/* * QEMU HPPA hardware system emulator. * Copyright 2018 Helge Deller */ #include "qemu/osdep.h" #include "qemu/datadir.h" #include "cpu.h" #include "elf.h" #include "hw/loader.h" #include "qemu/error-report.h" #include "sysemu/reset.h" #include "sysemu/sysemu.h" #include "sysemu/runstate.h" #include "hw/rtc/mc146818rtc.h" #include "hw/timer/i8254.h" #include "hw/char/serial.h" #include "hw/char/parallel.h" #include "hw/input/lasips2.h" #include "hw/net/lasi_82596.h" #include "hw/nmi.h" #include "hw/pci-host/dino.h" #include "lasi.h" #include "hppa_sys.h" #include "qemu/units.h" #include "qapi/error.h" #include "net/net.h" #include "qemu/log.h" #include "net/net.h" #define MAX_IDE_BUS 2 #define MIN_SEABIOS_HPPA_VERSION 1 /* require at least this fw version */ #define HPA_POWER_BUTTON (FIRMWARE_END - 0x10) static void hppa_powerdown_req(Notifier *n, void *opaque) { hwaddr soft_power_reg = HPA_POWER_BUTTON; uint32_t val; val = ldl_be_phys(&address_space_memory, soft_power_reg); if ((val >> 8) == 0) { /* immediately shut down when under hardware control */ qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); return; } /* clear bit 31 to indicate that the power switch was pressed. */ val &= ~1; stl_be_phys(&address_space_memory, soft_power_reg, val); } static Notifier hppa_system_powerdown_notifier = { .notify = hppa_powerdown_req }; static ISABus *hppa_isa_bus(void) { ISABus *isa_bus; qemu_irq *isa_irqs; MemoryRegion *isa_region; isa_region = g_new(MemoryRegion, 1); memory_region_init_io(isa_region, NULL, &hppa_pci_ignore_ops, NULL, "isa-io", 0x800); memory_region_add_subregion(get_system_memory(), IDE_HPA, isa_region); isa_bus = isa_bus_new(NULL, get_system_memory(), isa_region, &error_abort); isa_irqs = i8259_init(isa_bus, /* qemu_allocate_irq(dino_set_isa_irq, s, 0)); */ NULL); isa_bus_irqs(isa_bus, isa_irqs); return isa_bus; } static uint64_t cpu_hppa_to_phys(void *opaque, uint64_t addr) { addr &= (0x10000000 - 1); return addr; } static HPPACPU *cpu[HPPA_MAX_CPUS]; static uint64_t firmware_entry; static void fw_cfg_boot_set(void *opaque, const char *boot_device, Error **errp) { fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]); } static FWCfgState *create_fw_cfg(MachineState *ms) { FWCfgState *fw_cfg; uint64_t val; fw_cfg = fw_cfg_init_mem(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4); fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, ms->smp.cpus); fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, HPPA_MAX_CPUS); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, ms->ram_size); val = cpu_to_le64(MIN_SEABIOS_HPPA_VERSION); fw_cfg_add_file(fw_cfg, "/etc/firmware-min-version", g_memdup(&val, sizeof(val)), sizeof(val)); val = cpu_to_le64(HPPA_TLB_ENTRIES); fw_cfg_add_file(fw_cfg, "/etc/cpu/tlb_entries", g_memdup(&val, sizeof(val)), sizeof(val)); val = cpu_to_le64(HPPA_BTLB_ENTRIES); fw_cfg_add_file(fw_cfg, "/etc/cpu/btlb_entries", g_memdup(&val, sizeof(val)), sizeof(val)); val = cpu_to_le64(HPA_POWER_BUTTON); fw_cfg_add_file(fw_cfg, "/etc/power-button-addr", g_memdup(&val, sizeof(val)), sizeof(val)); fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, ms->boot_order[0]); qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); return fw_cfg; } static DinoState *dino_init(MemoryRegion *addr_space) { DeviceState *dev; dev = qdev_new(TYPE_DINO_PCI_HOST_BRIDGE); object_property_set_link(OBJECT(dev), "memory-as", OBJECT(addr_space), &error_fatal); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); return DINO_PCI_HOST_BRIDGE(dev); } static void machine_hppa_init(MachineState *machine) { const char *kernel_filename = machine->kernel_filename; const char *kernel_cmdline = machine->kernel_cmdline; const char *initrd_filename = machine->initrd_filename; DeviceState *dev, *dino_dev, *lasi_dev; PCIBus *pci_bus; ISABus *isa_bus; char *firmware_filename; uint64_t firmware_low, firmware_high; long size; uint64_t kernel_entry = 0, kernel_low, kernel_high; MemoryRegion *addr_space = get_system_memory(); MemoryRegion *rom_region; MemoryRegion *cpu_region; long i; unsigned