/* * SD Memory Card emulation as defined in the "SD Memory Card Physical * layer specification, Version 1.10." * * Copyright (c) 2006 Andrzej Zaborowski * Copyright (c) 2007 CodeSourcery * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "qemu/osdep.h" #include "hw/qdev.h" #include "hw/hw.h" #include "sysemu/block-backend.h" #include "hw/sd/sd.h" #include "qapi/error.h" #include "qemu/bitmap.h" #include "hw/qdev-properties.h" #include "qemu/error-report.h" #include "qemu/timer.h" #include "qemu/log.h" //#define DEBUG_SD 1 #ifdef DEBUG_SD #define DPRINTF(fmt, ...) \ do { fprintf(stderr, "SD: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) do {} while(0) #endif #define ACMD41_ENQUIRY_MASK 0x00ffffff #define OCR_POWER_UP 0x80000000 #define OCR_POWER_DELAY_NS 500000 /* 0.5ms */ typedef enum { sd_r0 = 0, /* no response */ sd_r1, /* normal response command */ sd_r2_i, /* CID register */ sd_r2_s, /* CSD register */ sd_r3, /* OCR register */ sd_r6 = 6, /* Published RCA response */ sd_r7, /* Operating voltage */ sd_r1b = -1, sd_illegal = -2, } sd_rsp_type_t; enum SDCardModes { sd_inactive, sd_card_identification_mode, sd_data_transfer_mode, }; enum SDCardStates { sd_inactive_state = -1, sd_idle_state = 0, sd_ready_state, sd_identification_state, sd_standby_state, sd_transfer_state, sd_sendingdata_state, sd_receivingdata_state, sd_programming_state, sd_disconnect_state, }; struct SDState { DeviceState parent_obj; /* SD Memory Card Registers */ uint32_t ocr; uint8_t scr[8]; uint8_t cid[16]; uint8_t csd[16]; uint16_t rca; uint32_t card_status; uint8_t sd_status[64]; /* Configurable properties */ BlockBackend *blk; bool spi; uint32_t mode; /* current card mode, one of SDCardModes */ int32_t state; /* current card state, one of SDCardStates */ uint32_t vhs; bool wp_switch; unsigned long *wp_groups; int32_t wpgrps_size; uint64_t size; uint32_t blk_len; uint32_t multi_blk_cnt; uint32_t erase_start; uint32_t erase_end; uint8_t pwd[16]; uint32_t pwd_len; uint8_t function_group[6]; uint8_t current_cmd; /* True if we will handle the next command as an ACMD. Note that this does * *not* track the APP_CMD status bit! */ bool expecting_acmd; uint32_t blk_written; uint64_t data_start; uint32_t data_offset; uint8_t data[512]; qemu_irq readonly_cb; qemu_irq inserted_cb; QEMUTimer *ocr_power_timer; bool enable; uint8_t dat_lines; bool cmd_line; }; static uint8_t sd_get_dat_lines(SDState *sd) { return sd->enable ? sd->dat_lines : 0; } static bool sd_get_cmd_line(SDState *sd) { return sd->enable ? sd->cmd_line : false; } static void sd_set_voltage(SDState *sd, uint16_t millivolts) { switch (millivolts) { case 3001 ... 3600: /* SD_VOLTAGE_3_3V */ case 2001 ... 3000: /* SD_VOLTAGE_3_0V */ break; default: qemu_log_mask(LOG_GUEST_ERROR, "SD card voltage not supported: %.3fV", millivolts / 1000.f); } } static void sd_set_mode(SDState *sd) { switch (sd->state) { case sd_inactive_state: sd->mode = sd_inactive; break; case sd_idle_state: case sd_ready_state: case sd_identification_state: sd->mode = sd_card_identification_mode; break; case sd_standby_state: case sd_transfer_state: case sd_sendingdata_state: case sd_receivingdata_state: case sd_programming_state: case sd_disconnect_state: sd->mode = sd_data_transfer_mode; break; } } static const sd_cmd_type_t sd_cmd_type[64] = { sd_bc, sd_none, sd_bcr, sd_bcr, sd_none, sd_none, sd_none, sd_ac, sd_bcr, sd_ac, sd_ac, sd_adtc, sd_ac, sd_ac, sd_none, sd_ac, sd_ac, sd_adtc, sd_adtc, sd_none, sd_none, sd_none, sd_none, sd_none, sd_adtc, sd_adtc, sd_adtc, sd_adtc, sd_ac, sd_ac, sd_adtc, sd_none, sd_ac, sd_ac, sd_none, sd_none, sd_none, sd_none, sd_ac, sd_none, sd_none, sd_none, sd_bc, sd_none, sd_none, sd_none, sd_none, sd_none, sd_none, sd_none, sd_none, sd_none, sd_none, sd_none, sd_none, sd_ac, sd_adtc, sd_none, sd_none, sd_none, sd_none, sd_none, sd_none, sd_none, }; static const int sd_cmd_class[64] = { 0, 0, 0, 0, 0, 9, 10, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 6, 6, 6, 6, 5, 5, 10, 10, 10, 10, 5, 9, 9, 9, 7, 7, 7, 7, 7, 7, 7, 7, 10, 7, 9, 9, 9, 8, 8, 10, 8, 8, 8, 8, 8, 8, }; static uint8_t sd_crc7(void *message, size_t width) { int i, bit; uint8_t shift_reg = 0x00; uint8_t *msg = (uint8_t *) message; for (i = 0; i < width; i ++, msg ++) for (bit = 7; bit >= 0; bit --) { shift_reg <<= 1; if ((shift_reg >> 7) ^ ((*msg >> bit) & 1)) shift_reg ^= 0x89; } return shift_reg; } static uint16_t sd_crc16(void *message, size_t width) { int i, bit; uint16_t shift_reg = 0x0000; uint16_t *msg = (uint16_t *) message; width <<= 1; for (i = 0; i < width; i ++, msg ++) for (bit = 15; bit >= 0; bit --) { shift_reg <<= 1; if ((shift_reg >> 15) ^ ((*msg >> bit) & 1)) shift_reg ^= 0x1011; } return shift_reg; } static void sd_set_ocr(SDState *sd) { /* All voltages OK, Standard Capacity SD Memory Card, not yet powered up */ sd->ocr = 0x00ffff00; } static void sd_ocr_powerup(void *opaque) { SDState *sd = opaque; /* Set powered up bit in OCR */ assert(!