/* * PA-RISC emulation cpu definitions for qemu. * * Copyright (c) 2016 Richard Henderson * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #ifndef HPPA_CPU_H #define HPPA_CPU_H #include "cpu-qom.h" #include "exec/cpu-defs.h" #include "qemu/cpu-float.h" #include "qemu/interval-tree.h" /* PA-RISC 1.x processors have a strong memory model. */ /* ??? While we do not yet implement PA-RISC 2.0, those processors have a weak memory model, but with TLB bits that force ordering on a per-page basis. It's probably easier to fall back to a strong memory model. */ #define TCG_GUEST_DEFAULT_MO TCG_MO_ALL #define MMU_KERNEL_IDX 7 #define MMU_KERNEL_P_IDX 8 #define MMU_PL1_IDX 9 #define MMU_PL1_P_IDX 10 #define MMU_PL2_IDX 11 #define MMU_PL2_P_IDX 12 #define MMU_USER_IDX 13 #define MMU_USER_P_IDX 14 #define MMU_PHYS_IDX 15 #define MMU_IDX_TO_PRIV(MIDX) (((MIDX) - MMU_KERNEL_IDX) / 2) #define MMU_IDX_TO_P(MIDX) (((MIDX) - MMU_KERNEL_IDX) & 1) #define PRIV_P_TO_MMU_IDX(PRIV, P) ((PRIV) * 2 + !!(P) + MMU_KERNEL_IDX) #define TARGET_INSN_START_EXTRA_WORDS 1 /* No need to flush MMU_PHYS_IDX */ #define HPPA_MMU_FLUSH_MASK \ (1 << MMU_KERNEL_IDX | 1 << MMU_KERNEL_P_IDX | \ 1 << MMU_PL1_IDX | 1 << MMU_PL1_P_IDX | \ 1 << MMU_PL2_IDX | 1 << MMU_PL2_P_IDX | \ 1 << MMU_USER_IDX | 1 << MMU_USER_P_IDX) /* Indicies to flush for access_id changes. */ #define HPPA_MMU_FLUSH_P_MASK \ (1 << MMU_KERNEL_P_IDX | 1 << MMU_PL1_P_IDX | \ 1 << MMU_PL2_P_IDX | 1 << MMU_USER_P_IDX) /* Hardware exceptions, interrupts, faults, and traps. */ #define EXCP_HPMC 1 /* high priority machine check */ #define EXCP_POWER_FAIL 2 #define EXCP_RC 3 /* recovery counter */ #define EXCP_EXT_INTERRUPT 4 /* external interrupt */ #define EXCP_LPMC 5 /* low priority machine check */ #define EXCP_ITLB_MISS 6 /* itlb miss / instruction page fault */ #define EXCP_IMP 7 /* instruction memory protection trap */ #define EXCP_ILL 8 /* illegal instruction trap */ #define EXCP_BREAK 9 /* break instruction */ #define EXCP_PRIV_OPR 10 /* privileged operation trap */ #define EXCP_PRIV_REG 11 /* privileged register trap */ #define EXCP_OVERFLOW 12 /* signed overflow trap */ #define EXCP_COND 13 /* trap-on-condition */ #define EXCP_ASSIST 14 /* assist exception trap */ #define EXCP_DTLB_MISS 15 /* dtlb miss / data page fault */ #define EXCP_NA_ITLB_MISS 16 /* non-access itlb miss */ #define EXCP_NA_DTLB_MISS 17 /* non-access dtlb miss */ #define EXCP_DMP 18 /* data memory protection trap */ #define EXCP_DMB 19 /* data memory break trap */ #define EXCP_TLB_DIRTY 20 /* tlb dirty bit trap */ #define EXCP_PAGE_REF 21 /* page reference trap */ #define EXCP_ASSIST_EMU 22 /* assist emulation trap */ #define EXCP_HPT 23 /* high-privilege transfer trap */ #define EXCP_LPT 24 /* low-privilege transfer trap */ #define EXCP_TB 25 /* taken branch trap */ #define EXCP_DMAR 26 /* data memory access rights trap */ #define EXCP_DMPI 27 /* data memory protection id trap */ #define EXCP_UNALIGN 28 /* unaligned data reference trap */ #define EXCP_PER_INTERRUPT 29 /* performance monitor interrupt */ /* Exceptions for linux-user emulation. */ #define EXCP_SYSCALL 30 #define EXCP_SYSCALL_LWS 31 /* Emulated hardware TOC button */ #define EXCP_TOC 32 /* TOC = Transfer of control (NMI) */ #define CPU_INTERRUPT_NMI CPU_INTERRUPT_TGT_EXT_3 /* TOC */ /* Taken from Linux kernel: arch/parisc/include/asm/psw.h */ #define PSW_I 0x00000001 #define PSW_D 0x00000002 #define PSW_P 0x00000004 #define PSW_Q 0x00000008 #define PSW_R 0x00000010 #define PSW_F 0x00000020 #define PSW_G 0x00000040 /* PA1.x only */ #define PSW_O 0x00000080 /* PA2.0 only */ #define PSW_CB 0x0000ff00 #define PSW_M 0x00010000 #define PSW_V 0x00020000 #define PSW_C 