/* * ARM SMMUv3 support - Internal API * * Copyright (C) 2014-2016 Broadcom Corporation * Copyright (c) 2017 Red Hat, Inc. * Written by Prem Mallappa, Eric Auger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #ifndef HW_ARM_SMMUV3_INTERNAL_H #define HW_ARM_SMMUV3_INTERNAL_H #include "hw/registerfields.h" #include "hw/arm/smmu-common.h" typedef enum SMMUTranslationStatus { SMMU_TRANS_DISABLE, SMMU_TRANS_ABORT, SMMU_TRANS_BYPASS, SMMU_TRANS_ERROR, SMMU_TRANS_SUCCESS, } SMMUTranslationStatus; /* MMIO Registers */ REG32(IDR0, 0x0) FIELD(IDR0, S2P, 0 , 1) FIELD(IDR0, S1P, 1 , 1) FIELD(IDR0, TTF, 2 , 2) FIELD(IDR0, COHACC, 4 , 1) FIELD(IDR0, BTM, 5 , 1) FIELD(IDR0, HTTU, 6 , 2) FIELD(IDR0, DORMHINT, 8 , 1) FIELD(IDR0, HYP, 9 , 1) FIELD(IDR0, ATS, 10, 1) FIELD(IDR0, NS1ATS, 11, 1) FIELD(IDR0, ASID16, 12, 1) FIELD(IDR0, MSI, 13, 1) FIELD(IDR0, SEV, 14, 1) FIELD(IDR0, ATOS, 15, 1) FIELD(IDR0, PRI, 16, 1) FIELD(IDR0, VMW, 17, 1) FIELD(IDR0, VMID16, 18, 1) FIELD(IDR0, CD2L, 19, 1) FIELD(IDR0, VATOS, 20, 1) FIELD(IDR0, TTENDIAN, 21, 2) FIELD(IDR0, ATSRECERR, 23, 1) FIELD(IDR0, STALL_MODEL, 24, 2) FIELD(IDR0, TERM_MODEL, 26, 1) FIELD(IDR0, STLEVEL, 27, 2) FIELD(IDR0, RME_IMPL, 30, 1) REG32(IDR1, 0x4) FIELD(IDR1, SIDSIZE, 0 , 6) FIELD(IDR1, SSIDSIZE, 6 , 5) FIELD(IDR1, PRIQS, 11, 5) FIELD(IDR1, EVENTQS, 16, 5) FIELD(IDR1, CMDQS, 21, 5) FIELD(IDR1, ATTR_PERMS_OVR, 26, 1) FIELD(IDR1, ATTR_TYPES_OVR, 27, 1) FIELD(IDR1, REL, 28, 1) FIELD(IDR1, QUEUES_PRESET, 29, 1) FIELD(IDR1, TABLES_PRESET, 30, 1) FIELD(IDR1, ECMDQ, 31, 1) #define SMMU_IDR1_SIDSIZE 16 #define SMMU_CMDQS 19 #define SMMU_EVENTQS 19 REG32(IDR2, 0x8) FIELD(IDR2, BA_VATOS, 0, 10) REG32(IDR3, 0xc) FIELD(IDR3, HAD, 2, 1); FIELD(IDR3, PBHA, 3, 1); FIELD(IDR3, XNX, 4, 1); FIELD(IDR3, PPS, 5, 1); FIELD(IDR3, MPAM, 7, 1); FIELD(IDR3, FWB, 8, 1); FIELD(IDR3, STT, 9, 1); FIELD(IDR3, RIL, 10, 1); FIELD(IDR3, BBML, 11, 2); FIELD(IDR3, E0PD, 13, 1); FIELD(IDR3, PTWNNC, 14, 1); FIELD(IDR3, DPT, 15, 1); REG32(IDR4, 0x10) REG32(IDR5, 0x14) FIELD(IDR5, OAS, 0, 3); FIELD(IDR5, GRAN4K, 4, 1); FIELD(IDR5, GRAN16K, 5, 1); FIELD(IDR5, GRAN64K, 6, 1); FIELD(IDR5, VAX, 10, 2); FIELD(IDR5, STALL_MAX, 16, 16); #define SMMU_IDR5_OAS 4 REG32(IIDR, 0x18) REG32(AIDR, 0x1c) REG32(CR0, 0x20) FIELD(CR0, SMMU_ENABLE, 0, 1) FIELD(CR0, EVENTQEN, 2, 1) FIELD(CR0, CMDQEN, 3, 1) #define SMMU_CR0_RESERVED 0xFFFFFC20 REG32(CR0ACK, 0x24) REG32(CR1, 0x28) REG32(CR2, 0x2c) REG32(STATUSR, 