/* * i386 micro operations * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "exec-i386.h" /* NOTE: data are not static to force relocation generation by GCC */ uint8_t parity_table[256] = { CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, }; /* modulo 17 table */ const uint8_t rclw_table[32] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15, 16, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14, }; /* modulo 9 table */ const uint8_t rclb_table[32] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, }; #ifdef USE_X86LDOUBLE /* an array of Intel 80-bit FP constants, to be loaded via integer ops */ typedef unsigned short f15ld[5]; const f15ld f15rk[] = { /*0*/ {0x0000,0x0000,0x0000,0x0000,0x0000}, /*1*/ {0x0000,0x0000,0x0000,0x8000,0x3fff}, /*pi*/ {0xc235,0x2168,0xdaa2,0xc90f,0x4000}, /*lg2*/ {0xf799,0xfbcf,0x9a84,0x9a20,0x3ffd}, /*ln2*/ {0x79ac,0xd1cf,0x17f7,0xb172,0x3ffe}, /*l2e*/ {0xf0bc,0x5c17,0x3b29,0xb8aa,0x3fff}, /*l2t*/ {0x8afe,0xcd1b,0x784b,0xd49a,0x4000} }; #else /* the same, 64-bit version */ typedef unsigned short f15ld[4]; const f15ld f15rk[] = { #ifndef WORDS_BIGENDIAN /*0*/ {0x0000,0x0000,0x0000,0x0000}, /*1*/ {0x0000,0x0000,0x0000,0x3ff0}, /*pi*/ {0x2d18,0x5444,0x21fb,0x4009}, /*lg2*/ {0x79ff,0x509f,0x4413,0x3fd3}, /*ln2*/ {0x39ef,0xfefa,0x2e42,0x3fe6}, /*l2e*/ {0x82fe,0x652b,0x1547,0x3ff7}, /*l2t*/ {0xa371,0x0979,0x934f,0x400a} #else /*0*/ {0x0000,0x0000,0x0000,0x0000}, /*1*/ {0x3ff0,0x0000,0x0000,0x0000}, /*pi*/ {0x4009,0x21fb,0x5444,0x2d18}, /*lg2*/ {0x3fd3,0x4413,0x509f,0x79ff}, /*ln2*/ {0x3fe6,0x2e42,0xfefa,0x39ef}, /*l2e*/ {0x3ff7,0x1547,0x652b,0x82fe}, /*l2t*/ {0x400a,0x934f,0x0979,0xa371} #endif }; #endif /* n must be a constant to be efficient */ static inline int lshift(int x, int n) { if (n >= 0) return x << n; else return x >> (-n); } /* exception support */ /* NOTE: not static to force relocation generation by GCC */ void raise_exception(int exception_index) { /* NOTE: the register at this point must be saved by hand because longjmp restore them */ #ifdef reg_EAX env->regs[R_EAX] = EAX; #endif #ifdef reg_ECX env->regs[R_ECX] = ECX; #endif #ifdef reg_EDX env->regs[R_EDX] = EDX; #endif #ifdef reg_EBX env->regs[R_EBX] = EBX; #endif #ifdef reg_ESP env->regs[R_ESP] = ESP; #endif #ifdef reg_EBP env->regs[R_EBP] = EBP; #endif #ifdef reg_ESI env->regs[R_ESI] = ESI; #endif #ifdef reg_EDI env->regs[R_EDI] = EDI; #endif env->exception_index = exception_index; longjmp(env->jmp_env, 1); } /* we define the various pieces of code used by the JIT */ #define REG EAX #define REGNAME _EAX #include "opreg_template.h" #undef REG #undef REGNAME #define REG ECX #define REGNAME _ECX #include "opreg_template.h" #undef REG #undef REGNAME #define REG EDX #define REGNAME _EDX #include "opreg_template.h" #undef REG #undef REGNAME #define REG EBX #define REGNAME _EBX #include "opreg_template.h" #undef REG #undef REGNAME #define REG ESP #define REGNAME _ESP #include "opreg_template.h" #undef REG #undef REGNAME #define REG EBP #define REGNAME _EBP #include "opreg_template.h" #undef REG #undef REGNAME #define REG ESI #define REGNAME _ESI #include "opreg_template.h" #undef REG #undef REGNAME #define REG EDI #define REGNAME _EDI #include "opreg_template.h" #undef REG #undef REGNAME /* operations with flags */ void OPPROTO op_addl_T0_T1_cc(void) { CC_SRC = T0; T0 += T1; CC_DST = T0; } void OPPROTO op_orl_T0_T1_cc(void) { T0 |= T1; CC_DST = T0; } void OPPROTO op_andl_T0_T1_cc(void) { T0 &= T1; CC_DST = T0; } void OPPROTO op_subl_T0_T1_cc(void) { CC_SRC = T0; T0 -= T1; CC_DST = T0; } void OPPROTO op_xorl_T0_T1_cc(void) { T0 ^= T1; CC_DST = T0; } void OPPROTO op_cmpl_T0_T1_cc(void) { CC_SRC = T0; CC_DST = T0 - T1; } void OPPROTO op_negl_T0_cc(void) { CC_SRC = 0; T0 = -T0; CC_DST = T0; } void OPPROTO op_incl_T0_cc(void) { CC_SRC = cc_table[CC_OP].compute_c(); T0++; CC_DST = T0; } void OPPROTO op_decl_T0_cc(void) { CC_SRC = cc_table[CC_OP].compute_c(); T0--; CC_DST = T0; } void OPPROTO op_testl_T0_T1_cc(void) { CC_DST = T0 & T1; } /* operations without flags */ void OPPROTO op_addl_T0_T1(void) { T0 += T1; } void OPPROTO op_orl_T0_T1(void) { T0 |= T1; } void OPPROTO op_andl_T0_T1(void) { T0 &= T1; } void OPPROTO op_subl_T0_T1(void) { T0 -= T1; } void OPPROTO op_xorl_T0_T1(void) { T0 ^= T1; } void OPPROTO op_negl_T0(void) { T0 = -T0; } void OPPROTO op_incl_T0(void) { T0++; } void OPPROTO op_decl_T0(void) { T0--; } void OPPROTO op_notl_T0(void) { T0 = ~T0; } void OPPROTO op_bswapl_T0(void) { T0 = bswap32(T0); } /* multiply/divide */ void OPPROTO op_mulb_AL_T0(void) { unsigned int res; res = (uint8_t)EAX * (uint8_t)T0; EAX = (EAX & 0xffff0000) | res; CC_SRC = (res & 0xff00); } void OPPROTO op_imulb_AL_T0(void) { int res; res = (int8_t)EAX * (int8_t)T0; EAX = (EAX & 0xffff0000) | (res & 0xffff); CC_SRC = (res != (int8_t)res); } void OPPROTO op_mulw_AX_T0(void) { unsigned int res; res = (uint16_t)EAX * (uint16_t)T0; EAX = (EAX & 0xffff0000) | (res & 0xffff); EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff); CC_SRC = res >> 16; } void OPPROTO op_imulw_AX_T0(void) { int res; res = (int16_t)EAX * (int16_t)T0; EAX = (EAX & 0xffff0000) | (res & 0xffff); EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff); CC_SRC = (res != (int16_t)res); } void OPPROTO op_mull_EAX_T0(void) { uint64_t res; res = (uint64_t)((uint32_t)EAX) * (uint64_t)((uint32_t)T0); EAX = res; EDX = res >> 32; CC_SRC = res >> 32; } void OPPROTO op_imull_EAX_T0(void) { int64_t res; res = (int64_t)((int32_t)EAX) * (int64_t)((int32_t)T0); EAX = res; EDX = res >> 32; CC_SRC = (res != (int32_t)res); } void OPPROTO op_imulw_T0_T1(void) { int res; res = (int16_t)T0 * (int16_t)T1; T0 = res; CC_SRC = (res != (int16_t)res); } void OPPROTO op_imull_T0_T1(void) { int64_t res; res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1); T0 = res; CC_SRC = (res != (int32_t)res); } /* division, flags are undefined */ /* XXX: add exceptions for overflow & div by zero */ void OPPROTO op_divb_AL_T0(void) { unsigned int num, den, q, r; num = (EAX & 0xffff); den = (T0 & 0xff); q = (num / den) & 0xff; r = (num % den) & 0xff; EAX = (EAX & 0xffff0000) | (r << 8) | q; } void OPPROTO op_idivb_AL_T0(void) { int num, den, q, r; num = (int16_t)EAX; den = (int8_t)T0; q = (num / den) & 0xff; r = (num % den) & 0xff; EAX = (EAX & 0xffff0000) | (r << 8) | q; } void OPPROTO op_divw_AX_T0(void) { unsigned int num, den, q, r; num = (EAX & 0xffff) | ((EDX & 0xffff) << 16); den = (T0 & 0xffff); q = (num / den) & 0xffff; r = (num % den) & 0xffff; EAX = (EAX & 0xffff0000) | q; EDX = (EDX & 0xffff0000) | r; } void OPPROTO op_idivw_AX_T0(void) { int num, den, q, r; num = (EAX & 0xffff) | ((EDX & 0xffff) << 16); den = (int16_t)T0; q = (num / den) & 0xffff; r = (num % den) & 0xffff; EAX = (EAX & 0xffff0000) | q; EDX = (EDX & 0xffff0000) | r; } void OPPROTO op_divl_EAX_T0(void) { unsigned int den, q, r; uint64_t num; num = EAX | ((uint64_t)EDX << 32); den = T0; q = (num / den); r = (num % den); EAX = q; EDX = r; } void OPPROTO op_idivl_EAX_T0(void) { int den, q, r; int64_t num; num = EAX | ((uint64_t)EDX << 32); den = T0; q = (num / den); r = (num % den); EAX = q; EDX = r; } /* constant load & misc op */ void OPPROTO op_movl_T0_im(void) { T0 = PARAM1; } void OPPROTO op_addl_T0_im(void) { T0 += PARAM1; } void OPPROTO op_andl_T0_ffff(void) { T0 = T0 & 0xffff; } void OPPROTO op_movl_T0_T1(void) { T0 = T1; } void OPPROTO op_movl_T1_im(void) { T1 = PARAM1; } void OPPROTO op_addl_T1_im(void) { T1 += PARAM1; } void OPPROTO op_movl_T1_A0(void) { T1 = A0; } void OPPROTO op_movl_A0_im(void) { A0 = PARAM1; } void OPPROTO op_addl_A0_im(void) { A0 += PARAM1; } void OPPROTO op_andl_A0_ffff(void) { A0 = A0 & 0xffff; } /* memory access */ void OPPROTO op_ldub_T0_A0(void) { T0 = ldub((uint8_t *)A0); } void OPPROTO op_ldsb_T0_A0(void) { T0 = ldsb((int8_t *)A0); } void OPPROTO op_lduw_T0_A0(void) { T0 = lduw((uint8_t *)A0); } void OPPROTO op_ldsw_T0_A0(void) { T0 = ldsw((int8_t *)A0); } void OPPROTO op_ldl_T0_A0(void) { T0 = ldl((uint8_t *)A0); } void OPPROTO op_ldub_T1_A0(void) { T1 = ldub((uint8_t *)A0); } void OPPROTO op_ldsb_T1_A0(void) { T1 = ldsb((int8_t *)A0); } void OPPROTO op_lduw_T1_A0(void) { T1 = lduw((uint8_t *)A0); } void OPPROTO op_ldsw_T1_A0(void) { T1 = ldsw((int8_t *)A0); } void OPPROTO op_ldl_T1_A0(void) { T1 = ldl((uint8_t *)A0); } void OPPROTO op_stb_T0_A0(void) { stb((uint8_t *)A0, T0); } void OPPROTO op_stw_T0_A0(void) { stw((uint8_t *)A0, T0); } void OPPROTO op_stl_T0_A0(void) { stl((uint8_t *)A0, T0); } /* used for bit operations */ void OPPROTO op_add_bitw_A0_T1(void) { A0 += ((int32_t)T1 >> 4) << 1; } void OPPROTO op_add_bitl_A0_T1(void) { A0 += ((int32_t)T1 >> 5) << 2; } /* indirect jump */ void OPPROTO op_jmp_T0(void) { EIP = T0; } void OPPROTO op_jmp_im(void) { EIP = PARAM1; } void OPPROTO op_int_im(void) { EIP = PARAM1; raise_exception(EXCP0D_GPF); } void OPPROTO op_int3(void) { EIP = PARAM1; raise_exception(EXCP03_INT3); } void OPPROTO op_into(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); if (eflags & CC_O) { EIP = PARAM1; raise_exception(EXCP04_INTO); } else { EIP = PARAM2; } } /* string ops */ #define ldul ldl #define SHIFT 0 #include "ops_template.h" #undef SHIFT #define SHIFT 1 #include "ops_template.h" #undef SHIFT #define SHIFT 2 #include "ops_template.h" #undef SHIFT /* sign extend */ void OPPROTO op_movsbl_T0_T0(void) { T0 = (int8_t)T0; } void OPPROTO op_movzbl_T0_T0(void) { T0 = (uint8_t)T0; } void OPPROTO op_movswl_T0_T0(void) { T0 = (int16_t)T0; } void OPPROTO op_movzwl_T0_T0(void) { T0 = (uint16_t)T0; } void OPPROTO op_movswl_EAX_AX(void) { EAX = (int16_t)EAX; } void OPPROTO op_movsbw_AX_AL(void) { EAX = (EAX & 0xffff0000) | ((int8_t)EAX & 0xffff); } void OPPROTO op_movslq_EDX_EAX(void) { EDX = (int32_t)EAX >> 31; } void OPPROTO op_movswl_DX_AX(void) { EDX = (EDX & 0xffff0000) | (((int16_t)EAX >> 15) & 0xffff); } /* push/pop */ void op_pushl_T0(void) { uint32_t offset; offset = ESP - 4; stl((void *)offset, T0); /* modify ESP after to handle exceptions correctly */ ESP = offset; } void op_pushw_T0(void) { uint32_t offset; offset = ESP - 2; stw((void *)offset, T0); /* modify ESP after to handle exceptions correctly */ ESP = offset; } void op_pushl_ss32_T0(void) { uint32_t offset; offset = ESP - 4; stl(env->seg_cache[R_SS].base + offset, T0); /* modify ESP after to handle exceptions correctly */ ESP = offset; } void op_pushw_ss32_T0(void) { uint32_t offset; offset = ESP - 2; stw(env->seg_cache[R_SS].base + offset, T0); /* modify ESP after to handle exceptions correctly */ ESP = offset; } void op_pushl_ss16_T0(void) { uint32_t offset; offset = (ESP - 4) & 0xffff; stl(env->seg_cache[R_SS].base + offset, T0); /* modify ESP after to handle exceptions correctly */ ESP = (ESP & ~0xffff) | offset; } void op_pushw_ss16_T0(void) { uint32_t offset; offset = (ESP - 2) & 0xffff; stw(env->seg_cache[R_SS].base + offset, T0); /* modify ESP after to handle exceptions correctly */ ESP = (ESP & ~0xffff) | offset; } /* NOTE: ESP update is done after */ void op_popl_T0(void) { T0 = ldl((void *)ESP); } void op_popw_T0(void) { T0 = lduw((void *)ESP); } void op_popl_ss32_T0(void) { T0 = ldl(env->seg_cache[R_SS].base + ESP); } void op_popw_ss32_T0(void) { T0 = lduw(env->seg_cache[R_SS].base + ESP); } void op_popl_ss16_T0(void) { T0 = ldl(env->seg_cache[R_SS].base + (ESP & 0xffff)); } void op_popw_ss16_T0(void) { T0 = lduw(env->seg_cache[R_SS].base + (ESP & 0xffff)); } void op_addl_ESP_4(void) { ESP += 4; } void op_addl_ESP_2(void) { ESP += 2; } void op_addw_ESP_4(void) { ESP = (ESP & ~0xffff) | ((ESP + 4) & 0xffff); } void op_addw_ESP_2(void) { ESP = (ESP & ~0xffff) | ((ESP + 2) & 0xffff); } void op_addl_ESP_im(void) { ESP += PARAM1; } void op_addw_ESP_im(void) { ESP = (ESP & ~0xffff) | ((ESP + PARAM1) & 0xffff); } /* rdtsc */ #ifndef __i386__ uint64_t emu_time; #endif void op_rdtsc(void) { uint64_t val; #ifdef __i386__ asm("rdtsc" : "=A" (val)); #else /* better than nothing: the time increases */ val = emu_time++; #endif EAX = val; EDX = val >> 32; } /* bcd */ /* XXX: exception */ void OPPROTO op_aam(void) { int base = PARAM1; int al, ah; al = EAX & 0xff; ah = al / base; al = al % base; EAX = (EAX & ~0xffff) | al | (ah << 8); CC_DST = al; } void OPPROTO op_aad(void) { int base = PARAM1; int al, ah; al = EAX & 0xff; ah = (EAX >> 8) & 0xff; al = ((ah * base) + al) & 0xff; EAX = (EAX & ~0xffff) | al; CC_DST = al; } void OPPROTO op_aaa(void) { int icarry; int al, ah, af; int eflags; eflags = cc_table[CC_OP].compute_all(); af = eflags & CC_A; al = EAX & 0xff; ah = (EAX >> 8) & 0xff; icarry = (al > 0xf9); if (((al & 0x0f) > 9 ) || af) { al = (al + 6) & 0x0f; ah = (ah + 1 + icarry) & 0xff; eflags |= CC_C | CC_A; } else { eflags &= ~(CC_C | CC_A); al &= 0x0f; } EAX = (EAX & ~0xffff) | al | (ah << 8); CC_SRC = eflags; } void OPPROTO op_aas(void) { int icarry; int al, ah, af; int eflags; eflags = cc_table[CC_OP].compute_all(); af = eflags & CC_A; al = EAX & 0xff; ah = (EAX >> 8) & 0xff; icarry = (al < 6); if (((al & 0x0f) > 9 ) || af) { al = (al - 6) & 0x0f; ah = (ah - 1 - icarry) & 0xff; eflags |= CC_C | CC_A; } else { eflags &= ~(CC_C | CC_A); al &= 0x0f; } EAX = (EAX & ~0xffff) | al | (ah << 8); CC_SRC = eflags; } void OPPROTO op_daa(void) { int al, af, cf; int eflags; eflags = cc_table[CC_OP].compute_all(); cf = eflags & CC_C; af = eflags & CC_A; al = EAX & 0xff; eflags = 0; if (((al & 0x0f) > 9 ) || af) { al = (al + 6) & 0xff; eflags |= CC_A; } if ((al > 0x9f) || cf) { al = (al + 0x60) & 0xff; eflags |= CC_C; } EAX = (EAX & ~0xff) | al; /* well, speed is not an issue here, so we compute the flags by hand */ eflags |= (al == 0) << 6; /* zf */ eflags |= parity_table[al]; /* pf */ eflags |= (al & 0x80); /* sf */ CC_SRC = eflags; } void OPPROTO op_das(void) { int al, al1, af, cf; int eflags; eflags = cc_table[CC_OP].compute_all(); cf = eflags & CC_C; af = eflags & CC_A; al = EAX & 0xff; eflags = 0; al1 = al; if (((al & 0x0f) > 9 ) || af) { eflags |= CC_A; if (al < 6 || cf) eflags |= CC_C; al = (al - 6) & 0xff; } if ((al1 > 0x99) || cf) { al = (al - 0x60) & 0xff; eflags |= CC_C; } EAX = (EAX & ~0xff) | al; /* well, speed is not an issue here, so we compute the flags by hand */ eflags |= (al == 0) << 6; /* zf */ eflags |= parity_table[al]; /* pf */ eflags |= (al & 0x80); /* sf */ CC_SRC = eflags; } /* segment handling */ void load_seg(int seg_reg, int selector) { SegmentCache *sc; SegmentDescriptorTable *dt; int index; uint32_t e1, e2; uint8_t *ptr; env->segs[seg_reg] = selector; sc = &env->seg_cache[seg_reg]; if (env->vm86) { sc->base = (void *)(selector << 4); sc->limit = 0xffff; sc->seg_32bit = 0; } else { if (selector & 0x4) dt = &env->ldt; else dt = &env->gdt; index = selector & ~7; if ((index + 7) > dt->limit) raise_exception(EXCP0D_GPF); ptr = dt->base + index; e1 = ldl(ptr); e2 = ldl(ptr + 4); sc->base = (void *)((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000)); sc->limit = (e1 & 0xffff) | (e2 & 0x000f0000); if (e2 & (1 << 23)) sc->limit = (sc->limit << 12) | 0xfff; sc->seg_32bit = (e2 >> 22) & 1; #if 0 fprintf(logfile, "load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx seg_32bit=%d\n", selector, (unsigned long)sc->base, sc->limit, sc->seg_32bit); #endif } } void OPPROTO op_movl_seg_T0(void) { load_seg(PARAM1, T0 & 0xffff); } void OPPROTO op_movl_T0_seg(void) { T0 = env->segs[PARAM1]; } void OPPROTO op_addl_A0_seg(void) { A0 += *(unsigned long *)((char *)env + PARAM1); } /* flags handling */ /* slow jumps cases (compute x86 flags) */ void OPPROTO op_jo_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); if (eflags & CC_O) EIP = PARAM1; else EIP = PARAM2; FORCE_RET(); } void OPPROTO op_jb_cc(void) { if (cc_table[CC_OP].compute_c()) EIP = PARAM1; else EIP = PARAM2; FORCE_RET(); } void OPPROTO op_jz_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); if (eflags & CC_Z) EIP = PARAM1; else EIP = PARAM2; FORCE_RET(); } void OPPROTO op_jbe_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); if (eflags & (CC_Z | CC_C)) EIP = PARAM1; else EIP = PARAM2; FORCE_RET(); } void OPPROTO op_js_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); if (eflags & CC_S) EIP = PARAM1; else EIP = PARAM2; FORCE_RET(); } void OPPROTO op_jp_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); if (eflags & CC_P) EIP = PARAM1; else EIP = PARAM2; FORCE_RET(); } void OPPROTO op_jl_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); if ((eflags ^ (eflags >> 4)) & 0x80) EIP = PARAM1; else EIP = PARAM2; FORCE_RET(); } void OPPROTO op_jle_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); if (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) EIP = PARAM1; else EIP = PARAM2; FORCE_RET(); } /* slow set cases (compute x86 flags) */ void OPPROTO op_seto_T0_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); T0 = (eflags >> 11) & 1; } void OPPROTO op_setb_T0_cc(void) { T0 = cc_table[CC_OP].compute_c(); } void