0x00040000 #define PSW_B 0x00080000 #define PSW_X 0x00100000 #define PSW_N 0x00200000 #define PSW_L 0x00400000 #define PSW_H 0x00800000 #define PSW_T 0x01000000 #define PSW_S 0x02000000 #define PSW_E 0x04000000 #define PSW_W 0x08000000 /* PA2.0 only */ #define PSW_Z 0x40000000 /* PA1.x only */ #define PSW_Y 0x80000000 /* PA1.x only */ #define PSW_SM (PSW_W | PSW_E | PSW_O | PSW_G | PSW_F \ | PSW_R | PSW_Q | PSW_P | PSW_D | PSW_I) /* ssm/rsm instructions number PSW_W and PSW_E differently */ #define PSW_SM_I PSW_I /* Enable External Interrupts */ #define PSW_SM_D PSW_D #define PSW_SM_P PSW_P #define PSW_SM_Q PSW_Q /* Enable Interrupt State Collection */ #define PSW_SM_R PSW_R /* Enable Recover Counter Trap */ #define PSW_SM_E 0x100 #define PSW_SM_W 0x200 /* PA2.0 only : Enable Wide Mode */ #define CR_RC 0 #define CR_PID1 8 #define CR_PID2 9 #define CR_PID3 12 #define CR_PID4 13 #define CR_SCRCCR 10 #define CR_SAR 11 #define CR_IVA 14 #define CR_EIEM 15 #define CR_IT 16 #define CR_IIASQ 17 #define CR_IIAOQ 18 #define CR_IIR 19 #define CR_ISR 20 #define CR_IOR 21 #define CR_IPSW 22 #define CR_EIRR 23 typedef struct HPPATLBEntry { union { IntervalTreeNode itree; struct HPPATLBEntry *unused_next; }; target_ulong pa; unsigned entry_valid : 1; unsigned u : 1; unsigned t : 1; unsigned d : 1; unsigned b : 1; unsigned ar_type : 3; unsigned ar_pl1 : 2; unsigned ar_pl2 : 2; unsigned access_id : 16; } HPPATLBEntry; typedef struct CPUArchState { target_ulong iaoq_f; /* front */ target_ulong iaoq_b; /* back, aka next instruction */ target_ulong gr[32]; uint64_t fr[32]; uint64_t sr[8]; /* stored shifted into place for gva */ target_ulong psw; /* All psw bits except the following: */ target_ulong psw_n; /* boolean */ target_long psw_v; /* in most significant bit */ /* Splitting the carry-borrow field into the MSB and "the rest", allows * for "the rest" to be deleted when it is unused, but the MSB is in use. * In addition, it's easier to compute carry-in for bit B+1 than it is to * compute carry-out for bit B (3 vs 4 insns for addition, assuming the * host has the appropriate add-with-carry insn to compute the msb). * Therefore the carry bits are stored as: cb_msb : cb & 0x11111110. */ target_ulong psw_cb; /* in least significant bit of next nibble */ target_ulong psw_cb_msb; /* boolean */ uint64_t iasq_f; uint64_t iasq_b; uint32_t fr0_shadow; /* flags, c, ca/cq, rm, d, enables */ float_status fp_status; target_ulong cr[32]; /* control registers */ target_ulong cr_back[2]; /* back of cr17/cr18 */ target_ulong shadow[7]; /* shadow registers */ /* * ??? The number of entries isn't specified by the architecture. * BTLBs are not supported in 64-bit machines. */ #define PA10_BTLB_FIXED 16 #define PA10_BTLB_VARIABLE 0 #define HPPA_TLB_ENTRIES 256 /* Index for round-robin tlb eviction. */ uint32_t tlb_last; /* * For pa1.x, the partial initialized, still invalid tlb entry * which has had ITLBA performed, but not yet ITLBP. */ HPPATLBEntry *tlb_partial; /* Linked list of all invalid (unused) tlb entries. */ HPPATLBEntry *tlb_unused; /* Root of the search tree for all valid tlb entries. */ IntervalTreeRoot tlb_root; HPPATLBEntry tlb[HPPA_TLB_ENTRIES]; } CPUHPPAState; /** * HPPACPU: * @env: #CPUHPPAState * * An HPPA CPU. */ struct ArchCPU { /*< private >*/ CPUState parent_obj; /*< public >*/ CPUHPPAState env; QEMUTimer *alarm_timer; }; #include "exec/cpu-all.h" static inline bool hppa_is_pa20(CPUHPPAState *env) { return object_dynamic_cast(OBJECT(env_cpu(env)), TYPE_HPPA64_CPU) != NULL; } static inline int HPPA_BTLB_ENTRIES(CPUHPPAState *env) { return hppa_is_pa20(env) ? 