/* * Exynos4210 UART Emulation * * Copyright (C) 2011 Samsung Electronics Co Ltd. * Maksim Kozlov, * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . * */ #include "qemu/osdep.h" #include "hw/sysbus.h" #include "qemu/error-report.h" #include "sysemu/sysemu.h" #include "sysemu/char.h" #include "hw/arm/exynos4210.h" #undef DEBUG_UART #undef DEBUG_UART_EXTEND #undef DEBUG_IRQ #undef DEBUG_Rx_DATA #undef DEBUG_Tx_DATA #define DEBUG_UART 0 #define DEBUG_UART_EXTEND 0 #define DEBUG_IRQ 0 #define DEBUG_Rx_DATA 0 #define DEBUG_Tx_DATA 0 #if DEBUG_UART #define PRINT_DEBUG(fmt, args...) \ do { \ fprintf(stderr, " [%s:%d] "fmt, __func__, __LINE__, ##args); \ } while (0) #if DEBUG_UART_EXTEND #define PRINT_DEBUG_EXTEND(fmt, args...) \ do { \ fprintf(stderr, " [%s:%d] "fmt, __func__, __LINE__, ##args); \ } while (0) #else #define PRINT_DEBUG_EXTEND(fmt, args...) \ do {} while (0) #endif /* EXTEND */ #else #define PRINT_DEBUG(fmt, args...) \ do {} while (0) #define PRINT_DEBUG_EXTEND(fmt, args...) \ do {} while (0) #endif #define PRINT_ERROR(fmt, args...) \ do { \ fprintf(stderr, " [%s:%d] "fmt, __func__, __LINE__, ##args); \ } while (0) /* * Offsets for UART registers relative to SFR base address * for UARTn * */ #define ULCON 0x0000 /* Line Control */ #define UCON 0x0004 /* Control */ #define UFCON 0x0008 /* FIFO Control */ #define UMCON 0x000C /* Modem Control */ #define UTRSTAT 0x0010 /* Tx/Rx Status */ #define UERSTAT 0x0014 /* UART Error Status */ #define UFSTAT 0x0018 /* FIFO Status */ #define UMSTAT 0x001C /* Modem Status */ #define UTXH 0x0020 /* Transmit Buffer */ #define URXH 0x0024 /* Receive Buffer */ #define UBRDIV 0x0028 /* Baud Rate Divisor */ #define UFRACVAL 0x002C /* Divisor Fractional Value */ #define UINTP 0x0030 /* Interrupt Pending */ #define UINTSP 0x0034 /* Interrupt Source Pending */ #define UINTM 0x0038 /* Interrupt Mask */ /* * for indexing register in the uint32_t array * * 'reg' - register offset (see offsets definitions above) * */ #define I_(reg) (reg / sizeof(uint32_t)) typedef struct Exynos4210UartReg { const char *name; /* the only reason is the debug output */ hwaddr offset; uint32_t reset_value; } Exynos4210UartReg; static const Exynos4210UartReg exynos4210_uart_regs[] = { {"ULCON", ULCON, 0x00000000}, {"UCON", UCON, 0x00003000}, {"UFCON", UFCON, 0x00000000}, {"UMCON", UMCON, 0x00000000}, {"UTRSTAT", UTRSTAT, 0x00000006}, /* RO */ {"UERSTAT", UERSTAT, 0x00000000}, /* RO */ {"UFSTAT", UFSTAT, 0x00000000}, /* RO */ {"UMSTAT", UMSTAT, 0x00000000}, /* RO */ {"UTXH", UTXH, 0x5c5c5c5c}, /* WO, undefined reset value*/ {"URXH", URXH, 0x00000000}, /* RO */ {"UBRDIV", UBRDIV, 0x00000000}, {"UFRACVAL", UFRACVAL, 0x00000000}, {"UINTP", UINTP, 0x00000000}, {"UINTSP", UINTSP, 0x00000000}, {"UINTM", UINTM, 0x00000000}, }; #define EXYNOS4210_UART_REGS_MEM_SIZE 0x3C /* UART FIFO Control */ #define UFCON_FIFO_ENABLE 0x1 #define UFCON_Rx_FIFO_RESET 0x2 #define UFCON_Tx_FIFO_RESET 0x4 #define UFCON_Tx_FIFO_TRIGGER_LEVEL_SHIFT 8 #define UFCON_Tx_FIFO_TRIGGER_LEVEL (7 << UFCON_Tx_FIFO_TRIGGER_LEVEL_SHIFT) #define UFCON_Rx_FIFO_TRIGGER_LEVEL_SHIFT 4 #define UFCON_Rx_FIFO_TRIGGER_LEVEL (7 << UFCON_Rx_FIFO_TRIGGER_LEVEL_SHIFT) /* Uart FIFO Status */ #define UFSTAT_Rx_FIFO_COUNT 0xff #define UFSTAT_Rx_FIFO_FULL 0x100 #define UFSTAT_Rx_FIFO_ERROR 0x200 #define UFSTAT_Tx_FIFO_COUNT_SHIFT 16 #define UFSTAT_Tx_FIFO_COUNT (0xff << UFSTAT_Tx_FIFO_COUNT_SHIFT) #define UFSTAT_Tx_FIFO_FULL_SHIFT 24 #define UFSTAT_Tx_FIFO_FULL (1 << UFSTAT_Tx_FIFO_FULL_SHIFT) /* UART Interrupt Source Pending */ #define UINTSP_RXD 0x1 /* Receive interrupt */ #define UINTSP_ERROR 0x2 /* Error interrupt */ #define UINTSP_TXD 0x4 /* Transmit interrupt */ #define UINTSP_MODEM 0x8 /* Modem interrupt */ /* UART Line Control */ #define ULCON_IR_MODE_SHIFT 6 #define ULCON_PARITY_SHIFT 3 #define ULCON_STOP_BIT_SHIFT 1 /* UART Tx/Rx Status */ #define UTRSTAT_TRANSMITTER_EMPTY 0x4 #define UTRSTAT_Tx_BUFFER_EMPTY 0x2 #define UTRSTAT_Rx_BUFFER_DATA_READY 0x1 /* UART Error Status */ #define UERSTAT_OVERRUN 0x1 #define UERSTAT_PARITY 0x2 #define UERSTAT_FRAME 0x4 #define UERSTAT_BREAK 0x8 typedef struct { uint8_t *data; uint32_t sp, rp; /* store and retrieve pointers */ uint32_t size; } Exynos4210UartFIFO; #define TYPE_EXYNOS4210_UART "exynos4210.uart" #define EXYNOS4210_UART(obj) \ OBJECT_CHECK(Exynos4210UartState, (obj), TYPE_EXYNOS4210_UART) typedef struct Exynos4210UartState { SysBusDevice parent_obj; MemoryRegion iomem; uint32_t reg[EXYNOS4210_UART_REGS_MEM_SIZE / sizeof(uint32_t)]; Exynos4210UartFIFO rx; Exynos4210UartFIFO tx; CharBackend chr; qemu_irq irq; uint32_t channel; } Exynos4210UartState; #if DEBUG_UART /* Used only for debugging inside PRINT_DEBUG_... macros */ static const char *exynos4210_uart_regname(hwaddr offset) { int i; for (i = 0; i < ARRAY_SIZE(exynos4210_uart_regs); i++) { if (offset == exynos4210_uart_regs[i].offset) { return exynos4210_uart_regs[i].name; } } return NULL; } #endif static void fifo_store(Exynos4210UartFIFO *q, uint8_t ch) { q->data[q->sp] = ch; q->sp = (q->sp + 1) % q->size; } static uint8_t fifo_retrieve(Exynos4210UartFIFO *q) { uint8_t ret = q->data[q->rp]; q->rp = (q->rp + 1) % q->size; return ret; } static int fifo_elements_number(const Exynos4210UartFIFO *q) { if (q->sp < q->rp) { return q->size - q->rp + q->sp; } return q->sp - q->rp; } static int fifo_empty_elements_number(const Exynos4210UartFIFO *q) { return q->size - fifo_elements_number(q); } static void fifo_reset(Exynos4210UartFIFO *q) { g_free(q->data); q->data = NULL; q->data = (uint8_t *)g_malloc0(q->size); q->sp = 0; q->rp = 0; } static uint32_t exynos4210_uart_Tx_FIFO_trigger_level(const Exynos4210UartState *s) { uint32_t level = 0; uint32_t reg; reg = (s->reg[I_(UFCON)] & UFCON_Tx_FIFO_TRIGGER_LEVEL) >> UFCON_Tx_FIFO_TRIGGER_LEVEL_SHIFT; switch (s->channel) { case 0: level = reg * 32; break; case 1: case 4: level = reg * 8; break; case 2: case 3: level = reg * 2; break; default: level = 0; PRINT_ERROR("Wrong UART channel number: %d\n", s->channel); } return level; } static void exynos4210_uart_update_irq(Exynos4210UartState *s) { /* * The Tx interrupt is always requested if the number of data in the * transmit FIFO is smaller than the