OPPROTO op_setz_T0_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); T0 = (eflags >> 6) & 1; } void OPPROTO op_setbe_T0_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); T0 = (eflags & (CC_Z | CC_C)) != 0; } void OPPROTO op_sets_T0_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); T0 = (eflags >> 7) & 1; } void OPPROTO op_setp_T0_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); T0 = (eflags >> 2) & 1; } void OPPROTO op_setl_T0_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); T0 = ((eflags ^ (eflags >> 4)) >> 7) & 1; } void OPPROTO op_setle_T0_cc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); T0 = (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) != 0; } void OPPROTO op_xor_T0_1(void) { T0 ^= 1; } void OPPROTO op_set_cc_op(void) { CC_OP = PARAM1; } void OPPROTO op_movl_eflags_T0(void) { CC_SRC = T0; DF = 1 - (2 * ((T0 >> 10) & 1)); } /* XXX: compute only O flag */ void OPPROTO op_movb_eflags_T0(void) { int of; of = cc_table[CC_OP].compute_all() & CC_O; CC_SRC = T0 | of; } void OPPROTO op_movl_T0_eflags(void) { T0 = cc_table[CC_OP].compute_all(); T0 |= (DF & DIRECTION_FLAG); } void OPPROTO op_cld(void) { DF = 1; } void OPPROTO op_std(void) { DF = -1; } void OPPROTO op_clc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); eflags &= ~CC_C; CC_SRC = eflags; } void OPPROTO op_stc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); eflags |= CC_C; CC_SRC = eflags; } void OPPROTO op_cmc(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); eflags ^= CC_C; CC_SRC = eflags; } void OPPROTO op_salc(void) { int cf; cf = cc_table[CC_OP].compute_c(); EAX = (EAX & ~0xff) | ((-cf) & 0xff); } static int compute_all_eflags(void) { return CC_SRC; } static int compute_c_eflags(void) { return CC_SRC & CC_C; } static int compute_c_mul(void) { int cf; cf = (CC_SRC != 0); return cf; } static int compute_all_mul(void) { int cf, pf, af, zf, sf, of; cf = (CC_SRC != 0); pf = 0; /* undefined */ af = 0; /* undefined */ zf = 0; /* undefined */ sf = 0; /* undefined */ of = cf << 11; return cf | pf | af | zf | sf | of; } CCTable cc_table[CC_OP_NB] = { [CC_OP_DYNAMIC] = { /* should never happen */ }, [CC_OP_EFLAGS] = { compute_all_eflags, compute_c_eflags }, [CC_OP_MUL] = { compute_all_mul, compute_c_mul }, [CC_OP_ADDB] = { compute_all_addb, compute_c_addb }, [CC_OP_ADDW] = { compute_all_addw, compute_c_addw }, [CC_OP_ADDL] = { compute_all_addl, compute_c_addl }, [CC_OP_ADCB] = { compute_all_adcb, compute_c_adcb }, [CC_OP_ADCW] = { compute_all_adcw, compute_c_adcw }, [CC_OP_ADCL] = { compute_all_adcl, compute_c_adcl }, [CC_OP_SUBB] = { compute_all_subb, compute_c_subb }, [CC_OP_SUBW] = { compute_all_subw, compute_c_subw }, [CC_OP_SUBL] = { compute_all_subl, compute_c_subl }, [CC_OP_SBBB] = { compute_all_sbbb, compute_c_sbbb }, [CC_OP_SBBW] = { compute_all_sbbw, compute_c_sbbw }, [CC_OP_SBBL] = { compute_all_sbbl, compute_c_sbbl }, [CC_OP_LOGICB] = { compute_all_logicb, compute_c_logicb }, [CC_OP_LOGICW] = { compute_all_logicw, compute_c_logicw }, [CC_OP_LOGICL] = { compute_all_logicl, compute_c_logicl }, [CC_OP_INCB] = { compute_all_incb, compute_c_incl }, [CC_OP_INCW] = { compute_all_incw, compute_c_incl }, [CC_OP_INCL] = { compute_all_incl, compute_c_incl }, [CC_OP_DECB] = { compute_all_decb, compute_c_incl }, [CC_OP_DECW] = { compute_all_decw, compute_c_incl }, [CC_OP_DECL] = { compute_all_decl, compute_c_incl }, [CC_OP_SHLB] = { compute_all_shlb, compute_c_shll }, [CC_OP_SHLW] = { compute_all_shlw, compute_c_shll }, [CC_OP_SHLL] = { compute_all_shll, compute_c_shll }, [CC_OP_SARB] = { compute_all_sarb, compute_c_shll }, [CC_OP_SARW] = { compute_all_sarw, compute_c_shll }, [CC_OP_SARL] = { compute_all_sarl, compute_c_shll }, }; /* floating point support */ #ifdef USE_X86LDOUBLE /* use long double functions */ #define lrint lrintl #define llrint llrintl #define fabs fabsl #define sin sinl #define cos cosl #define sqrt sqrtl #define pow powl #define log logl #define tan tanl #define atan2 atan2l #define floor floorl #define ceil ceill #define rint rintl #endif extern int lrint(CPU86_LDouble x); extern int64_t llrint(CPU86_LDouble x); extern CPU86_LDouble fabs(CPU86_LDouble x); extern CPU86_LDouble