(sd->ocr & OCR_POWER_UP)); sd->ocr |= OCR_POWER_UP; } static void sd_set_scr(SDState *sd) { sd->scr[0] = 0x00; /* SCR Structure */ sd->scr[1] = 0x2f; /* SD Security Support */ sd->scr[2] = 0x00; sd->scr[3] = 0x00; sd->scr[4] = 0x00; sd->scr[5] = 0x00; sd->scr[6] = 0x00; sd->scr[7] = 0x00; } #define MID 0xaa #define OID "XY" #define PNM "QEMU!" #define PRV 0x01 #define MDT_YR 2006 #define MDT_MON 2 static void sd_set_cid(SDState *sd) { sd->cid[0] = MID; /* Fake card manufacturer ID (MID) */ sd->cid[1] = OID[0]; /* OEM/Application ID (OID) */ sd->cid[2] = OID[1]; sd->cid[3] = PNM[0]; /* Fake product name (PNM) */ sd->cid[4] = PNM[1]; sd->cid[5] = PNM[2]; sd->cid[6] = PNM[3]; sd->cid[7] = PNM[4]; sd->cid[8] = PRV; /* Fake product revision (PRV) */ sd->cid[9] = 0xde; /* Fake serial number (PSN) */ sd->cid[10] = 0xad; sd->cid[11] = 0xbe; sd->cid[12] = 0xef; sd->cid[13] = 0x00 | /* Manufacture date (MDT) */ ((MDT_YR - 2000) / 10); sd->cid[14] = ((MDT_YR % 10) << 4) | MDT_MON; sd->cid[15] = (sd_crc7(sd->cid, 15) << 1) | 1; } #define HWBLOCK_SHIFT 9 /* 512 bytes */ #define SECTOR_SHIFT 5 /* 16 kilobytes */ #define WPGROUP_SHIFT 7 /* 2 megs */ #define CMULT_SHIFT 9 /* 512 times HWBLOCK_SIZE */ #define WPGROUP_SIZE (1 << (HWBLOCK_SHIFT + SECTOR_SHIFT + WPGROUP_SHIFT)) static const uint8_t sd_csd_rw_mask[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfc, 0xfe, }; static void sd_set_csd(SDState *sd, uint64_t size) { uint32_t csize = (size >> (CMULT_SHIFT + HWBLOCK_SHIFT)) - 1; uint32_t sectsize = (1 << (SECTOR_SHIFT + 1)) - 1; uint32_t wpsize = (1 << (WPGROUP_SHIFT + 1)) - 1; if (size <= 0x40000000) { /* Standard Capacity SD */ sd->csd[0] = 0x00; /* CSD structure */ sd->csd[1] = 0x26; /* Data read access-time-1 */ sd->csd[2] = 0x00; /* Data read access-time-2 */ sd->csd[3] = 0x5a; /* Max. data transfer rate */ sd->csd[4] = 0x5f; /* Card Command Classes */ sd->csd[5] = 0x50 | /* Max. read data block length */ HWBLOCK_SHIFT; sd->csd[6] = 0xe0 | /* Partial block for read allowed */ ((csize >> 10) & 0x03); sd->csd[7] = 0x00 | /* Device size */ ((csize >> 2) & 0xff); sd->csd[8] = 0x3f | /* Max. read current */ ((csize << 6) & 0xc0); sd->csd[9] = 0xfc | /* Max. write current */ ((CMULT_SHIFT - 2) >> 1); sd->csd[10] = 0x40 | /* Erase sector size */ (((CMULT_SHIFT - 2) << 7) & 0x80) | (sectsize >> 1); sd->csd[11] = 0x00 | /* Write protect group size */ ((sectsize << 7) & 0x80) | wpsize; sd->csd[12] = 0x90 | /* Write speed factor */ (HWBLOCK_SHIFT >> 2); sd->csd[13] = 0x20 | /* Max. write data block length */ ((HWBLOCK_SHIFT << 6) & 0xc0); sd->csd[14] = 0x00; /* File format group */ sd->csd[15] = (sd_crc7(sd->csd, 15) << 1) | 1; } else { /* SDHC */ size /= 512 * 1024; size -= 1; sd->csd[0] = 0x40; sd->csd[1] = 0x0e; sd->csd[2] = 0x00; sd->csd[3] = 0x32; sd->csd[4] = 0x5b; sd->csd[5] = 0x59; sd->csd[6] = 0x00; sd->csd[7] = (size >> 16) & 0xff; sd->csd[8] = (size >> 8) & 0xff; sd->csd[9] = (size & 0xff); sd->csd[10] = 0x7f; sd->csd[11] = 0x80; sd->csd[12] = 0x0a; sd->csd[13] = 0x40; sd->csd[14] = 0x00; sd->csd[15] = 0x00; sd->ocr |= 1 << 30; /* High Capacity SD Memory Card */ } } static void sd_set_rca(SDState *sd) { sd->rca += 0x4567; } /* Card status bits, split by clear condition: * A : According to the card current state * B : Always related to the previous command * C : Cleared by read */ #define CARD_STATUS_A 0x02004100 #define CARD_STATUS_B 0x00c01e00 #define CARD_STATUS_C 0xfd39a028 static void sd_set_cardstatus(SDState *sd) { sd->card_status = 0x00000100; } static void sd_set_sdstatus(SDState *sd) { memset(sd->sd_status, 0, 64); } static int sd_req_crc_validate(SDRequest *req) { uint8_t buffer[5]; buffer[0] = 0x40 | req->cmd; buffer[1] = (req->arg >> 24) & 0xff; buffer[2] = (req->arg >> 16) & 0xff; buffer[3] = (req->arg >> 8) & 0xff; buffer[4] = (req->arg >> 0) & 0xff; return 0; return sd_crc7(buffer, 5) != req->crc; /* TODO */ } static void sd_response_r1_make(SDState *sd, uint8_t *response) { uint32_t status = sd->card_status; /* Clear the "clear on read" status bits */ sd->card_status &= ~CARD_STATUS_C; response[0] = (status >> 24) & 0xff; response[1] = (status >> 16) & 0xff; response[2] = (status >> 8) & 0xff; response[3] = (status >> 0) & 0xff; } static void sd_response_r3_make(SDState *sd, uint8_t *response) { response[0] = (sd->ocr >> 24) & 0xff; response[1] = (sd->ocr >> 16) & 0xff; response[2] = (sd->ocr >> 8) & 0xff; response[3] = (sd->ocr >> 0) & 0xff; } static void sd_response_r6_make(SDState *sd, uint8_t *response) { uint16_t arg; uint16_t status; arg = sd->rca; status = ((sd->card_status >> 8) & 0xc000) | ((sd->card_status >> 6) & 0x2000) | (sd->card_status & 0x1fff); sd->card_status &= ~(CARD_STATUS_C & 0xc81fff); response[0] = (arg >> 8) & 0xff; response[1] = arg & 0xff; response[2] = (status >> 8) & 0xff; response[3] = status & 0xff; } static void sd_response_r7_make(SDState *sd, uint8_t *response) { response[0] = (sd->vhs >> 24) & 0xff; response[1] = (sd->vhs >> 16) & 0xff; response[2] = (sd->vhs >> 8) & 0xff; response[3] = (sd->vhs >> 0) & 0xff; } static inline uint64_t sd_addr_to_wpnum(uint64_t addr) { return addr >> (HWBLOCK_SHIFT + SECTOR_SHIFT + WPGROUP_SHIFT); } static void sd_reset(DeviceState *dev) { SDState *sd = SD_CARD(dev); uint64_t size; uint64_t sect; if (sd->blk) { blk_get_geometry(sd->blk, §); } else { sect = 0; } size = sect << 9; sect = sd_addr_to_wpnum(size) + 1; sd->state = sd_idle_state; sd->rca = 0x0000; sd_set_ocr(sd); sd_set_scr(sd); sd_set_cid(sd); sd_set_csd(sd, size); sd_set_cardstatus(sd); sd_set_sdstatus(sd); g_free(sd->wp_groups); sd->wp_switch = sd->blk ? blk_is_read_only(sd->blk) : false; sd->wpgrps_size = sect; sd->wp_groups = bitmap_new(sd->wpgrps_size); memset(sd->function_group, 0, sizeof(sd->function_group)); sd->erase_start = 0; sd->erase_end = 0; sd->size = size; sd->blk_len = 0x200; sd->pwd_len = 0; sd->expecting_acmd = false; sd->dat_lines = 0xf; sd->cmd_line = true; sd->multi_blk_cnt = 0; } static bool sd_get_inserted(SDState *sd) { return sd->blk && blk_is_inserted(sd->blk); } static bool sd_get_readonly(SDState *sd) { return sd->wp_switch; } static void sd_cardchange(void *opaque, bool load, Error **errp) { SDState *sd = opaque; DeviceState *dev = DEVICE(sd); SDBus *sdbus = SD_BUS(qdev_get_parent_bus(dev)); bool inserted = sd_get_inserted(sd); bool readonly = sd_get_readonly(sd); if (inserted) { sd_reset(dev); } /* The IRQ notification is for legacy non-QOM SD controller devices; * QOMified controllers use the SDBus APIs. */ if (sdbus) { sdbus_set_inserted(sdbus, inserted); if (inserted) { sdbus_set_readonly(sdbus, readonly); } } else { qemu_set_irq(sd->inserted_cb, inserted); if (inserted) { qemu_set_irq(sd->readonly_cb, readonly); } } } static const BlockDevOps sd_block_ops = { .change_media_cb = sd_cardchange, }; static bool sd_ocr_vmstate_needed(void *opaque) { SDState *sd = opaque; /* Include the OCR state (and timer) if it is not yet powered up */ return !(sd->ocr & OCR_POWER_UP); } static const VMStateDescription sd_ocr_vmstate = { .name = "sd-card/ocr-state", .version_id = 1, .minimum_version_id = 1, .needed = sd_ocr_vmstate_needed, .fields = (VMStateField[]) { VMSTATE_UINT32(ocr, SDState), VMSTATE_TIMER_PTR(ocr_power_timer, SDState), VMSTATE_END_OF_LIST() }, }; static int sd_vmstate_pre_load(void *opaque) { SDState *sd = opaque; /* If the OCR state is not included (prior versions, or not * needed), then the OCR must be set as powered up. If the OCR state * is included, this will be replaced by the state restore. */ sd_ocr_powerup(sd); return 0; } static const VMStateDescription sd_vmstate = { .name = "sd-card", .version_id = 1, .minimum_version_id = 1, .pre_load = sd_vmstate_pre_load, .fields = (VMStateField[]) { VMSTATE_UINT32(mode, SDState), VMSTATE_INT32(state, SDState), VMSTATE_UINT8_ARRAY(cid, SDState, 16), VMSTATE_UINT8_ARRAY(csd, SDState, 16), VMSTATE_UINT16(rca, SDState), VMSTATE_UINT32(card_status, SDState), VMSTATE_PARTIAL_BUFFER(sd_status, SDState, 1), VMSTATE_UINT32(vhs, SDState), VMSTATE_BITMAP(wp_groups, SDState, 0, wpgrps_size), VMSTATE_UINT32(blk_len, SDState), VMSTATE_UINT32(multi_blk_cnt, SDState), VMSTATE_UINT32(erase_start, SDState), VMSTATE_UINT32(erase_end, SDState), VMSTATE_UINT8_ARRAY(pwd, SDState, 16), VMSTATE_UINT32(pwd_len, SDState), VMSTATE_UINT8_ARRAY(function_group, SDState, 6), VMSTATE_UINT8(current_cmd, SDState), VMSTATE_BOOL(expecting_acmd, SDState), VMSTATE_UINT32(blk_written, SDState), VMSTATE_UINT64(data_start, SDState), VMSTATE_UINT32(data_offset, SDState), VMSTATE_UINT8_ARRAY(data, SDState, 512), VMSTATE_UNUSED_V(1, 512), VMSTATE_BOOL(enable, SDState), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &sd_ocr_vmstate, NULL }, }; /* Legacy initialization function for use by non-qdevified callers */ SDState *sd_init(BlockBackend *blk, bool is_spi) { Object *obj; DeviceState *dev; Error *err = NULL; obj = object_new(TYPE_SD_CARD); dev = DEVICE(obj); qdev_prop_set_drive(dev, "drive", blk, &err); if (err) { error_report("sd_init failed: %s", error_get_pretty(err)); return NULL; } qdev_prop_set_bit(dev, "spi", is_spi); object_property_set_bool(obj, true, "realized", &err); if (err) { error_report("sd_init failed: %s", error_get_pretty(err)); return NULL; } return SD_CARD(dev); } void sd_set_cb(SDState *sd, qemu_irq readonly, qemu_irq insert) { sd->readonly_cb = readonly; sd->inserted_cb = insert; qemu_set_irq(readonly, sd->blk ? blk_is_read_only(sd->blk) : 0); qemu_set_irq(insert, sd->blk ? blk_is_inserted(sd->blk) : 0); } static void sd_erase(SDState *sd) { int i; uint64_t erase_start = sd->erase_start; uint64_t erase_end = sd->erase_end; if (!sd->erase_start || !sd->erase_end) { sd->card_status |= ERASE_SEQ_ERROR; return; } if (extract32(sd->ocr, OCR_CCS_BITN, 1)) { /* High capacity memory card: erase units are 512 byte blocks */ erase_start *= 512; erase_end *= 512; } erase_start = sd_addr_to_wpnum(erase_start); erase_end = sd_addr_to_wpnum(erase_end); sd->erase_start = 0; sd->erase_end = 0; sd->csd[14] |= 0x40; for (i = erase_start; i <= erase_end; i++) { if (test_bit(i, sd->wp_groups)) { sd->card_status |= WP_ERASE_SKIP; } } } static uint32_t sd_wpbits(SDState *sd, uint64_t addr) { uint32_t i, wpnum; uint32_t ret = 0; wpnum = sd_addr_to_wpnum(addr); for (i = 0; i < 32; i++, wpnum++, addr += WPGROUP_SIZE) { if (addr < sd->size && test_bit(wpnum, sd->wp_groups)) { ret |= (1 << i); } } return ret; } static void sd_function_switch(SDState *sd, uint32_t arg) { int i, mode, new_func, crc; mode = !!