0x40) REG32(GBPA, 0x44) FIELD(GBPA, ABORT, 20, 1) FIELD(GBPA, UPDATE, 31, 1) /* Use incoming. */ #define SMMU_GBPA_RESET_VAL 0x1000 REG32(IRQ_CTRL, 0x50) FIELD(IRQ_CTRL, GERROR_IRQEN, 0, 1) FIELD(IRQ_CTRL, PRI_IRQEN, 1, 1) FIELD(IRQ_CTRL, EVENTQ_IRQEN, 2, 1) REG32(IRQ_CTRL_ACK, 0x54) REG32(GERROR, 0x60) FIELD(GERROR, CMDQ_ERR, 0, 1) FIELD(GERROR, EVENTQ_ABT_ERR, 2, 1) FIELD(GERROR, PRIQ_ABT_ERR, 3, 1) FIELD(GERROR, MSI_CMDQ_ABT_ERR, 4, 1) FIELD(GERROR, MSI_EVENTQ_ABT_ERR, 5, 1) FIELD(GERROR, MSI_PRIQ_ABT_ERR, 6, 1) FIELD(GERROR, MSI_GERROR_ABT_ERR, 7, 1) FIELD(GERROR, MSI_SFM_ERR, 8, 1) REG32(GERRORN, 0x64) #define A_GERROR_IRQ_CFG0 0x68 /* 64b */ REG32(GERROR_IRQ_CFG1, 0x70) REG32(GERROR_IRQ_CFG2, 0x74) #define A_STRTAB_BASE 0x80 /* 64b */ #define SMMU_BASE_ADDR_MASK 0xfffffffffffc0 REG32(STRTAB_BASE_CFG, 0x88) FIELD(STRTAB_BASE_CFG, FMT, 16, 2) FIELD(STRTAB_BASE_CFG, SPLIT, 6 , 5) FIELD(STRTAB_BASE_CFG, LOG2SIZE, 0 , 6) #define A_CMDQ_BASE 0x90 /* 64b */ REG32(CMDQ_PROD, 0x98) REG32(CMDQ_CONS, 0x9c) FIELD(CMDQ_CONS, ERR, 24, 7) #define A_EVENTQ_BASE 0xa0 /* 64b */ REG32(EVENTQ_PROD, 0xa8) REG32(EVENTQ_CONS, 0xac) #define A_EVENTQ_IRQ_CFG0 0xb0 /* 64b */ REG32(EVENTQ_IRQ_CFG1, 0xb8) REG32(EVENTQ_IRQ_CFG2, 0xbc) #define A_IDREGS 0xfd0 static inline int smmu_enabled(SMMUv3State *s) { return FIELD_EX32(s->cr[0], CR0, SMMU_ENABLE); } /* Command Queue Entry */ typedef struct Cmd { uint32_t word[4]; } Cmd; /* Event Queue Entry */ typedef struct Evt { uint32_t word[8]; } Evt; static inline uint32_t smmuv3_idreg(int regoffset) { /* * Return the value of the Primecell/Corelink ID registers at the * specified offset from the first ID register. * These value indicate an ARM implementation of MMU600 p1 */ static const uint8_t smmuv3_ids[] = { 0x04, 0, 0, 0, 0x84, 0xB4, 0xF0, 0x10, 0x0D, 0xF0, 0x05, 0xB1 }; return smmuv3_ids[regoffset / 4]; } static inline bool smmuv3_eventq_irq_enabled(SMMUv3State *s) { return FIELD_EX32(s->irq_ctrl, IRQ_CTRL, EVENTQ_IRQEN); } static inline bool smmuv3_gerror_irq_enabled(SMMUv3State *s) { return FIELD_EX32(s->irq_ctrl, IRQ_CTRL, GERROR_IRQEN); } /* Queue Handling */ #define Q_BASE(q) ((q)->base & SMMU_BASE_ADDR_MASK) #define WRAP_MASK(q) (1 << (q)->log2size) #define INDEX_MASK(q) (((1 << (q)->log2size)) - 1) #define WRAP_INDEX_MASK(q) ((1 << ((q)->log2size + 1)) - 1) #define Q_CONS(q) ((q)->cons & INDEX_MASK(q)) #define Q_PROD(q) ((q)->prod & INDEX_MASK(q)) #define