sin(CPU86_LDouble x); extern CPU86_LDouble cos(CPU86_LDouble x); extern CPU86_LDouble sqrt(CPU86_LDouble x); extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble); extern CPU86_LDouble log(CPU86_LDouble x); extern CPU86_LDouble tan(CPU86_LDouble x); extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble); extern CPU86_LDouble floor(CPU86_LDouble x); extern CPU86_LDouble ceil(CPU86_LDouble x); extern CPU86_LDouble rint(CPU86_LDouble x); #define RC_MASK 0xc00 #define RC_NEAR 0x000 #define RC_DOWN 0x400 #define RC_UP 0x800 #define RC_CHOP 0xc00 #define MAXTAN 9223372036854775808.0 #ifdef USE_X86LDOUBLE /* only for x86 */ typedef union { long double d; struct { unsigned long long lower; unsigned short upper; } l; } CPU86_LDoubleU; /* the following deal with x86 long double-precision numbers */ #define MAXEXPD 0x7fff #define EXPBIAS 16383 #define EXPD(fp) (fp.l.upper & 0x7fff) #define SIGND(fp) ((fp.l.upper) & 0x8000) #define MANTD(fp) (fp.l.lower) #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS #else typedef union { double d; #ifndef WORDS_BIGENDIAN struct { unsigned long lower; long upper; } l; #else struct { long upper; unsigned long lower; } l; #endif long long ll; } CPU86_LDoubleU; /* the following deal with IEEE double-precision numbers */ #define MAXEXPD 0x7ff #define EXPBIAS 1023 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF) #define SIGND(fp) ((fp.l.upper) & 0x80000000) #define MANTD(fp) (fp.ll & ((1LL << 52) - 1)) #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20) #endif /* fp load FT0 */ void OPPROTO op_flds_FT0_A0(void) { FT0 = ldfl((void *)A0); } void OPPROTO op_fldl_FT0_A0(void) { FT0 = ldfq((void *)A0); } /* helpers are needed to avoid static constant reference. XXX: find a better way */ #ifdef USE_INT_TO_FLOAT_HELPERS void helper_fild_FT0_A0(void) { FT0 = (CPU86_LDouble)ldsw((void *)A0); } void helper_fildl_FT0_A0(void) { FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0)); } void helper_fildll_FT0_A0(void) { FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0)); } void OPPROTO op_fild_FT0_A0(void) { helper_fild_FT0_A0(); } void OPPROTO op_fildl_FT0_A0(void) { helper_fildl_FT0_A0(); } void OPPROTO op_fildll_FT0_A0(void) { helper_fildll_FT0_A0(); } #else void OPPROTO op_fild_FT0_A0(void) { FT0 = (CPU86_LDouble)ldsw((void *)A0); } void OPPROTO op_fildl_FT0_A0(void) { FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0)); } void OPPROTO op_fildll_FT0_A0(void) { FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0)); } #endif /* fp load ST0 */ void OPPROTO op_flds_ST0_A0(void) { ST0 = ldfl((void *)A0); } void OPPROTO op_fldl_ST0_A0(void) { ST0 = ldfq((void *)A0); } #ifdef USE_X86LDOUBLE void OPPROTO op_fldt_ST0_A0(void) { ST0 = *(long double *)A0; } #else void helper_fldt_ST0_A0(void) { CPU86_LDoubleU temp; int upper, e; /* mantissa */ upper = lduw((uint8_t *)A0 + 8); /* XXX: handle overflow ? */ e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */ e |= (upper >> 4) & 0x800; /* sign */ temp.ll = ((ldq((void *)A0) >> 11) & ((1LL << 52) - 1)) | ((uint64_t)e << 52); ST0 = temp.d; } void OPPROTO op_fldt_ST0_A0(void) { helper_fldt_ST0_A0(); } #endif /* helpers are needed to avoid static constant reference. XXX: find a better way */ #ifdef USE_INT_TO_FLOAT_HELPERS void helper_fild_ST0_A0(void) { ST0 = (CPU86_LDouble)ldsw((void *)A0); } void helper_fildl_ST0_A0(void) { ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0)); } void helper_fildll_ST0_A0(void) { ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0)); } void OPPROTO op_fild_ST0_A0(void) { helper_fild_ST0_A0(); } void OPPROTO op_fildl_ST0_A0(void) { helper_fildl_ST0_A0(); } void OPPROTO op_fildll_ST0_A0(void) { helper_fildll_ST0_A0(); } #else void OPPROTO op_fild_ST0_A0(void) { ST0 = (CPU86_LDouble)ldsw((void *)A0); } void OPPROTO op_fildl_ST0_A0(void) { ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0)); } void OPPROTO op_fildll_ST0_A0(void) { ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0)); } #endif /* fp store */ void OPPROTO op_fsts_ST0_A0(void) { stfl((void *)A0, (float)ST0); } void OPPROTO op_fstl_ST0_A0(void) { stfq((void *)A0, (double)ST0); } #ifdef USE_X86LDOUBLE void OPPROTO op_fstt_ST0_A0(void) { *(long