(arg & 0x80000000); sd->data[0] = 0x00; /* Maximum current consumption */ sd->data[1] = 0x01; sd->data[2] = 0x80; /* Supported group 6 functions */ sd->data[3] = 0x01; sd->data[4] = 0x80; /* Supported group 5 functions */ sd->data[5] = 0x01; sd->data[6] = 0x80; /* Supported group 4 functions */ sd->data[7] = 0x01; sd->data[8] = 0x80; /* Supported group 3 functions */ sd->data[9] = 0x01; sd->data[10] = 0x80; /* Supported group 2 functions */ sd->data[11] = 0x43; sd->data[12] = 0x80; /* Supported group 1 functions */ sd->data[13] = 0x03; for (i = 0; i < 6; i ++) { new_func = (arg >> (i * 4)) & 0x0f; if (mode && new_func != 0x0f) sd->function_group[i] = new_func; sd->data[14 + (i >> 1)] = new_func << ((i * 4) & 4); } memset(&sd->data[17], 0, 47); crc = sd_crc16(sd->data, 64); sd->data[65] = crc >> 8; sd->data[66] = crc & 0xff; } static inline bool sd_wp_addr(SDState *sd, uint64_t addr) { return test_bit(sd_addr_to_wpnum(addr), sd->wp_groups); } static void sd_lock_command(SDState *sd) { int erase, lock, clr_pwd, set_pwd, pwd_len; erase = !!(sd->data[0] & 0x08); lock = sd->data[0] & 0x04; clr_pwd = sd->data[0] & 0x02; set_pwd = sd->data[0] & 0x01; if (sd->blk_len > 1) pwd_len = sd->data[1]; else pwd_len = 0; if (erase) { if (!(sd->card_status & CARD_IS_LOCKED) || sd->blk_len > 1 || set_pwd || clr_pwd || lock || sd->wp_switch || (sd->csd[14] & 0x20)) { sd->card_status |= LOCK_UNLOCK_FAILED; return; } bitmap_zero(sd->wp_groups, sd->wpgrps_size); sd->csd[14] &= ~0x10; sd->card_status &= ~CARD_IS_LOCKED; sd->pwd_len = 0; /* Erasing the entire card here! */ fprintf(stderr, "SD: Card force-erased by CMD42\n"); return; } if (sd->blk_len < 2 + pwd_len || pwd_len <= sd->pwd_len || pwd_len > sd->pwd_len + 16) { sd->card_status |= LOCK_UNLOCK_FAILED; return; } if (sd->pwd_len && memcmp(sd->pwd, sd->data + 2, sd->pwd_len)) { sd->card_status |= LOCK_UNLOCK_FAILED; return; } pwd_len -= sd->pwd_len; if ((pwd_len && !set_pwd) || (clr_pwd && (set_pwd || lock)) || (lock && !sd->pwd_len && !set_pwd) || (!set_pwd && !clr_pwd && (((sd->card_status & CARD_IS_LOCKED) && lock) || (!(sd->card_status & CARD_IS_LOCKED) && !lock)))) { sd->card_status |= LOCK_UNLOCK_FAILED; return; } if (set_pwd) { memcpy(sd->pwd, sd->data + 2 + sd->pwd_len, pwd_len); sd->pwd_len = pwd_len; } if (clr_pwd) { sd->pwd_len = 0; } if (lock) sd->card_status |= CARD_IS_LOCKED; else sd->card_status &= ~CARD_IS_LOCKED; } static sd_rsp_type_t sd_normal_command(SDState *sd, SDRequest req) { uint32_t rca = 0x0000; uint64_t addr = (sd->ocr & (1 << 30)) ? (uint64_t) req.arg << 9 : req.arg; /* Not interpreting this as an app command */ sd->card_status &= ~APP_CMD; if (sd_cmd_type[req.cmd & 0x3F] == sd_ac || sd_cmd_type[req.cmd & 0x3F] == sd_adtc) { rca = req.arg >> 16; } /* CMD23 (set block count) must be immediately followed by CMD18 or CMD25 * if not, its effects are cancelled */ if (sd->multi_blk_cnt != 0 && !(req.cmd == 18 || req.cmd == 25)) { sd->multi_blk_cnt = 0; } DPRINTF("CMD%d 0x%08x state %d\n", req.cmd, req.arg, sd->state); switch (req.cmd) { /* Basic commands (Class 0 and Class 1) */ case 0: /* CMD0: GO_IDLE_STATE */ switch (sd->state) { case sd_inactive_state: return sd->spi ? sd_r1 : sd_r0; default: sd->state = sd_idle_state; sd_reset(DEVICE(sd)); return sd->spi ? sd_r1 : sd_r0; } break; case 1: /* CMD1: SEND_OP_CMD */ if (!sd->spi) goto bad_cmd; sd->state = sd_transfer_state; return sd_r1; case 2: /* CMD2: ALL_SEND_CID */ if (sd->spi) goto bad_cmd; switch (sd->state) { case sd_ready_state: sd->state = sd_identification_state; return sd_r2_i; default: break; } break; case 3: /* CMD3: SEND_RELATIVE_ADDR */ if (sd->spi) goto bad_cmd; switch (sd->state) { case sd_identification_state: case sd_standby_state: sd->state = sd_standby_state; sd_set_rca(sd); return sd_r6; default: break; } break; case 4: /* CMD4: SEND_DSR */ if (sd->spi) goto bad_cmd; switch (sd->state) { case sd_standby_state: break; default: break; } break; case 5: /* CMD5: reserved for SDIO cards */ return sd_illegal; case 6: /* CMD6: SWITCH_FUNCTION */ if (sd->spi) goto bad_cmd; switch (sd->mode) { case sd_data_transfer_mode: sd_function_switch(sd, req.arg); sd->state = sd_sendingdata_state; sd->data_start = 0; sd->data_offset = 0; return sd_r1; default: break; } break; case 7: /* CMD7: SELECT/DESELECT_CARD */ if (sd->spi) goto bad_cmd; switch (sd->state) { case sd_standby_state: if (sd->rca != rca) return sd_r0; sd->state = sd_transfer_state; return sd_r1b; case sd_transfer_state: case sd_sendingdata_state: if (sd->rca == rca) break; sd->state = sd_standby_state; return sd_r1b; case sd_disconnect_state: if (sd->rca != rca) return sd_r0; sd->state = sd_programming_state; return sd_r1b; case sd_programming_state: if (sd->rca == rca) break; sd->state = sd_disconnect_state; return sd_r1b; default: break; } break; case 8: /* CMD8: SEND_IF_COND */ /* Physical Layer Specification Version 2.00 command */ switch (sd->state) { case sd_idle_state: sd->vhs = 0; /* No response if not exactly one VHS bit is set. */ if (!