Q_CONS_ENTRY(q) (Q_BASE(q) + (q)->entry_size * Q_CONS(q)) #define Q_PROD_ENTRY(q) (Q_BASE(q) + (q)->entry_size * Q_PROD(q)) #define Q_CONS_WRAP(q) (((q)->cons & WRAP_MASK(q)) >> (q)->log2size) #define Q_PROD_WRAP(q) (((q)->prod & WRAP_MASK(q)) >> (q)->log2size) static inline bool smmuv3_q_full(SMMUQueue *q) { return ((q->cons ^ q->prod) & WRAP_INDEX_MASK(q)) == WRAP_MASK(q); } static inline bool smmuv3_q_empty(SMMUQueue *q) { return (q->cons & WRAP_INDEX_MASK(q)) == (q->prod & WRAP_INDEX_MASK(q)); } static inline void queue_prod_incr(SMMUQueue *q) { q->prod = (q->prod + 1) & WRAP_INDEX_MASK(q); } static inline void queue_cons_incr(SMMUQueue *q) { /* * We have to use deposit for the CONS registers to preserve * the ERR field in the high bits. */ q->cons = deposit32(q->cons, 0, q->log2size + 1, q->cons + 1); } static inline bool smmuv3_cmdq_enabled(SMMUv3State *s) { return FIELD_EX32(s->cr[0], CR0, CMDQEN); } static inline bool smmuv3_eventq_enabled(SMMUv3State *s) { return FIELD_EX32(s->cr[0], CR0, EVENTQEN); } static inline void smmu_write_cmdq_err(SMMUv3State *s, uint32_t err_type) { s->cmdq.cons = FIELD_DP32(s->cmdq.cons, CMDQ_CONS, ERR, err_type); } /* Commands */ typedef enum SMMUCommandType { SMMU_CMD_NONE = 0x00, SMMU_CMD_PREFETCH_CONFIG , SMMU_CMD_PREFETCH_ADDR, SMMU_CMD_CFGI_STE, SMMU_CMD_CFGI_STE_RANGE, SMMU_CMD_CFGI_CD, SMMU_CMD_CFGI_CD_ALL, SMMU_CMD_CFGI_ALL, SMMU_CMD_TLBI_NH_ALL = 0x10, SMMU_CMD_TLBI_NH_ASID, SMMU_CMD_TLBI_NH_VA, SMMU_CMD_TLBI_NH_VAA, SMMU_CMD_TLBI_EL3_ALL = 0x18, SMMU_CMD_TLBI_EL3_VA = 0x1a, SMMU_CMD_TLBI_EL2_ALL = 0x20, SMMU_CMD_TLBI_EL2_ASID, SMMU_CMD_TLBI_EL2_VA, SMMU_CMD_TLBI_EL2_VAA, SMMU_CMD_TLBI_S12_VMALL = 0x28, SMMU_CMD_TLBI_S2_IPA = 0x2a, SMMU_CMD_TLBI_NSNH_ALL = 0x30, SMMU_CMD_ATC_INV = 0x40, SMMU_CMD_PRI_RESP, SMMU_CMD_RESUME = 0x44, SMMU_CMD_STALL_TERM, SMMU_CMD_SYNC, } SMMUCommandType; static const char *cmd_stringify[] = { [SMMU_CMD_PREFETCH_CONFIG] = "SMMU_CMD_PREFETCH_CONFIG", [SMMU_CMD_PREFETCH_ADDR] = "SMMU_CMD_PREFETCH_ADDR", [SMMU_CMD_CFGI_STE] = "SMMU_CMD_CFGI_STE", [SMMU_CMD_CFGI_STE_RANGE] = "SMMU_CMD_CFGI_STE_RANGE", [SMMU_CMD_CFGI_CD] = "SMMU_CMD_CFGI_CD", [SMMU_CMD_CFGI_CD_ALL] = "SMMU_CMD_CFGI_CD_ALL", [SMMU_CMD_CFGI_ALL] = "SMMU_CMD_CFGI_ALL", [SMMU_CMD_TLBI_NH_ALL] = "SMMU_CMD_TLBI_NH_ALL", [SMMU_CMD_TLBI_NH_ASID] = "SMMU_CMD_TLBI_NH_ASID", [SMMU_CMD_TLBI_NH_VA] = "SMMU_CMD_TLBI_NH_VA", [SMMU_CMD_TLBI_NH_VAA] = "SMMU_CMD_TLBI_NH_VAA", [SMMU_CMD_TLBI_EL3_ALL] = "SMMU