trigger level. */ if (s->reg[I_(UFCON)] & UFCON_FIFO_ENABLE) { uint32_t count = (s->reg[I_(UFSTAT)] & UFSTAT_Tx_FIFO_COUNT) >> UFSTAT_Tx_FIFO_COUNT_SHIFT; if (count <= exynos4210_uart_Tx_FIFO_trigger_level(s)) { s->reg[I_(UINTSP)] |= UINTSP_TXD; } } s->reg[I_(UINTP)] = s->reg[I_(UINTSP)] & ~s->reg[I_(UINTM)]; if (s->reg[I_(UINTP)]) { qemu_irq_raise(s->irq); #if DEBUG_IRQ fprintf(stderr, "UART%d: IRQ has been raised: %08x\n", s->channel, s->reg[I_(UINTP)]); #endif } else { qemu_irq_lower(s->irq); } } static void exynos4210_uart_update_parameters(Exynos4210UartState *s) { int speed, parity, data_bits, stop_bits; QEMUSerialSetParams ssp; uint64_t uclk_rate; if (s->reg[I_(UBRDIV)] == 0) { return; } if (s->reg[I_(ULCON)] & 0x20) { if (s->reg[I_(ULCON)] & 0x28) { parity = 'E'; } else { parity = 'O'; } } else { parity = 'N'; } if (s->reg[I_(ULCON)] & 0x4) { stop_bits = 2; } else { stop_bits = 1; } data_bits = (s->reg[I_(ULCON)] & 0x3) + 5; uclk_rate = 24000000; speed = uclk_rate / ((16 * (s->reg[I_(UBRDIV)]) & 0xffff) + (s->reg[I_(UFRACVAL)] & 0x7) + 16); ssp.speed = speed; ssp.parity = parity; ssp.data_bits = data_bits; ssp.stop_bits = stop_bits; qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); PRINT_DEBUG("UART%d: speed: %d, parity: %c, data: %d, stop: %d\n", s->channel, speed, parity, data_bits, stop_bits); } static void exynos4210_uart_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { Exynos4210UartState *s = (Exynos4210UartState *)opaque; uint8_t ch; PRINT_DEBUG_EXTEND("UART%d: <0x%04x> %s <- 0x%08llx\n", s->channel, offset, exynos4210_uart_regname(offset), (long long unsigned int)val); switch (offset) { case ULCON: case UBRDIV: case UFRACVAL: s->reg[I_(offset)] = val; exynos4210_uart_update_parameters(s); break; case UFCON: s->reg[I_(UFCON)] = val; if (val & UFCON_Rx_FIFO_RESET) { fifo_reset(&s->rx); s->reg[I_(UFCON)] &= ~UFCON_Rx_FIFO_RESET; PRINT_DEBUG("UART%d: Rx FIFO Reset\n", s->channel); } if (val & UFCON_Tx_FIFO_RESET) { fifo_reset(&s->tx); s->reg[I_(UFCON)] &= ~UFCON_Tx_FIFO_RESET; PRINT_DEBUG("UART%d: Tx FIFO Reset\n", s->channel); } break; case UTXH: if (qemu_chr_fe_get_driver(&s->chr)) { s->reg[I_(UTRSTAT)] &= ~(UTRSTAT_TRANSMITTER_EMPTY | UTRSTAT_Tx_BUFFER_EMPTY); ch = (uint8_t)val; /* XXX this blocks entire thread. Rewrite to use * qemu_chr_fe_write and background I/O callbacks */ qemu_chr_fe_write_all(&s->chr, &ch, 1); #if DEBUG_Tx_DATA fprintf(stderr, "%c", ch); #endif s->reg[I_(UTRSTAT)] |= UTRSTAT_TRANSMITTER_EMPTY | UTRSTAT_Tx_BUFFER_EMPTY; s->reg[I_(UINTSP)] |= UINTSP_TXD; exynos4210_uart_update_irq(s); } break; case UINTP: s->reg[I_(UINTP)] &= ~val; s->reg[I_(UINTSP)] &= ~val; PRINT_DEBUG("UART%d: UINTP [%04x] have been cleared: %08x\n", s->channel, offset, s->reg[I_(UINTP)]); exynos4210_uart_update_irq(s); break; case UTRSTAT: case UERSTAT: case UFSTAT: case UMSTAT: case URXH: PRINT_DEBUG("UART%d: Trying to write into RO register: %s [%04x]\n", s->channel, exynos4210_uart_regname(offset), offset); break; case UINTSP: s->reg[I_(UINTSP)] &= ~val; break; case UINTM: s->reg[I_(UINTM)] = val; exynos4210_uart_update_irq(s); break; case