int smp_cpus = machine->smp.cpus; SysBusDevice *s; /* Create CPUs. */ for (i = 0; i < smp_cpus; i++) { char *name = g_strdup_printf("cpu%ld-io-eir", i); cpu[i] = HPPA_CPU(cpu_create(machine->cpu_type)); cpu_region = g_new(MemoryRegion, 1); memory_region_init_io(cpu_region, OBJECT(cpu[i]), &hppa_io_eir_ops, cpu[i], name, 4); memory_region_add_subregion(addr_space, CPU_HPA + i * 0x1000, cpu_region); g_free(name); } /* Main memory region. */ if (machine->ram_size > 3 * GiB) { error_report("RAM size is currently restricted to 3GB"); exit(EXIT_FAILURE); } memory_region_add_subregion_overlap(addr_space, 0, machine->ram, -1); /* Init Lasi chip */ lasi_dev = DEVICE(lasi_initfn(addr_space)); memory_region_add_subregion(addr_space, LASI_HPA, sysbus_mmio_get_region( SYS_BUS_DEVICE(lasi_dev), 0)); /* Init Dino (PCI host bus chip). */ dino_dev = DEVICE(dino_init(addr_space)); memory_region_add_subregion(addr_space, DINO_HPA, sysbus_mmio_get_region( SYS_BUS_DEVICE(dino_dev), 0)); pci_bus = PCI_BUS(qdev_get_child_bus(dino_dev, "pci")); assert(pci_bus); /* Create ISA bus. */ isa_bus = hppa_isa_bus(); assert(isa_bus); /* Realtime clock, used by firmware for PDC_TOD call. */ mc146818_rtc_init(isa_bus, 2000, NULL); /* Serial code setup. */ if (serial_hd(0)) { uint32_t addr = DINO_UART_HPA + 0x800; serial_mm_init(addr_space, addr, 0, qdev_get_gpio_in(dino_dev, DINO_IRQ_RS232INT), 115200, serial_hd(0), DEVICE_BIG_ENDIAN); } if (serial_hd(1)) { /* Serial port */ serial_mm_init(addr_space, LASI_UART_HPA + 0x800, 0, qdev_get_gpio_in(lasi_dev, LASI_IRQ_UART_HPA), 8000000 / 16, serial_hd(1), DEVICE_BIG_ENDIAN); } /* Parallel port */ parallel_mm_init(addr_space, LASI_LPT_HPA + 0x800, 0, qdev_get_gpio_in(lasi_dev, LASI_IRQ_LAN_HPA), parallel_hds[0]); /* fw_cfg configuration interface */ create_fw_cfg(machine); /* SCSI disk setup. */ dev = DEVICE(pci_create_simple(pci_bus, -1, "lsi53c895a")); lsi53c8xx_handle_legacy_cmdline(dev); /* Graphics setup. */ if (machine->enable_graphics && vga_interface_type != VGA_NONE) { dev = qdev_new("artist"); s = SYS_BUS_DEVICE(dev); sysbus_realize_and_unref(s, &error_fatal); sysbus_mmio_map(s, 0, LASI_GFX_HPA); sysbus_mmio_map(s, 1, ARTIST_FB_ADDR); } /* Network setup. */ if (enable_lasi_lan()) { lasi_82596_init(addr_space, LASI_LAN_HPA, qdev_get_gpio_in(lasi_dev, LASI_IRQ_LAN_HPA)); } for (i = 0; i < nb_nics; i++) { if (!enable_lasi_lan()) { pci_nic_init_nofail(&nd_table[i], pci_bus, "tulip", NULL); } } /* PS/2 Keyboard/Mouse */ lasips2_init(addr_space, LASI_PS2KBD_HPA, qdev_get_gpio_in(lasi_dev, LASI_IRQ_PS2KBD_HPA)); /* register power switch emulation */ qemu_register_powerdown_notifier(&hppa_system_powerdown_notifier); /* Load firmware. Given that this is not "real" firmware, but one explicitly written for the emulation, we might as well load it directly from an ELF image. */ firmware_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, machine->firmware ?: "hppa-firmware.img"); if (firmware_filename == NULL) { error_report("no firmware provided"); exit(1); } size = load_elf(firmware_filename, NULL, NULL, NULL, &firmware_entry, &firmware_low, &firmware_high, NULL, true, EM_PARISC, 0, 0); /* Unfortunately, load_elf sign-extends reading elf32. */ firmware_entry = (target_ureg)firmware_entry; firmware_low = (target_ureg)firmware_low; firmware_high = (target_ureg)firmware_high; if (size < 0) { error_report("could not load firmware '%s'", firmware_filename); exit(1); } qemu_log_mask(CPU_LOG_PAGE, "Firmware loaded at 0x%08" PRIx64 "-0x%08" PRIx64 ", entry at 0x%08" PRIx64 ".