(req.arg >> 8) || (req.arg >> (ctz32(req.arg & ~0xff) + 1))) { return sd->spi ? sd_r7 : sd_r0; } /* Accept. */ sd->vhs = req.arg; return sd_r7; default: break; } break; case 9: /* CMD9: SEND_CSD */ switch (sd->state) { case sd_standby_state: if (sd->rca != rca) return sd_r0; return sd_r2_s; case sd_transfer_state: if (!sd->spi) break; sd->state = sd_sendingdata_state; memcpy(sd->data, sd->csd, 16); sd->data_start = addr; sd->data_offset = 0; return sd_r1; default: break; } break; case 10: /* CMD10: SEND_CID */ switch (sd->state) { case sd_standby_state: if (sd->rca != rca) return sd_r0; return sd_r2_i; case sd_transfer_state: if (!sd->spi) break; sd->state = sd_sendingdata_state; memcpy(sd->data, sd->cid, 16); sd->data_start = addr; sd->data_offset = 0; return sd_r1; default: break; } break; case 11: /* CMD11: READ_DAT_UNTIL_STOP */ if (sd->spi) goto bad_cmd; switch (sd->state) { case sd_transfer_state: sd->state = sd_sendingdata_state; sd->data_start = req.arg; sd->data_offset = 0; if (sd->data_start + sd->blk_len > sd->size) sd->card_status |= ADDRESS_ERROR; return sd_r0; default: break; } break; case 12: /* CMD12: STOP_TRANSMISSION */ switch (sd->state) { case sd_sendingdata_state: sd->state = sd_transfer_state; return sd_r1b; case sd_receivingdata_state: sd->state = sd_programming_state; /* Bzzzzzzztt .... Operation complete. */ sd->state = sd_transfer_state; return sd_r1b; default: break; } break; case 13: /* CMD13: SEND_STATUS */ switch (sd->mode) { case sd_data_transfer_mode: if (sd->rca != rca) return sd_r0; return sd_r1; default: break; } break; case 15: /* CMD15: GO_INACTIVE_STATE */ if (sd->spi) goto bad_cmd; switch (sd->mode) { case sd_data_transfer_mode: if (sd->rca != rca) return sd_r0; sd->state = sd_inactive_state; return sd_r0; default: break; } break; /* Block read commands (Classs 2) */ case 16: /* CMD16: SET_BLOCKLEN */ switch (sd->state) { case sd_transfer_state: if (req.arg > (1 << HWBLOCK_SHIFT)) sd->card_status |= BLOCK_LEN_ERROR; else sd->blk_len = req.arg; return sd_r1; default: break; } break; case 17: /* CMD17: READ_SINGLE_BLOCK */ switch (sd->state) { case sd_transfer_state: sd->state = sd_sendingdata_state; sd->data_start = addr; sd->data_offset = 0; if (sd->data_start + sd->blk_len > sd->size) sd->card_status |= ADDRESS_ERROR; return sd_r1; default: break; } break; case 18: /* CMD18: READ_MULTIPLE_BLOCK */ switch (sd->state) { case sd_transfer_state: sd->state = sd_sendingdata_state; sd->data_start = addr; sd->data_offset = 0; if (sd->data_start + sd->blk_len > sd->size) sd->card_status |= ADDRESS_ERROR; return sd_r1; default: break; } break; case 23: /* CMD23: SET_BLOCK_COUNT */ switch (sd->state) { case sd_transfer_state: sd->multi_blk_cnt = req.arg; return sd_r1; default: break; } break; /* Block write commands (Class 4) */ case 24: /* CMD24: WRITE_SINGLE_BLOCK */ if (sd->spi) goto unimplemented_cmd; switch (sd->state) { case sd_transfer_state: /* Writing in SPI mode not implemented. */ if (sd->spi) break; sd->state = sd_receivingdata_state; sd->data_start = addr; sd->data_offset = 0; sd->blk_written = 0; if (sd->data_start + sd->blk_len > sd->size) sd->card_status |= ADDRESS_ERROR; if (sd_wp_addr(sd, sd->data_start)) sd->card_status |= WP_VIOLATION; if (sd->csd[14] & 0x30) sd->card_status |= WP_VIOLATION; return sd_r1; default: break; } break; case 25: /* CMD25: WRITE_MULTIPLE_BLOCK */ if (sd->spi) goto unimplemented_cmd; switch (sd->state) { case sd_transfer_state: /* Writing in SPI mode not implemented. */ if (sd->spi) break; sd->state = sd_receivingdata_state; sd->data_start = addr; sd->data_offset = 0; sd->blk_written = 0; if (sd->data_start + sd->blk_len > sd->size) sd->card_status |= ADDRESS_ERROR; if (sd_wp_addr(sd, sd->data_start)) sd->card_status |= WP_VIOLATION; if (sd->csd[14] & 0x30) sd->card_status |= WP_VIOLATION; return sd_r1; default: break; } break; case 26: /* CMD26: PROGRAM_CID */ if (sd->spi) goto bad_cmd; switch (sd->state) { case sd_transfer_state: sd->state = sd_receivingdata_state; sd->data_start = 0; sd->data_offset = 0; return sd_r1; default: break; } break; case 27: /* CMD27: PROGRAM_CSD */ if (sd->spi) goto unimplemented_cmd; switch (sd->state) { case sd_transfer_state: sd->state = sd_receivingdata_state; sd->data_start = 0; sd->data_offset = 0; return sd_r1; default: break; } break; /* Write protection (Class 6) */ case 28: /* CMD28: SET_WRITE_PROT */ switch (sd->state) { case sd_transfer_state: if (addr >= sd->size) { sd->card_status |= ADDRESS_ERROR; return sd_r1b; } sd->state = sd_programming_state; set_bit(sd_addr_to_wpnum(addr), sd->wp_groups); /* Bzzzzzzztt .... Operation complete. */ sd->state = sd_transfer_state; return sd_r1b; default: break; } break; case 29: /* CMD29: CLR_WRITE_PROT */ switch (sd->state) { case sd_transfer_state: if (addr >= sd->size) { sd->card_status |= ADDRESS_ERROR; return sd_r1b; } sd->state = sd_programming_state; clear_bit(sd_addr_to_wpnum(addr), sd->wp_groups); /* Bzzzzzzztt .... Operation complete. */ sd->state = sd_transfer_state; return sd_r1b; default: break; } break; case 30: /* CMD30: SEND_WRITE_PROT */ switch (sd->state) { case sd_transfer_state: sd->state = sd_sendingdata_state; *(uint32_t *) sd->data = sd_wpbits(sd, req.arg); sd->data_start = addr; sd->data_offset = 0; return sd_r1b; default: break; } break; /* Erase commands (Class 5) */ case 32: /* CMD32: ERASE_WR_BLK_START */ switch (sd->state) { case sd_transfer_state: sd->erase_start = req.arg; return sd_r1; default: break; } break; case 33: /* CMD33: ERASE_WR_BLK_END */ switch (sd->state) { case sd_transfer_state: sd->erase_end = req.arg; return sd_r1; default: break; } break; case 38: /* CMD38: ERASE */ switch (sd->state) { case sd_transfer_state: if (sd->csd[14] & 0x30) { sd->card_status |= WP_VIOLATION; return sd_r1b; } sd->state = sd_programming_state; sd_erase(sd); /* Bzzzzzzztt .... Operation complete. */ sd->state = sd_transfer_state; return sd_r1b; default: break; } break; /* Lock card commands (Class 7) */ case 42: /* CMD42: LOCK_UNLOCK */ if (sd->spi) goto unimplemented_cmd; switch (sd->state) { case sd_transfer_state: sd->state = sd_receivingdata_state; sd->data_start = 0; sd->data_offset = 0; return sd_r1; default: break; } break; case 52: case 53: /* CMD52, CMD53: reserved for SDIO cards * (see the SDIO Simplified Specification V2.0) * Handle as illegal command but do not complain * on stderr, as some OSes may use these in their * probing for presence of an SDIO card. */ return sd_illegal; /* Application specific commands (Class 8) */ case 55: /* CMD55: APP_CMD */ if (sd->rca != rca) return sd_r0; sd->expecting_acmd = true; sd->card_status |= APP_CMD; return sd_r1; case 56: /* CMD56: GEN_CMD */ fprintf(stderr, "SD: GEN_CMD 0x%08x\n", req.arg); switch (sd->state) { case sd_transfer_state: sd->data_offset = 0; if (req.arg & 1) sd->state = sd_sendingdata_state; else sd->state = sd_receivingdata_state; return sd_r1; default: break; } break; default: bad_cmd: qemu_log_mask(LOG_GUEST_ERROR, "SD: Unknown CMD%i\n", req.cmd); return sd_illegal; unimplemented_cmd: /* Commands that are recognised but not yet implemented in SPI mode. */ qemu_log_mask(LOG_UNIMP, "SD: CMD%i not implemented in SPI mode\n", req.cmd); return sd_illegal; } qemu_log_mask(LOG_GUEST_ERROR, "SD: CMD%i in a wrong state\n", req.cmd); return sd_illegal; } static sd_rsp_type_t sd_app_command(SDState *sd, SDRequest req) { DPRINTF("ACMD%d 0x%08x\n", req.cmd, req.arg); sd->card_status |= APP_CMD; switch (req.cmd) { case 6: /* ACMD6: SET_BUS_WIDTH */ switch (sd->state) { case sd_transfer_state: sd->sd_status[0] &= 0x3f; sd->sd_status[0] |= (req.arg & 0x03) << 6; return sd_r1; default: break; } break; case 13: /* ACMD13: SD_STATUS */ switch (sd->state) { case sd_transfer_state: sd->state = sd_sendingdata_state; sd->data_start = 0; sd->data_offset = 0; return sd_r1; default: break; } break; case 22: /* ACMD22: SEND_NUM_WR_BLOCKS */ switch (sd->state) { case sd_transfer_state: *(uint32_t *) sd->data = sd->blk_written; sd->state = sd_sendingdata_state; sd->data_start = 0; sd->data_offset = 0; return sd_r1; default: break; } break; case 23: /* ACMD23: SET_WR_BLK_ERASE_COUNT */ switch (sd->state) { case sd_transfer_state: return sd_r1; default: break; } break; case 41: /* ACMD41: SD_APP_OP_COND */ if (sd->spi) { /* SEND_OP_CMD */ sd->state = sd_transfer_state; return sd_r1; } switch (sd->state) { case sd_idle_state: /* If it's the first ACMD41 since reset, we need to decide * whether to power up. If this is not an enquiry ACMD41, * we immediately report power on and proceed below to the * ready state, but if it is, we set a timer to model a * delay for power up. This works around a bug in EDK2 * UEFI, which sends an initial enquiry ACMD41, but * assumes that the card is in ready state as soon as it * sees the power up bit set. */ if (!(sd->ocr & OCR_POWER_UP)) { if ((req.arg & ACMD41_ENQUIRY_MASK) != 0) { timer_del(sd->ocr_power_timer); sd_ocr_powerup(sd); } else if (!timer_pending(sd->ocr_power_timer)) { timer_mod_ns(sd->ocr_power_timer, (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + OCR_POWER_DELAY_NS)); } } /* We accept any voltage. 10000 V is nothing. * * Once we're powered up, we advance straight to ready state * unless it's an enquiry ACMD41 (bits 23:0 == 0). */ if (req.arg & ACMD41_ENQUIRY_MASK) { sd->state = sd_ready_state; } return sd_r3; default: break; } break; case 42: /* ACMD42: SET_CLR_CARD_DETECT */ switch (sd->state) { case sd_transfer_state: /* Bringing in the 50KOhm pull-up resistor... Done. */ return sd_r1; default: break; } break; case 51: /* ACMD51: SEND_SCR */ switch (sd->state) { case sd_transfer_state: sd->state = sd_sendingdata_state; sd->data_start = 0; sd->data_offset = 0; return sd_r1; default: break; } break; default: /* Fall back to standard commands. */ return sd_normal_command(sd, req); } qemu_log_mask(LOG_GUEST_ERROR, "SD: ACMD%i in a wrong state\n", req.cmd); return sd_illegal; } static int cmd_valid_while_locked(SDState *sd, SDRequest *req) { /* Valid commands in locked state: * basic class (0) * lock card class (7) * CMD16 * implicitly, the ACMD prefix CMD55 * ACMD41 and ACMD42 * Anything else provokes an "illegal command" response. */ if (sd->expecting_acmd) { return req->cmd == 41 || req->cmd == 42; } if (req->cmd == 16 || req->cmd == 55) { return 1; } return sd_cmd_class[req->cmd & 0x3F] == 0 || sd_cmd_class[req->cmd & 0x3F] == 7; } int sd_do_command(SDState *sd, SDRequest *req, uint8_t *response) { int last_state; sd_rsp_type_t rtype; int rsplen; if (!sd->blk || !blk_is_inserted(sd->blk) || !sd->enable) { return 0; } if (sd_req_crc_validate(req)) { sd->card_status |= COM_CRC_ERROR; rtype = sd_illegal; goto