0 : PA10_BTLB_FIXED + PA10_BTLB_VARIABLE; } static inline int cpu_mmu_index(CPUHPPAState *env, bool ifetch) { #ifdef CONFIG_USER_ONLY return MMU_USER_IDX; #else if (env->psw & (ifetch ? PSW_C : PSW_D)) { return PRIV_P_TO_MMU_IDX(env->iaoq_f & 3, env->psw & PSW_P); } return MMU_PHYS_IDX; /* mmu disabled */ #endif } void hppa_translate_init(void); #define CPU_RESOLVING_TYPE TYPE_HPPA_CPU static inline target_ulong hppa_form_gva_psw(target_ulong psw, uint64_t spc, target_ulong off) { #ifdef CONFIG_USER_ONLY return off; #else off &= psw & PSW_W ? MAKE_64BIT_MASK(0, 62) : MAKE_64BIT_MASK(0, 32); return spc | off; #endif } static inline target_ulong hppa_form_gva(CPUHPPAState *env, uint64_t spc, target_ulong off) { return hppa_form_gva_psw(env->psw, spc, off); } hwaddr hppa_abs_to_phys_pa2_w0(vaddr addr); hwaddr hppa_abs_to_phys_pa2_w1(vaddr addr); /* * Since PSW_{I,CB} will never need to be in tb->flags, reuse them. * TB_FLAG_SR_SAME indicates that SR4 through SR7 all contain the * same value. */ #define TB_FLAG_SR_SAME PSW_I #define TB_FLAG_PRIV_SHIFT 8 #define TB_FLAG_UNALIGN 0x400 static inline void cpu_get_tb_cpu_state(CPUHPPAState *env, vaddr *pc, uint64_t *cs_base, uint32_t *pflags) { uint32_t flags = env->psw_n * PSW_N; /* TB lookup assumes that PC contains the complete virtual address. If we leave space+offset separate, we'll get ITLB misses to an incomplete virtual address. This also means that we must separate out current cpu privilege from the low bits of IAOQ_F. */ #ifdef CONFIG_USER_ONLY *pc = env->iaoq_f & -4; *cs_base = env->iaoq_b & -4; flags |= TB_FLAG_UNALIGN * !env_cpu(env)->prctl_unalign_sigbus; #else /* ??? E, T, H, L, B bits need to be here, when implemented. */ flags |= env->psw & (PSW_W | PSW_C | PSW_D | PSW_P); flags |= (env->iaoq_f & 3) << TB_FLAG_PRIV_SHIFT; *pc = hppa_form_gva_psw(env->psw, (env->psw & PSW_C ? env->iasq_f : 0), env->iaoq_f & -4); *cs_base = env->iasq_f; /* Insert a difference between IAOQ_B and IAOQ_F within the otherwise zero low 32-bits of CS_BASE. This will succeed for all direct branches, which is the primary case we care about -- using goto_tb within a page. Failure is indicated by a zero difference. */ if (env->iasq_f == env->iasq_b) { target_long diff = env->iaoq_b - env->iaoq_f; if (diff == (int32_t)diff) { *cs_base |= (uint32_t)diff; } } if ((env->sr[4] == env->sr[5]) & (env->sr[4] == env->sr[6]) & (env->sr[4] == env->sr[7])) { flags |= TB_FLAG_SR_SAME; } #endif *pflags = flags; } target_ulong cpu_hppa_get_psw(CPUHPPAState *env); void cpu_hppa_put_psw(CPUHPPAState *env, target_ulong); void cpu_hppa_loaded_fr0(CPUHPPAState *env); #ifdef CONFIG_USER_ONLY static inline void cpu_hppa_change_prot_id(CPUHPPAState *env) { } #else void cpu_hppa_change_prot_id(CPUHPPAState *env); #endif int hppa_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); int hppa_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); void hppa_cpu_dump_state(CPUState *cs, FILE *f, int); #ifndef CONFIG_USER_ONLY void hppa_ptlbe(CPUHPPAState *env); hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr); bool hppa_cpu_tlb_fill(CPUState *cs, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr); void hppa_cpu_do_interrupt(CPUState *cpu); bool hppa_cpu_exec_interrupt(CPUState *cpu, int int_req); int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx, int type, hwaddr *pphys, int *pprot, HPPATLBEntry **tlb_entry); extern const MemoryRegionOps hppa_io_eir_ops; extern const VMStateDescription vmstate_hppa_cpu; void hppa_cpu_alarm_timer(void *); int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr); #endif G_NORETURN void hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra); #define CPU_RESOLVING_TYPE TYPE_HPPA_CPU #define cpu_list hppa_cpu_list void hppa_cpu_list(void); #endif /* HPPA_CPU_H */