priority over a possible EL3 trap */ return CP_ACCESS_TRAP_EL2; } if (env->cp15.scr_el3 & SCR_FIQ) { switch (el) { case 1: if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) { r = CP_ACCESS_TRAP_EL3; } break; case 2: r = CP_ACCESS_TRAP_EL3; break; case 3: if (!is_a64(env) && !arm_is_el3_or_mon(env)) { r = CP_ACCESS_TRAP_EL3; } break; default: g_assert_not_reached(); } } if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { r = CP_ACCESS_TRAP; } return r; } static CPAccessResult gicv3_irq_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { CPAccessResult r = CP_ACCESS_OK; GICv3CPUState *cs = icc_cs_from_env(env); int el = arm_current_el(env); if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && el == 1 && !arm_is_secure_below_el3(env)) { /* Takes priority over a possible EL3 trap */ return CP_ACCESS_TRAP_EL2; } if (env->cp15.scr_el3 & SCR_IRQ) { switch (el) { case 1: if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) { r = CP_ACCESS_TRAP_EL3; } break; case 2: r = CP_ACCESS_TRAP_EL3; break; case 3: if (!is_a64(env) && !arm_is_el3_or_mon(env)) { r = CP_ACCESS_TRAP_EL3; } break; default: g_assert_not_reached(); } } if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { r = CP_ACCESS_TRAP; } return r; } static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); cs->icc_pmr_el1 = 0; cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs); cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs); cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs); memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT); memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); cs->ich_hcr_el2 = 0; memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); } static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_RW, .accessfn = gicv3_irqfiq_access, .readfn = icc_pmr_read, .writefn = icc_pmr_write, /* We hang the whole cpu interface reset routine off here * rather than parcelling it out into one little function * per register */ .resetfn = icc_reset, }, { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_R, .accessfn = gicv3_fiq_access, .readfn = icc_iar0_read, }, { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_W, .accessfn = gicv3_fiq_access, .writefn = icc_eoir_write, }, { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_R, .accessfn = gicv3_fiq_access, .readfn = icc_hppir0_read, }, { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_RW, .accessfn = gicv3_fiq_access, .readfn = icc_bpr_read, .writefn = icc_bpr_write, }, { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_RW, .accessfn = gicv3_fiq_access, .readfn = icc_ap_read, .writefn = icc_ap_write, }, /* All the ICC_AP1R*_EL1 registers are banked */ { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_RW, .accessfn = gicv3_irq_access, .readfn = icc_ap_read, .writefn = icc_ap_write, }, { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_W, .accessfn = gicv3_dir_access, .writefn = icc_dir_write, }, { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_R, .accessfn = gicv3_irqfiq_access, .readfn = icc_rpr_read, }, { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_W, .accessfn = gicv3_sgi_access, .writefn = icc_sgi1r_write, }, { .name = "ICC_SGI1R", .cp = 15, .opc1 = 0, .crm = 12, .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_W, .accessfn = gicv3_sgi_access, .writefn = icc_sgi1r_write, }, { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_W, .accessfn = gicv3_sgi_access, .writefn = icc_asgi1r_write, }, { .name = "ICC_ASGI1R", .cp = 15, .opc1 = 1, .crm = 12, .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_W, .accessfn = gicv3_sgi_access, .writefn = icc_asgi1r_write, }, { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_W, .accessfn = gicv3_sgi_access, .writefn = icc_sgi0r_write, }, { .name = "ICC_SGI0R", .cp = 15, .opc1 = 2, .crm = 12, .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_W, .accessfn = gicv3_sgi_access, .writefn = icc_sgi0r_write, }, { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_R, .accessfn = gicv3_irq_access, .readfn = icc_iar1_read, }, { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_W, .accessfn = gicv3_irq_access, .writefn = icc_eoir_write, }, { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_R, .accessfn = gicv3_irq_access, .readfn = icc_hppir1_read, }, /* This register is banked */ { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_RW, .accessfn = gicv3_irq_access, .readfn = icc_bpr_read, .writefn = icc_bpr_write, }, /* This register is banked */ { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_RW, .accessfn = gicv3_irqfiq_access, .readfn = icc_ctlr_el1_read, .writefn = icc_ctlr_el1_write, }, { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, .type = ARM_CP_NO_RAW | ARM_CP_CONST, .access = PL1_RW, /* We don't support IRQ/FIQ bypass and system registers are * always enabled, so all our bits are RAZ/WI or RAO/WI. * This register is banked but since it's constant we don't * need to do anything special. */ .resetvalue = 0x7, }, { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_RW, .accessfn = gicv3_fiq_access, .readfn = icc_igrpen_read, .writefn = icc_igrpen_write, }, /* This register is banked */ { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_RW, .accessfn = gicv3_irq_access, .readfn = icc_igrpen_read, .writefn = icc_igrpen_write, }, { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, .type = ARM_CP_NO_RAW | ARM_CP_CONST, .access = PL2_RW, /* We don't support IRQ/FIQ bypass and system registers are * always enabled, so all our bits are RAZ/WI or RAO/WI. */ .resetvalue = 0xf, }, { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL3_RW, .readfn = icc_ctlr_el3_read, .writefn = icc_ctlr_el3_write, }, { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, .type = ARM_CP_NO_RAW | ARM_CP_CONST, .access = PL3_RW, /* We don't support IRQ/FIQ bypass and system registers are * always enabled, so all our bits are RAZ/WI or RAO/WI. */ .resetvalue = 0xf, }, { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL3_RW, .readfn = icc_igrpen1_el3_read, .writefn = icc_igrpen1_el3_write, }, }; static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = { { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_RW, .accessfn = gicv3_fiq_access, .readfn = icc_ap_read, .writefn = icc_ap_write, }, { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_RW, .accessfn = gicv3_irq_access, .readfn = icc_ap_read, .writefn = icc_ap_write, }, }; static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = { { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_RW, .accessfn = gicv3_fiq_access, .readfn = icc_ap_read, .writefn = icc_ap_write, }, { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_RW, .accessfn = gicv3_fiq_access, .readfn = icc_ap_read, .writefn = icc_ap_write, }, { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_RW, .accessfn = gicv3_irq_access, .readfn = icc_ap_read, .writefn = icc_ap_write, }, { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL1_RW, .accessfn = gicv3_irq_access, .readfn = icc_ap_read, .writefn = icc_ap_write, }, }; static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); int regno = ri->opc2 & 3; int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; uint64_t value; value = cs->ich_apr[grp][regno]; trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); return value; } static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { GICv3CPUState *cs = icc_cs_from_env(env); int regno = ri->opc2 & 3; int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; gicv3_cpuif_virt_irq_fiq_update(cs); } static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); uint64_t value = cs->ich_hcr_el2; trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); return value; } static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { GICv3CPUState *cs = icc_cs_from_env(env); trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; cs->ich_hcr_el2 = value; gicv3_cpuif_virt_update(cs); } static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); uint64_t value = cs->ich_vmcr_el2; trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); return value; } static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { GICv3CPUState *cs = icc_cs_from_env(env); trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; value |= ICH_VMCR_EL2_VFIQEN; cs->ich_vmcr_el2 = value; /* Enforce "writing BPRs to less than minimum sets them to the minimum" * by reading and writing back the fields. */ write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0)); write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); gicv3_cpuif_virt_update(cs); } static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); int regno = ri->opc2 | ((ri->crm & 1) << 3); uint64_t value; /* This read function handles all of: * 64-bit reads of the whole LR * 32-bit reads of the low half of the LR * 32-bit reads of the high half of the LR */ if (ri->state == ARM_CP_STATE_AA32) { if (ri->crm >= 14) { value = extract64(cs->ich_lr_el2[regno], 32, 32); trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); } else { value = extract64(cs->ich_lr_el2[regno], 0, 32); trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); } } else { value = cs->ich_lr_el2[regno]; trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); } return value; } static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { GICv3CPUState *cs = icc_cs_from_env(env); int regno = ri->opc2 | ((ri->crm & 1) << 3); /* This write function handles all of: * 64-bit writes to the whole LR * 32-bit writes to the low half of the LR * 32-bit writes to the high half of the LR */ if (ri->state == ARM_CP_STATE_AA32) { if (ri->crm >= 14) { trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); } else { trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); } } else { trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); } /* Enforce RES0 bits in priority field */ if (cs->vpribits < 8) { value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 8 - cs->vpribits, 0); } cs->ich_lr_el2[regno] = value; gicv3_cpuif_virt_update(cs); } static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); uint64_t value; value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V | (1 << ICH_VTR_EL2_IDBITS_SHIFT) | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); if (cs->gic->revision < 4) { value |= ICH_VTR_EL2_NV4; } trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); return value; } static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); uint64_t value = maintenance_interrupt_state(cs); trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); return value; } static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); return value; } static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); uint64_t value = 0; int i; for (i = 0; i < cs->num_list_regs; i++) { uint64_t lr = cs->ich_lr_el2[i]; if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { value |= (1 << i); } } trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); return value; } static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL2_RW, .readfn = ich_ap_read, .writefn = ich_ap_write, }, { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL2_RW, .readfn = ich_ap_read, .writefn = ich_ap_write, }, { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL2_RW, .readfn = ich_hcr_read, .writefn = ich_hcr_write, }, { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL2_R, .readfn = ich_vtr_read, }, { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL2_R, .readfn = ich_misr_read, }, { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL2_R, .readfn = ich_eisr_read, }, { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL2_R, .readfn = ich_elrsr_read, }, { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL2_RW, .readfn = ich_vmcr_read, .writefn = ich_vmcr_write, }, }; static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL2_RW, .readfn = ich_ap_read, .writefn = ich_ap_write, }, { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL2_RW, .readfn = ich_ap_read, .writefn = ich_ap_write, }, }; static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL2_RW, .readfn = ich_ap_read, .writefn = ich_ap_write, }, { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL2_RW, .readfn = ich_ap_read, .writefn = ich_ap_write, }, { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL2_RW, .readfn = ich_ap_read, .writefn = ich_ap_write, }, { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL2_RW, .readfn = ich_ap_read, .writefn = ich_ap_write, }, }; static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) { GICv3CPUState *cs = opaque; gicv3_cpuif_update(cs); /* * Because vLPIs are only pending in NonSecure state, * an EL change can change the VIRQ/VFIQ status (but * cannot affect the maintenance interrupt state) */ gicv3_cpuif_virt_irq_fiq_update(cs); } void gicv3_init_cpuif(GICv3State *s) { /* Called from the GICv3 realize function; register our system * registers with the CPU */ int i; for (i = 0; i < s->num_cpu; i++) { ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); GICv3CPUState *cs = &s->cpu[i]; /* * If the CPU doesn't define a GICv3 configuration, probably because * in real hardware it doesn't have one, then we use default values * matching the one used by most Arm CPUs. This applies to: * cpu->gic_num_lrs * cpu->gic_vpribits * cpu->gic_vprebits * cpu->gic_pribits */ /* Note that we can't just use the GICv3CPUState as an opaque pointer * in define_arm_cp_regs_with_opaque(), because when we're called back * it might be with code translated by CPU 0 but run by CPU 1, in * which case we'd get the wrong value. * So instead we define the regs with no ri->opaque info, and * get back to the GICv3CPUState from the CPUARMState. * * These CP regs callbacks can be called from either TCG or HVF code. */ define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); /* * The CPU implementation specifies the number of supported * bits of physical priority. For backwards compatibility * of migration, we have a compat property that forces use * of 8 priority bits regardless of what the CPU really has. */ if (s->force_8bit_prio) { cs->pribits = 8; } else { cs->pribits = cpu->gic_pribits ?: 5; } /* * The GICv3 has separate ID register fields for virtual priority * and preemption bit values, but only a single ID register field * for the physical priority bits. The preemption bit count is * always the same as the priority bit count, except that 8 bits * of priority means 7 preemption bits. We precalculate the * preemption bits because it simplifies the code and makes the * parallels between the virtual and physical bits of the GIC * a bit clearer. */ cs->prebits = cs->pribits; if (cs->prebits == 8) { cs->prebits--; } /* * Check that CPU code defining pribits didn't violate * architectural constraints our implementation relies on. */ g_assert(cs->pribits >= 4 && cs->pribits <= 8); /* * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them. */ if (cs->prebits >= 6) { define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo); } if (cs->prebits == 7) { define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo); } if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { int j; cs->num_list_regs = cpu->gic_num_lrs ?: 4; cs->vpribits = cpu->gic_vpribits ?: 5; cs->vprebits = cpu->gic_vprebits ?: 5; /* Check against architectural constraints: getting these * wrong would be a bug in the CPU code defining these, * and the implementation relies on them holding. */ g_assert(cs->vprebits <= cs->vpribits); g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); for (j = 0; j < cs->num_list_regs; j++) { /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs * are split into two cp15 regs, LR (the low part, with the * same encoding as the AArch64 LR) and LRC (the high part). */ ARMCPRegInfo lr_regset[] = { { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 12 + (j >> 3), .opc2 = j & 7, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL2_RW, .readfn = ich_lr_read, .writefn = ich_lr_write, }, { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 12, .crm = 14 + (j >> 3), .opc2 = j & 7, .type = ARM_CP_IO | ARM_CP_NO_RAW, .access = PL2_RW, .readfn = ich_lr_read, .writefn = ich_lr_write, }, }; define_arm_cp_regs(cpu, lr_regset); } if (cs->vprebits >= 6) { define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); } if (cs->vprebits == 7) { define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); } } if (tcg_enabled() || qtest_enabled()) { /* * We can only trap EL changes with TCG. However the GIC interrupt * state only changes on EL changes involving EL2 or EL3, so for * the non-TCG case this is OK, as EL2 and EL3 can't exist. */ arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); } else { assert(!arm_feature(&cpu->env, ARM_FEATURE_EL2)); assert(!arm_feature(&cpu->env, ARM_FEATURE_EL3)); } } }