send_response; } if (sd->card_status & CARD_IS_LOCKED) { if (!cmd_valid_while_locked(sd, req)) { sd->card_status |= ILLEGAL_COMMAND; sd->expecting_acmd = false; qemu_log_mask(LOG_GUEST_ERROR, "SD: Card is locked\n"); rtype = sd_illegal; goto send_response; } } last_state = sd->state; sd_set_mode(sd); if (sd->expecting_acmd) { sd->expecting_acmd = false; rtype = sd_app_command(sd, *req); } else { rtype = sd_normal_command(sd, *req); } if (rtype == sd_illegal) { sd->card_status |= ILLEGAL_COMMAND; } else { /* Valid command, we can update the 'state before command' bits. * (Do this now so they appear in r1 responses.) */ sd->current_cmd = req->cmd; sd->card_status &= ~CURRENT_STATE; sd->card_status |= (last_state << 9); } send_response: switch (rtype) { case sd_r1: case sd_r1b: sd_response_r1_make(sd, response); rsplen = 4; break; case sd_r2_i: memcpy(response, sd->cid, sizeof(sd->cid)); rsplen = 16; break; case sd_r2_s: memcpy(response, sd->csd, sizeof(sd->csd)); rsplen = 16; break; case sd_r3: sd_response_r3_make(sd, response); rsplen = 4; break; case sd_r6: sd_response_r6_make(sd, response); rsplen = 4; break; case sd_r7: sd_response_r7_make(sd, response); rsplen = 4; break; case sd_r0: case sd_illegal: default: rsplen = 0; break; } if (rtype != sd_illegal) { /* Clear the "clear on valid command" status bits now we've * sent any response */ sd->card_status &= ~CARD_STATUS_B; } #ifdef DEBUG_SD if (rsplen) { int i; DPRINTF("Response:"); for (i = 0; i < rsplen; i++) { DPRINTF(" %02x", response[i]); } DPRINTF(" state %d\n", sd->state); } else { DPRINTF("No response %d\n", sd->state); } #endif return rsplen; } static void sd_blk_read(SDState *sd, uint64_t addr, uint32_t len) { DPRINTF("sd_blk_read: addr = 0x%08llx, len = %d\n", (unsigned long long) addr, len); if (!sd->blk || blk_pread(sd->blk, addr, sd->data, len) < 0) { fprintf(stderr, "sd_blk_read: read error on host side\n"); } } static void sd_blk_write(SDState *sd, uint64_t addr, uint32_t len) { if (!sd->blk || blk_pwrite(sd->blk, addr, sd->data, len, 0) < 0) { fprintf(stderr, "sd_blk_write: write error on host side\n"); } } #define BLK_READ_BLOCK(a, len) sd_blk_read(sd, a, len) #define BLK_WRITE_BLOCK(a, len) sd_blk_write(sd, a, len) #define APP_READ_BLOCK(a, len) memset(sd->data, 0xec, len) #define APP_WRITE_BLOCK(a, len) void sd_write_data(SDState *sd, uint8_t value) { int i; if (!sd->blk || !blk_is_inserted(sd->blk) || !sd->enable) return; if (sd->state != sd_receivingdata_state) { qemu_log_mask(LOG_GUEST_ERROR, "sd_write_data: not in Receiving-Data state\n"); return; } if (sd->card_status & (ADDRESS_ERROR | WP_VIOLATION)) return; switch (sd->current_cmd) { case 24: /* CMD24: WRITE_SINGLE_BLOCK */ sd->data[sd->data_offset ++] = value; if (sd->data_offset >= sd->blk_len) { /* TODO: Check CRC before committing */ sd->state = sd_programming_state; BLK_WRITE_BLOCK(sd->data_start, sd->data_offset); sd->blk_written ++; sd->csd[14] |= 0x40; /* Bzzzzzzztt .... Operation complete. */ sd->state = sd_transfer_state; } break; case 25: /* CMD25: WRITE_MULTIPLE_BLOCK */ if (sd->data_offset == 0) { /* Start of the block - let's check the address is valid */ if (sd->data_start + sd->blk_len > sd->size) { sd->card_status |= ADDRESS_ERROR; break; } if (sd_wp_addr(sd, sd->data_start)) { sd->card_status |= WP_VIOLATION; break; } } sd->data[sd->data_offset++] = value; if (sd->data_offset >= sd->blk_len) { /* TODO: Check CRC before committing */ sd->state = sd_programming_state; BLK_WRITE_BLOCK(sd->data_start, sd->data_offset); sd->blk_written++; sd->data_start += sd->blk_len; sd->data_offset = 0; sd->csd[14] |= 0x40; /* Bzzzzzzztt .... Operation complete. */ if (sd->multi_blk_cnt != 0) { if (--sd->multi_blk_cnt == 0) { /* Stop! */ sd->state = sd_transfer_state; break; } } sd->state = sd_receivingdata_state; } break; case 26: /* CMD26: PROGRAM_CID */ sd->data[sd->data_offset ++] = value; if (sd->data_offset >= sizeof(sd->cid)) { /* TODO: Check CRC before committing */ sd->state = sd_programming_state; for (i = 0; i < sizeof(sd->cid); i ++) if ((sd->cid[i] | 0x00) != sd->data[i]) sd->card_status |= CID_CSD_OVERWRITE; if (!(sd->card_status & CID_CSD_OVERWRITE)) for (i = 0; i < sizeof(sd->cid); i ++) { sd->cid[i] |= 0x00; sd->cid[i] &= sd->data[i]; } /* Bzzzzzzztt .... Operation complete. */ sd->state = sd_transfer_state; } break; case 27: /* CMD27: PROGRAM_CSD */ sd->data[sd->data_offset ++] = value; if (sd->data_offset >= sizeof(sd->csd)) { /* TODO: Check CRC before committing */ sd->state = sd_programming_state; for (i = 0; i < sizeof(sd->csd); i ++) if ((sd->csd[i] | sd_csd_rw_mask[i]) != (sd->data[i] | sd_csd_rw_mask[i])) sd->card_status |= CID_CSD_OVERWRITE; /* Copy flag (OTP) & Permanent write protect */ if (sd->csd[14] & ~sd->data[14] & 0x60) sd->card_status |= CID_CSD_OVERWRITE; if (!