UCON: case UMCON: default: s->reg[I_(offset)] = val; break; } } static uint64_t exynos4210_uart_read(void *opaque, hwaddr offset, unsigned size) { Exynos4210UartState *s = (Exynos4210UartState *)opaque; uint32_t res; switch (offset) { case UERSTAT: /* Read Only */ res = s->reg[I_(UERSTAT)]; s->reg[I_(UERSTAT)] = 0; return res; case UFSTAT: /* Read Only */ s->reg[I_(UFSTAT)] = fifo_elements_number(&s->rx) & 0xff; if (fifo_empty_elements_number(&s->rx) == 0) { s->reg[I_(UFSTAT)] |= UFSTAT_Rx_FIFO_FULL; s->reg[I_(UFSTAT)] &= ~0xff; } return s->reg[I_(UFSTAT)]; case URXH: if (s->reg[I_(UFCON)] & UFCON_FIFO_ENABLE) { if (fifo_elements_number(&s->rx)) { res = fifo_retrieve(&s->rx); #if DEBUG_Rx_DATA fprintf(stderr, "%c", res); #endif if (!fifo_elements_number(&s->rx)) { s->reg[I_(UTRSTAT)] &= ~UTRSTAT_Rx_BUFFER_DATA_READY; } else { s->reg[I_(UTRSTAT)] |= UTRSTAT_Rx_BUFFER_DATA_READY; } } else { s->reg[I_(UINTSP)] |= UINTSP_ERROR; exynos4210_uart_update_irq(s); res = 0; } } else { s->reg[I_(UTRSTAT)] &= ~UTRSTAT_Rx_BUFFER_DATA_READY; res = s->reg[I_(URXH)]; } return res; case UTXH: PRINT_DEBUG("UART%d: Trying to read from WO register: %s [%04x]\n", s->channel, exynos4210_uart_regname(offset), offset); break; default: return s->reg[I_(offset)]; } return 0; } static const MemoryRegionOps exynos4210_uart_ops = { .read = exynos4210_uart_read, .write = exynos4210_uart_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .max_access_size = 4, .unaligned = false }, }; static int exynos4210_uart_can_receive(void *opaque) { Exynos4210UartState *s = (Exynos4210UartState *)opaque; return fifo_empty_elements_number(&s->rx); } static void exynos4210_uart_receive(void *opaque, const uint8_t *buf, int size) { Exynos4210UartState *s = (Exynos4210UartState *)opaque; int i; if (s->reg[I_(UFCON)] & UFCON_FIFO_ENABLE) { if (fifo_empty_elements_number(&s->rx) < size) { for (i = 0; i < fifo_empty_elements_number(&s->rx); i++) { fifo_store(&s->rx, buf[i]); } s->reg[I_(UINTSP)] |= UINTSP_ERROR; s->reg[I_(UTRSTAT)] |= UTRSTAT_Rx_BUFFER_DATA_READY; } else { for (i = 0; i < size; i++) { fifo_store(&s->rx, buf[i]); } s->reg[I_(UTRSTAT)] |= UTRSTAT_Rx_BUFFER_DATA_READY; } /* XXX: Around here we maybe should check Rx trigger level */ s->reg[I_(UINTSP)] |= UINTSP_RXD; } else { s->reg[I_(URXH)] = buf[0]; s->reg[I_(UINTSP)] |= UINTSP_RXD; s->reg[I_(UTRSTAT)] |= UTRSTAT_Rx_BUFFER_DATA_READY; } exynos4210_uart_update_irq(s); } static void exynos4210_uart_event(void *opaque, int event) { Exynos4210UartState *s = (Exynos4210UartState *)opaque; if (event == CHR_EVENT_BREAK) { /* When the RxDn is held in logic 0, then a null byte is pushed into the * fifo */ fifo_store(&s->rx, '\0'); s->reg[I_(UERSTAT)] |= UERSTAT_BREAK; exynos4210_uart_update_irq(s); } } static void exynos4210_uart_reset(DeviceState *dev) { Exynos4210UartState *s = EXYNOS4210_UART(dev); int i; for (i = 0; i < ARRAY_SIZE(exynos4210_uart_regs); i++) { s->reg[I_(exynos4210_uart_regs[i].offset)] = exynos4210_uart_regs[i].reset_value; } fifo_reset(&s->rx); fifo_reset(&s->tx); PRINT_DEBUG("UART%d: Rx FIFO size: %d\n", s->channel, s->rx.size); } static