\n", firmware_low, firmware_high, firmware_entry); if (firmware_low < FIRMWARE_START || firmware_high >= FIRMWARE_END) { error_report("Firmware overlaps with memory or IO space"); exit(1); } g_free(firmware_filename); rom_region = g_new(MemoryRegion, 1); memory_region_init_ram(rom_region, NULL, "firmware", (FIRMWARE_END - FIRMWARE_START), &error_fatal); memory_region_add_subregion(addr_space, FIRMWARE_START, rom_region); /* Load kernel */ if (kernel_filename) { size = load_elf(kernel_filename, NULL, &cpu_hppa_to_phys, NULL, &kernel_entry, &kernel_low, &kernel_high, NULL, true, EM_PARISC, 0, 0); /* Unfortunately, load_elf sign-extends reading elf32. */ kernel_entry = (target_ureg) cpu_hppa_to_phys(NULL, kernel_entry); kernel_low = (target_ureg)kernel_low; kernel_high = (target_ureg)kernel_high; if (size < 0) { error_report("could not load kernel '%s'", kernel_filename); exit(1); } qemu_log_mask(CPU_LOG_PAGE, "Kernel loaded at 0x%08" PRIx64 "-0x%08" PRIx64 ", entry at 0x%08" PRIx64 ", size %" PRIu64 " kB\n", kernel_low, kernel_high, kernel_entry, size / KiB); if (kernel_cmdline) { cpu[0]->env.gr[24] = 0x4000; pstrcpy_targphys("cmdline", cpu[0]->env.gr[24], TARGET_PAGE_SIZE, kernel_cmdline); } if (initrd_filename) { ram_addr_t initrd_base; int64_t initrd_size; initrd_size = get_image_size(initrd_filename); if (initrd_size < 0) { error_report("could not load initial ram disk '%s'", initrd_filename); exit(1); } /* Load the initrd image high in memory. Mirror the algorithm used by palo: (1) Due to sign-extension problems and PDC, put the initrd no higher than 1G. (2) Reserve 64k for stack. */ initrd_base = MIN(machine->ram_size, 1 * GiB); initrd_base = initrd_base - 64 * KiB; initrd_base = (initrd_base - initrd_size) & TARGET_PAGE_MASK; if (initrd_base < kernel_high) { error_report("kernel and initial ram disk too large!"); exit(1); } load_image_targphys(initrd_filename, initrd_base, initrd_size); cpu[0]->env.gr[23] = initrd_base; cpu[0]->env.gr[22] = initrd_base + initrd_size; } } if (!kernel_entry) { /* When booting via firmware, tell firmware if we want interactive * mode (kernel_entry=1), and to boot from CD (gr[24]='d') * or hard disc * (gr[24]='c'). */ kernel_entry = boot_menu ? 1 : 0; cpu[0]->env.gr[24] = machine->boot_order[0]; } /* We jump to the firmware entry routine and pass the * various parameters in registers. After firmware initialization, * firmware will start the Linux kernel with ramdisk and cmdline. */ cpu[0]->env.gr[26] = machine->ram_size; cpu[0]->env.gr[25] = kernel_entry; /* tell firmware how many SMP CPUs to present in inventory table */ cpu[0]->env.gr[21] = smp_cpus; /* tell firmware fw_cfg port */ cpu[0]->env.gr[19] = FW_CFG_IO_BASE; } static void hppa_machine_reset(MachineState *ms) { unsigned int smp_cpus = ms->smp.cpus; int i; qemu_devices_reset(); /* Start all CPUs at the firmware entry point. * Monarch CPU will initialize firmware, secondary CPUs * will enter a small idle look and wait for rendevouz. */ for (i = 0; i < smp_cpus; i++) { cpu_set_pc(CPU(cpu[i]), firmware_entry); cpu[i]->env.gr[5] = CPU_HPA + i * 0x1000; } /* already initialized by machine_hppa_init()? */ if (cpu[0]->env.gr[26] == ms->ram_size) { return; } cpu[0]->env.gr[26] = ms->ram_size; cpu[0]->env.gr[25] = 0; /* no firmware boot menu */ cpu[0]->env.gr[24] = 'c'; /* gr22/gr23 unused, no initrd while reboot. */ cpu[0]->env.gr[21] = smp_cpus; /* tell firmware fw_cfg port */ cpu[0]->env.gr[19] = FW_CFG_IO_BASE; } static void hppa_nmi(NMIState *n, int cpu_index, Error **errp) { CPUState *cs; CPU_FOREACH(cs) { cpu_interrupt(cs, CPU_INTERRUPT_NMI); } } static void machine_hppa_machine_init(MachineClass *mc) { mc->desc = "HPPA B160L machine"; mc->default_cpu_type = TYPE_HPPA_CPU; mc->init = machine_hppa_init; mc->reset = hppa_machine_reset; mc->block_default_type = IF_SCSI; mc->max_cpus = HPPA_MAX_CPUS; mc->default_cpus = 1; mc->is_default = true; mc->default_ram_size = 512 * MiB; mc->default_boot_order = "cd"; mc->default_ram_id = "ram"; } static void machine_hppa_machine_init_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); machine_hppa_machine_init(mc); NMIClass *nc = NMI_CLASS(oc); nc->nmi_monitor_handler = hppa_nmi; } static const TypeInfo machine_hppa_machine_init_typeinfo = { .name = ("hppa" "-machine"), .parent = "machine", .class_init = machine_hppa_machine_init_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_NMI }, { } }, }; static void machine_hppa_machine_init_register_types(void) { type_register_static(&machine_hppa_machine_init_typeinfo); } type_init(machine_hppa_machine_init_register_types)