(sd->card_status & CID_CSD_OVERWRITE)) for (i = 0; i < sizeof(sd->csd); i ++) { sd->csd[i] |= sd_csd_rw_mask[i]; sd->csd[i] &= sd->data[i]; } /* Bzzzzzzztt .... Operation complete. */ sd->state = sd_transfer_state; } break; case 42: /* CMD42: LOCK_UNLOCK */ sd->data[sd->data_offset ++] = value; if (sd->data_offset >= sd->blk_len) { /* TODO: Check CRC before committing */ sd->state = sd_programming_state; sd_lock_command(sd); /* Bzzzzzzztt .... Operation complete. */ sd->state = sd_transfer_state; } break; case 56: /* CMD56: GEN_CMD */ sd->data[sd->data_offset ++] = value; if (sd->data_offset >= sd->blk_len) { APP_WRITE_BLOCK(sd->data_start, sd->data_offset); sd->state = sd_transfer_state; } break; default: qemu_log_mask(LOG_GUEST_ERROR, "sd_write_data: unknown command\n"); break; } } uint8_t sd_read_data(SDState *sd) { /* TODO: Append CRCs */ uint8_t ret; int io_len; if (!sd->blk || !blk_is_inserted(sd->blk) || !sd->enable) return 0x00; if (sd->state != sd_sendingdata_state) { qemu_log_mask(LOG_GUEST_ERROR, "sd_read_data: not in Sending-Data state\n"); return 0x00; } if (sd->card_status & (ADDRESS_ERROR | WP_VIOLATION)) return 0x00; io_len = (sd->ocr & (1 << 30)) ? 512 : sd->blk_len; switch (sd->current_cmd) { case 6: /* CMD6: SWITCH_FUNCTION */ ret = sd->data[sd->data_offset ++]; if (sd->data_offset >= 64) sd->state = sd_transfer_state; break; case 9: /* CMD9: SEND_CSD */ case 10: /* CMD10: SEND_CID */ ret = sd->data[sd->data_offset ++]; if (sd->data_offset >= 16) sd->state = sd_transfer_state; break; case 11: /* CMD11: READ_DAT_UNTIL_STOP */ if (sd->data_offset == 0) BLK_READ_BLOCK(sd->data_start, io_len); ret = sd->data[sd->data_offset ++]; if (sd->data_offset >= io_len) { sd->data_start += io_len; sd->data_offset = 0; if (sd->data_start + io_len > sd->size) { sd->card_status |= ADDRESS_ERROR; break; } } break; case 13: /* ACMD13: SD_STATUS */ ret = sd->sd_status[sd->data_offset ++]; if (sd->data_offset >= sizeof(sd->sd_status)) sd->state = sd_transfer_state; break; case 17: /* CMD17: READ_SINGLE_BLOCK */ if (sd->data_offset == 0) BLK_READ_BLOCK(sd->data_start, io_len); ret = sd->data[sd->data_offset ++]; if (sd->data_offset >= io_len) sd->state = sd_transfer_state; break; case 18: /* CMD18: READ_MULTIPLE_BLOCK */ if (sd->data_offset == 0) { if (sd->data_start + io_len > sd->size) { sd->card_status |= ADDRESS_ERROR; return 0x00; } BLK_READ_BLOCK(sd->data_start, io_len); } ret = sd->data[sd->data_offset ++]; if (sd->data_offset >= io_len) { sd->data_start += io_len; sd->data_offset = 0; if (sd->multi_blk_cnt != 0) { if (--sd->multi_blk_cnt == 0) { /* Stop! */ sd->state = sd_transfer_state; break; } } } break; case 22: /* ACMD22: SEND_NUM_WR_BLOCKS */ ret = sd->data[sd->data_offset ++]; if (sd->data_offset >= 4) sd->state = sd_transfer_state; break; case 30: /* CMD30: SEND_WRITE_PROT */ ret = sd->data[sd->data_offset ++]; if (sd->data_offset >= 4) sd->state = sd_transfer_state; break; case 51: /* ACMD51: SEND_SCR */ ret = sd->scr[sd->data_offset ++]; if (sd->data_offset >= sizeof(sd->scr)) sd->state = sd_transfer_state; break; case 56: /* CMD56: GEN_CMD */ if (sd->data_offset == 0) APP_READ_BLOCK(sd->data_start, sd->blk_len); ret = sd->data[sd->data_offset ++]; if (sd->data_offset >= sd->blk_len) sd->state = sd_transfer_state; break; default: qemu_log_mask(LOG_GUEST_ERROR, "sd_read_data: unknown command\n"); return 0x00; } return ret; } bool sd_data_ready(SDState *sd) { return sd->state == sd_sendingdata_state; } void sd_enable(SDState *sd, bool enable) { sd->enable = enable; } static void sd_instance_init(Object *obj) { SDState *sd = SD_CARD(obj); sd->enable = true; sd->ocr_power_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sd_ocr_powerup, sd); } static void sd_instance_finalize(Object *obj) { SDState *sd = SD_CARD(obj); timer_del(sd->ocr_power_timer); timer_free(sd->ocr_power_timer); } static void sd_realize(DeviceState *dev, Error **errp) { SDState *sd = SD_CARD(dev); int ret; if (sd->blk && blk_is_read_only(sd->blk)) { error_setg(errp, "Cannot use read-only drive as SD card"); return; } if (sd->blk) { ret = blk_set_perm(sd->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE, BLK_PERM_ALL, errp); if (ret < 0) { return; } blk_set_dev_ops(sd->blk, &sd_block_ops, sd); } } static Property sd_properties[] = { DEFINE_PROP_DRIVE("drive", SDState, blk), /* We do not model the chip select pin, so allow the board to select * whether card should be in SSI or MMC/SD mode. It is also up to the * board to ensure that ssi transfers only occur when the chip select * is asserted. */ DEFINE_PROP_BOOL("spi", SDState, spi, false), DEFINE_PROP_END_OF_LIST() }; static void sd_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SDCardClass *sc = SD_CARD_CLASS(klass); dc->realize = sd_realize; dc->props = sd_properties; dc->vmsd = &sd_vmstate; dc->reset = sd_reset; dc->bus_type = TYPE_SD_BUS; sc->set_voltage = sd_set_voltage; sc->get_dat_lines = sd_get_dat_lines; sc->get_cmd_line = sd_get_cmd_line; sc->do_command = sd_do_command; sc->write_data = sd_write_data; sc->read_data = sd_read_data; sc->data_ready = sd_data_ready; sc->enable = sd_enable; sc->get_inserted = sd_get_inserted; sc->get_readonly = sd_get_readonly; } static const TypeInfo sd_info = { .name = TYPE_SD_CARD, .parent = TYPE_DEVICE, .instance_size = sizeof(SDState), .class_size = sizeof(SDCardClass), .class_init = sd_class_init, .instance_init = sd_instance_init, .instance_finalize = sd_instance_finalize, }; static void sd_register_types(void) { type_register_static(&sd_info); } type_init(sd_register_types)