const VMStateDescription vmstate_exynos4210_uart_fifo = { .name = "exynos4210.uart.fifo", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(sp, Exynos4210UartFIFO), VMSTATE_UINT32(rp, Exynos4210UartFIFO), VMSTATE_VBUFFER_UINT32(data, Exynos4210UartFIFO, 1, NULL, size), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_exynos4210_uart = { .name = "exynos4210.uart", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_STRUCT(rx, Exynos4210UartState, 1, vmstate_exynos4210_uart_fifo, Exynos4210UartFIFO), VMSTATE_UINT32_ARRAY(reg, Exynos4210UartState, EXYNOS4210_UART_REGS_MEM_SIZE / sizeof(uint32_t)), VMSTATE_END_OF_LIST() } }; DeviceState *exynos4210_uart_create(hwaddr addr, int fifo_size, int channel, Chardev *chr, qemu_irq irq) { DeviceState *dev; SysBusDevice *bus; const char chr_name[] = "serial"; char label[ARRAY_SIZE(chr_name) + 1]; dev = qdev_create(NULL, TYPE_EXYNOS4210_UART); if (!chr) { if (channel >= MAX_SERIAL_PORTS) { error_report("Only %d serial ports are supported by QEMU", MAX_SERIAL_PORTS); exit(1); } chr = serial_hds[channel]; if (!chr) { snprintf(label, ARRAY_SIZE(label), "%s%d", chr_name, channel); chr = qemu_chr_new(label, "null"); if (!(chr)) { error_report("Can't assign serial port to UART%d", channel); exit(1); } } } qdev_prop_set_chr(dev, "chardev", chr); qdev_prop_set_uint32(dev, "channel", channel); qdev_prop_set_uint32(dev, "rx-size", fifo_size); qdev_prop_set_uint32(dev, "tx-size", fifo_size); bus = SYS_BUS_DEVICE(dev); qdev_init_nofail(dev); if (addr != (hwaddr)-1) { sysbus_mmio_map(bus, 0, addr); } sysbus_connect_irq(bus, 0, irq); return dev; } static void exynos4210_uart_init(Object *obj) { SysBusDevice *dev = SYS_BUS_DEVICE(obj); Exynos4210UartState *s = EXYNOS4210_UART(dev); /* memory mapping */ memory_region_init_io(&s->iomem, obj, &exynos4210_uart_ops, s, "exynos4210.uart", EXYNOS4210_UART_REGS_MEM_SIZE); sysbus_init_mmio(dev, &s->iomem); sysbus_init_irq(dev, &s->irq); } static void exynos4210_uart_realize(DeviceState *dev, Error **errp) { Exynos4210UartState *s = EXYNOS4210_UART(dev); qemu_chr_fe_set_handlers(&s->chr, exynos4210_uart_can_receive, exynos4210_uart_receive, exynos4210_uart_event, s, NULL, true); } static Property exynos4210_uart_properties[] = { DEFINE_PROP_CHR("chardev", Exynos4210UartState, chr), DEFINE_PROP_UINT32("channel", Exynos4210UartState, channel, 0), DEFINE_PROP_UINT32("rx-size", Exynos4210UartState, rx.size, 16), DEFINE_PROP_UINT32("tx-size", Exynos4210UartState, tx.size, 16), DEFINE_PROP_END_OF_LIST(), }; static void exynos4210_uart_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = exynos4210_uart_realize; dc->reset = exynos4210_uart_reset; dc->props = exynos4210_uart_properties; dc->vmsd = &vmstate_exynos4210_uart; } static const TypeInfo exynos4210_uart_info = { .name = TYPE_EXYNOS4210_UART, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(Exynos4210UartState), .instance_init = exynos4210_uart_init, .class_init = exynos4210_uart_class_init, }; static void exynos4210_uart_register(void) { type_register_static(&exynos4210_uart_info); } type_init(exynos4210_uart_register)