_CMD_TLBI_EL3_ALL", [SMMU_CMD_TLBI_EL3_VA] = "SMMU_CMD_TLBI_EL3_VA", [SMMU_CMD_TLBI_EL2_ALL] = "SMMU_CMD_TLBI_EL2_ALL", [SMMU_CMD_TLBI_EL2_ASID] = "SMMU_CMD_TLBI_EL2_ASID", [SMMU_CMD_TLBI_EL2_VA] = "SMMU_CMD_TLBI_EL2_VA", [SMMU_CMD_TLBI_EL2_VAA] = "SMMU_CMD_TLBI_EL2_VAA", [SMMU_CMD_TLBI_S12_VMALL] = "SMMU_CMD_TLBI_S12_VMALL", [SMMU_CMD_TLBI_S2_IPA] = "SMMU_CMD_TLBI_S2_IPA", [SMMU_CMD_TLBI_NSNH_ALL] = "SMMU_CMD_TLBI_NSNH_ALL", [SMMU_CMD_ATC_INV] = "SMMU_CMD_ATC_INV", [SMMU_CMD_PRI_RESP] = "SMMU_CMD_PRI_RESP", [SMMU_CMD_RESUME] = "SMMU_CMD_RESUME", [SMMU_CMD_STALL_TERM] = "SMMU_CMD_STALL_TERM", [SMMU_CMD_SYNC] = "SMMU_CMD_SYNC", }; static inline const char *smmu_cmd_string(SMMUCommandType type) { if (type > SMMU_CMD_NONE && type < ARRAY_SIZE(cmd_stringify)) { return cmd_stringify[type] ? cmd_stringify[type] : "UNKNOWN"; } else { return "INVALID"; } } /* CMDQ fields */ typedef enum { SMMU_CERROR_NONE = 0, SMMU_CERROR_ILL, SMMU_CERROR_ABT, SMMU_CERROR_ATC_INV_SYNC, } SMMUCmdError; enum { /* Command completion notification */ CMD_SYNC_SIG_NONE, CMD_SYNC_SIG_IRQ, CMD_SYNC_SIG_SEV, }; #define CMD_TYPE(x) extract32((x)->word[0], 0 , 8) #define CMD_NUM(x) extract32((x)->word[0], 12 , 5) #define CMD_SCALE(x) extract32((x)->word[0], 20 , 5) #define CMD_SSEC(x) extract32((x)->word[0], 10, 1) #define CMD_SSV(x) extract32((x)->word[0], 11, 1) #define CMD_RESUME_AC(x) extract32((x)->word[0], 12, 1) #define CMD_RESUME_AB(x) extract32((x)->word[0], 13, 1) #define CMD_SYNC_CS(x) extract32((x)->word[0], 12, 2) #define CMD_SSID(x) extract32((x)->word[0], 12, 20) #define CMD_SID(x) ((x)->word[1]) #define CMD_VMID(x) extract32((x)->word[1], 0 , 16) #define CMD_ASID(x) extract32((x)->word[1], 16, 16) #define CMD_RESUME_STAG(x) extract32((x)->word[2], 0 , 16) #define CMD_RESP(x) extract32((x)->word[2], 11, 2) #define CMD_LEAF(x) extract32((x)->word[2], 0 , 1) #define CMD_TTL(x) extract32((x)->word[2], 8 , 2) #define CMD_TG(x) extract32((x)->word[2], 10, 2) #define CMD_STE_RANGE(x) extract32((x)->word[2], 0 , 5) #define CMD_ADDR(x) \ (((uint64_t)((x)->word[3]) << 32) | \ ((extract64((x)->word[2], 12, 20)) << 12)) #define SMMU_FEATURE_2LVL_STE (1 << 0) /* Events */ typedef enum SMMUEventType { SMMU_EVT_NONE = 0x00, SMMU_EVT_F_UUT , SMMU_EVT_C_BAD_STREAMID , SMMU_EVT_F_STE_FETCH , SMMU_EVT_C_BAD_STE , SMMU_EVT_F_BAD_ATS_TREQ , SMMU_EVT_F_STREAM_DISABLED , SMMU_EVT_F_TRANS_FORBIDDEN , SMMU_EVT_C_BAD_SUBSTREAMID , SMMU_EVT_F_CD_FETCH , SMMU_EVT_C_BAD_CD , SMMU_EVT_F_WALK_EABT , SMMU_EVT_F_TRANSLATION = 0x10, SMMU_EVT_F_ADDR_SIZE , SMMU_EVT_F_ACCESS , SMMU_EVT_F_PERMISSION , SMMU_EVT_F_TLB_CONFLICT = 0x20, SMMU_EVT_F_CFG_CONFLICT , SMMU_EVT_E_PAGE_REQ = 0x24, } SMMUEventType; static const char *event_stringify[] = { [SMMU_EVT_NONE] = "no recorded event", [SMMU_EVT_F_UUT] = "SMMU_EVT_F_UUT", [SMMU_EVT_C_BAD_STREAMID] = "SMMU_EVT_C_BAD_STREAMID", [SMMU_EVT_F_STE_FETCH] = "SMMU_EVT_F_STE_FETCH", [SMMU_EVT_C_BAD_STE] = "SMMU_EVT_C_BAD_STE", [SMMU_EVT_F_BAD_ATS_TREQ] = "SMMU_EVT_F_BAD_ATS_TREQ", [SMMU_EVT_F_STREAM_DISABLED] = "SMMU_EVT_F_STREAM_DISABLED", [SMMU_EVT_F_TRANS_FORBIDDEN] = "SMMU_EVT_F_TRANS_FORBIDDEN", [SMMU_EVT_C_BAD_SUBSTREAMID] = "SMMU_EVT_C_BAD_SUBSTREAMID", [SMMU_EVT_F_CD_FETCH] = "SMMU_EVT_F_CD_FETCH", [SMMU_EVT_C_BAD_CD] = "SMMU_EVT_C_BAD_CD", [SMMU_EVT_F_WALK_EABT] = "SMMU_EVT_F_WALK_EABT", [SMMU_EVT_F_TRANSLATION] = "SMMU_EVT_F_TRANSLATION", [SMMU_EVT_F_ADDR_SIZE] = "SMMU_EVT_F_ADDR_SIZE", [SMMU_EVT_F_ACCESS] = "SMMU_EVT_F_ACCESS", [SMMU_EVT_F_PERMISSION] = "SMMU_EVT_F_PERMISSION", [SMMU_EVT_F_TLB_CONFLICT] = "SMMU_EVT_F_TLB_CONFLICT", [SMMU_EVT_F_CFG_CONFLICT] = "SMMU_EVT_F_CFG_CONFLICT", [SMMU_EVT_E_PAGE_REQ] = "SMMU_EVT_E_PAGE_REQ", }; static inline const char *smmu_event_string(SMMUEventType type) { if (type < ARRAY_SIZE(event_stringify)) { return event_stringify[type] ? event_stringify[type] : "UNKNOWN"; } else { return "INVALID"; } } /* Encode an event record */ typedef struct SMMUEventInfo { SMMUEventType type; uint32_t sid; bool recorded; bool inval_ste_allowed; union { struct { uint32_t ssid; bool ssv; dma_addr_t addr; bool rnw; bool pnu; bool ind; } f_uut; struct SSIDInfo { uint32_t ssid; bool ssv; } c_bad_streamid; struct SSIDAddrInfo { uint32_t ssid; bool ssv; dma_addr_t addr; } f_ste_fetch; struct SSIDInfo c_bad_ste; struct { dma_addr_t addr; bool rnw; } f_transl_forbidden; struct { uint32_t ssid; } c_bad_substream; struct SSIDAddrInfo f_cd_fetch; struct SSIDInfo c_bad_cd; struct FullInfo { bool stall; uint16_t stag; uint32_t ssid; bool ssv; bool s2; dma_addr_t addr; bool rnw; bool pnu; bool ind; uint8_t class; dma_addr_t addr2; } f_walk_eabt; struct FullInfo f_translation; struct FullInfo f_addr_size; struct FullInfo f_access; struct FullInfo f_permission; struct SSIDInfo f_cfg_conflict; /** * not supported yet: * F_BAD_ATS_TREQ * F_BAD_ATS_TREQ * F_TLB_CONFLICT * E_PAGE_REQUEST * IMPDEF_EVENTn */ } u; } SMMUEventInfo; /* EVTQ fields */ #define EVT_Q_OVERFLOW (1 << 31) #define EVT_SET_TYPE(x, v) ((x)->word[0] = deposit32((x)->word[0], 0 , 8 , v)) #define EVT_SET_SSV(x, v) ((x)->word[0] = deposit32((x)->word[0], 11, 1 , v)) #define EVT_SET_SSID(x, v) ((x)->word[0] = deposit32((x)->word[0], 12, 20, v)) #define EVT_SET_SID(x, v) ((x)->word[1] = v) #define EVT_SET_STAG(x, v) ((x)->word[2] = deposit32((x)->word[2], 0 , 16, v)) #define EVT_SET_STALL(x, v) ((x)->word[2] = deposit32((x)->word[2], 31, 1 , v)) #define EVT_SET_PNU(x, v) ((x)->word[3] = deposit32((x)->word[3], 1 , 1 , v)) #define EVT_SET_IND(x, v) ((x)->word[3] = deposit32((x)->word[3], 2 , 1 , v)) #define EVT_SET_RNW(x, v) ((x)->word[3] = deposit32((x)->word[3], 3 , 1 , v)) #define EVT_SET_S2(x, v) ((x)->word[3] = deposit32((x)->word[3], 7 , 1 , v)) #define EVT_SET_CLASS(x, v) ((x)->word[3] = deposit32((x)->word[3], 8 , 2 , v)) #define EVT_SET_ADDR(x, addr) \ do { \ (x)->word[5] = (uint32_t)(addr >> 32); \ (x)->word[4] = (uint32_t)(addr & 0xffffffff); \ } while (0) #define EVT_SET_ADDR2(x, addr) \ do { \ (x)->word[7] = (uint32_t)(addr >> 32); \ (x)->word[6] = (uint32_t)(addr & 0xffffffff); \ } while (0) void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *event); /* Configuration Data */ /* STE Level 1 Descriptor */ typedef struct STEDesc { uint32_t word[2]; } STEDesc; /* CD Level 1 Descriptor */ typedef struct CDDesc { uint32_t word[2]; } CDDesc; /* Stream Table Entry(STE) */ typedef struct STE { uint32_t word[16]; } STE; /* Context Descriptor(CD) */ typedef struct CD { uint32_t word[16]; } CD; /* STE fields */ #define STE_VALID(x) extract32((x)->word[0], 0, 1) #define STE_CONFIG(x) extract32((x)->word[0], 1, 3) #define STE_CFG_S1_ENABLED(config) (config & 0x1) #define STE_CFG_S2_ENABLED(config) (config & 0x2) #define STE_CFG_ABORT(config) (!(config & 0x4)) #define STE_CFG_BYPASS(config) (config == 0x4) #define STE_S1FMT(x) extract32((x)->word[0], 4 , 2) #define STE_S1CDMAX(x) extract32((x)->word[1], 27, 5) #define STE_S1STALLD(x) extract32((x)->word[2], 27, 1) #define STE_EATS(x) extract32((x)->word[2], 28, 2) #define STE_STRW(x) extract32((x)->word[2], 30, 2) #define STE_S2VMID(x) extract32((x)->word[4], 0 , 16) #define STE_S2T0SZ(x) extract32((x)->word[5], 0 , 6) #define STE_S2SL0(x) extract32((x)->word[5], 6 , 2) #define STE_S2TG(x) extract32((x)->word[5], 14, 2) #define STE_S2PS(x) extract32((x)->word[5], 16, 3) #define STE_S2AA64(x) extract32((x)->word[5], 19, 1) #define STE_S2ENDI(x) extract32((x)->word[5], 20, 1) #define STE_S2AFFD(x) extract32((x)->word[5], 21, 1) #define STE_S2HD(x) extract32((x)->word[5], 23, 1) #define STE_S2HA(x) extract32((x)->word[5], 24, 1) #define STE_S2S(x) extract32((x)->word[5], 25, 1) #define STE_S2R(x) extract32((x)->word[5], 26, 1) #define STE_CTXPTR(x) \ ((extract64((x)->word[1], 0, 16) << 32) | \ ((x)->word[0] & 0xffffffc0)) #define STE_S2TTB(x) \ ((extract64((x)->word[7], 0, 16) << 32) | \ ((x)->word[6] & 0xfffffff0)) static inline int oas2bits(int oas_field) { switch (oas_field) { case 0: return 32; case 1: return 36; case 2: return 40; case 3: return 42; case 4: return 44; case 5: return 48; } return -1; } static inline int pa_range(STE *ste) { int oas_field = MIN(STE_S2PS(ste), SMMU_IDR5_OAS); if (!STE_S2AA64(ste)) { return 40; } return oas2bits(oas_field); } #define MAX_PA(ste) ((1 << pa_range(ste)) - 1) /* CD fields */ #define CD_VALID(x) extract32((x)->word[0], 31, 1) #define CD_ASID(x) extract32((x)->word[1], 16, 16) #define CD_TTB(x, sel) \ ((extract64((x)->word[(sel) * 2 + 3], 0, 19) << 32) | \ ((x)->word[(sel) * 2 + 2] & ~0xfULL)) #define CD_HAD(x, sel) extract32((x)->word[(sel) * 2 + 2], 1, 1) #define CD_TSZ(x, sel) extract32((x)->word[0], (16 * (sel)) + 0, 6) #define CD_TG(x, sel) extract32((x)->word[0], (16 * (sel)) + 6, 2) #define CD_EPD(x, sel) extract32((x)->word[0], (16 * (sel)) + 14, 1) #define CD_ENDI(x) extract32((x)->word[0], 15, 1) #define CD_IPS(x) extract32((x)->word[1], 0 , 3) #define CD_TBI(x) extract32((x)->word[1], 6 , 2) #define CD_HD(x) extract32((x)->word[1], 10 , 1) #define CD_HA(x) extract32((x)->word[1], 11 , 1) #define CD_S(x) extract32((x)->word[1], 12, 1) #define CD_R(x) extract32((x)->word[1], 13, 1) #define CD_A(x) extract32((x)->word[1], 14, 1) #define CD_AARCH64(x) extract32((x)->word[1], 9 , 1) /** * tg2granule - Decodes the CD translation granule size field according * to the ttbr in use * @bits: TG0/1 fields * @ttbr: ttbr index in use */ static inline int tg2granule(int bits, int ttbr) { switch (bits) { case 0: return ttbr ? 0 : 12; case 1: return ttbr ? 14 : 16; case 2: return ttbr ? 12 : 14; case 3: return ttbr ? 16 : 0; default: return 0; } } static inline uint64_t l1std_l2ptr(STEDesc *desc) { uint64_t hi, lo; hi = desc->word[1]; lo = desc->word[0] & ~0x1fULL; return hi << 32 | lo; } #define L1STD_SPAN(stm) (extract32((stm)->word[0], 0, 5)) #endif