double *)A0 = ST0; } #else void helper_fstt_ST0_A0(void) { CPU86_LDoubleU temp; int e; temp.d = ST0; /* mantissa */ stq((void *)A0, (MANTD(temp) << 11) | (1LL << 63)); /* exponent + sign */ e = EXPD(temp) - EXPBIAS + 16383; e |= SIGND(temp) >> 16; stw((uint8_t *)A0 + 8, e); } void OPPROTO op_fstt_ST0_A0(void) { helper_fstt_ST0_A0(); } #endif void OPPROTO op_fist_ST0_A0(void) { int val; val = lrint(ST0); stw((void *)A0, val); } void OPPROTO op_fistl_ST0_A0(void) { int val; val = lrint(ST0); stl((void *)A0, val); } void OPPROTO op_fistll_ST0_A0(void) { int64_t val; val = llrint(ST0); stq((void *)A0, val); } /* BCD ops */ #define MUL10(iv) ( iv + iv + (iv << 3) ) void helper_fbld_ST0_A0(void) { uint8_t *seg; CPU86_LDouble fpsrcop; int m32i; unsigned int v; /* in this code, seg/m32i will be used as temporary ptr/int */ seg = (uint8_t *)A0 + 8; v = ldub(seg--); /* XXX: raise exception */ if (v != 0) return; v = ldub(seg--); /* XXX: raise exception */ if ((v & 0xf0) != 0) return; m32i = v; /* <-- d14 */ v = ldub(seg--); m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d13 */ m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d12 */ v = ldub(seg--); m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d11 */ m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d10 */ v = ldub(seg--); m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d9 */ m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d8 */ fpsrcop = ((CPU86_LDouble)m32i) * 100000000.0; v = ldub(seg--); m32i = (v >> 4); /* <-- d7 */ m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d6 */ v = ldub(seg--); m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d5 */ m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d4 */ v = ldub(seg--); m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d3 */ m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d2 */ v = ldub(seg); m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d1 */ m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d0 */ fpsrcop += ((CPU86_LDouble)m32i); if ( ldub(seg+9) & 0x80 ) fpsrcop = -fpsrcop; ST0 = fpsrcop; } void OPPROTO op_fbld_ST0_A0(void) { helper_fbld_ST0_A0(); } void helper_fbst_ST0_A0(void) { CPU86_LDouble fptemp; CPU86_LDouble fpsrcop; int v; uint8_t *mem_ref, *mem_end; fpsrcop = rint(ST0); mem_ref = (uint8_t *)A0; mem_end = mem_ref + 8; if ( fpsrcop < 0.0 ) { stw(mem_end, 0x8000); fpsrcop = -fpsrcop; } else { stw(mem_end, 0x0000); } while (mem_ref < mem_end) { if (fpsrcop == 0.0) break; fptemp = floor(fpsrcop/10.0); v = ((int)(fpsrcop - fptemp*10.0)); if (fptemp == 0.0) { stb(mem_ref++, v); break; } fpsrcop = fptemp; fptemp = floor(fpsrcop/10.0); v |= (((int)(fpsrcop - fptemp*10.0)) << 4); stb(mem_ref++, v); fpsrcop = fptemp; } while (mem_ref < mem_end) { stb(mem_ref++, 0); } } void OPPROTO op_fbst_ST0_A0(void) { helper_fbst_ST0_A0(); } /* FPU move */ static inline void fpush(void) { env->fpstt = (env->fpstt - 1) & 7; env->fptags[env->fpstt] = 0; /* validate stack entry */ } static inline void fpop(void) { env->fptags[env->fpstt] = 1; /* invvalidate stack entry */ env->fpstt = (env->fpstt + 1) & 7; } void OPPROTO op_fpush(void) { fpush(); } void OPPROTO op_fpop(void) { fpop(); } void OPPROTO op_fdecstp(void) { env->fpstt = (env->fpstt - 1) & 7; env->fpus &= (~0x4700); } void OPPROTO op_fincstp(void) { env->fpstt = (env->fpstt + 1) & 7; env->fpus &= (~0x4700); } void OPPROTO op_fmov_ST0_FT0(void) { ST0 = FT0; } void OPPROTO op_fmov_FT0_STN(void) { FT0 = ST(PARAM1); } void OPPROTO op_fmov_ST0_STN(void) { ST0 = ST(PARAM1); } void OPPROTO op_fmov_STN_ST0(void) { ST(PARAM1) = ST0; } void OPPROTO op_fxchg_ST0_STN(void) { CPU86_LDouble tmp; tmp = ST(PARAM1); ST(PARAM1) = ST0; ST0 = tmp; } /* FPU operations */ /* XXX: handle nans */ void OPPROTO op_fcom_ST0_FT0(void) { env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */ if (ST0 < FT0) env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */ else if (ST0 == FT0) env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */ FORCE_RET(); } /* XXX: handle nans */ void OPPROTO op_fucom_ST0_FT0(void) { env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */ if (ST0 < FT0) env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */ else if (ST0 == FT0) env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */ FORCE_RET(); } void OPPROTO op_fadd_ST0_FT0(void) { ST0 += FT0; } void OPPROTO op_fmul_ST0_FT0(void) { ST0 *= FT0; } void OPPROTO op_fsub_ST0_FT0(void) { ST0 -= FT0; } void OPPROTO op_fsubr_ST0_FT0(void) { ST0 = FT0 - ST0; } void OPPROTO op_fdiv_ST0_FT0(void) { ST0 /= FT0; } void OPPROTO op_fdivr_ST0_FT0(void) { ST0 = FT0 / ST0; } /* fp operations between STN and ST0 */ void OPPROTO op_fadd_STN_ST0(void) { ST(PARAM1) += ST0; } void OPPROTO op_fmul_STN_ST0(void) { ST(PARAM1) *= ST0; } void OPPROTO op_fsub_STN_ST0(void) { ST(PARAM1) -= ST0; } void OPPROTO op_fsubr_STN_ST0(void) { CPU86_LDouble *p; p = &ST(PARAM1); *p = ST0 - *p; } void OPPROTO op_fdiv_STN_ST0(void) { ST(PARAM1) /= ST0; } void OPPROTO op_fdivr_STN_ST0(void) { CPU86_LDouble *p; p = &ST(PARAM1); *p = ST0 / *p; } /* misc FPU operations */ void OPPROTO op_fchs_ST0(void) { ST0 = -ST0; } void OPPROTO op_fabs_ST0(void) { ST0 = fabs(ST0); } void helper_fxam_ST0(void) { CPU86_LDoubleU temp; int expdif; temp.d = ST0; env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */ if (SIGND(temp)) env->fpus |= 0x200; /* C1 <-- 1 */ expdif = EXPD(temp); if (expdif == MAXEXPD) { if (MANTD(temp) == 0) env->fpus |= 0x500 /*Infinity*/; else env->fpus |= 0x100 /*NaN*/; } else if (expdif == 0) { if (MANTD(temp) == 0) env->fpus |= 0x4000 /*Zero*/; else env->fpus |= 0x4400 /*Denormal*/; } else { env->fpus |= 0x400; } } void OPPROTO op_fxam_ST0(void) { helper_fxam_ST0(); } void OPPROTO op_fld1_ST0(void) { ST0 = *(CPU86_LDouble *)&f15rk[1]; } void OPPROTO op_fldl2t_ST0(void) { ST0 = *(CPU86_LDouble *)&f15rk[6]; } void OPPROTO op_fldl2e_ST0(void) { ST0 = *(CPU86_LDouble *)&f15rk[5]; } void OPPROTO op_fldpi_ST0(void) { ST0 = *(CPU86_LDouble *)&f15rk[2]; } void OPPROTO op_fldlg2_ST0(void) { ST0 = *(CPU86_LDouble *)&f15rk[3]; } void OPPROTO op_fldln2_ST0(void) { ST0 = *(CPU86_LDouble *)&f15rk[4]; } void OPPROTO op_fldz_ST0(void) { ST0 = *(CPU86_LDouble *)&f15rk[0]; } void OPPROTO op_fldz_FT0(void) { ST0 = *(CPU86_LDouble *)&f15rk[0]; } void helper_f2xm1(void) { ST0 = pow(2.0,ST0) - 1.0; } void helper_fyl2x(void) { CPU86_LDouble fptemp; fptemp = ST0; if (fptemp>0.0){ fptemp = log(fptemp)/log(2.0); /* log2(ST) */ ST1 *= fptemp; fpop(); } else { env->fpus &= (~0x4700); env->fpus |= 0x400; } } void helper_fptan(void) { CPU86_LDouble fptemp; fptemp = ST0; if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) { env->fpus |= 0x400; } else { ST0 = tan(fptemp); fpush(); ST0 = 1.0; env->fpus &= (~0x400); /* C2 <-- 0 */ /* the above code is for |arg| < 2**52 only */ } } void helper_fpatan(void) { CPU86_LDouble fptemp, fpsrcop; fpsrcop = ST1; fptemp = ST0; ST1 = atan2(fpsrcop,fptemp); fpop(); } void helper_fxtract(void) { CPU86_LDoubleU temp; unsigned int expdif; temp.d = ST0; expdif = EXPD(temp) - EXPBIAS; /*DP exponent bias*/ ST0 = expdif; fpush(); BIASEXPONENT(temp); ST0 = temp.d; } void helper_fprem1(void) { CPU86_LDouble dblq, fpsrcop, fptemp; CPU86_LDoubleU fpsrcop1, fptemp1; int expdif; int q; fpsrcop = ST0; fptemp = ST1; fpsrcop1.d = fpsrcop; fptemp1.d = fptemp; expdif = EXPD(fpsrcop1) - EXPD(fptemp1); if (expdif < 53) { dblq = fpsrcop / fptemp; dblq = (dblq < 0.0)? ceil(dblq): floor(dblq); ST0 = fpsrcop - fptemp*dblq; q = (int)dblq; /* cutting off top bits is assumed here */ env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */ /* (C0,C1,C3) <-- (q2,q1,q0) */ env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */ env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */ env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */ } else { env->fpus |= 0x400; /* C2 <-- 1 */ fptemp = pow(2.0, expdif-50); fpsrcop = (ST0 / ST1) / fptemp; /* fpsrcop = integer obtained by rounding to the nearest */ fpsrcop = (fpsrcop-floor(fpsrcop) < ceil(fpsrcop)-fpsrcop)? floor(fpsrcop): ceil(fpsrcop); ST0 -= (ST1 * fpsrcop * fptemp); } } void helper_fprem(void) { CPU86_LDouble dblq, fpsrcop, fptemp; CPU86_LDoubleU fpsrcop1, fptemp1; int expdif; int q; fpsrcop = ST0; fptemp = ST1; fpsrcop1.d = fpsrcop; fptemp1.d = fptemp; expdif = EXPD(fpsrcop1) - EXPD(fptemp1); if ( expdif < 53 ) { dblq = fpsrcop / fptemp; dblq = (dblq < 0.0)? ceil(dblq): floor(dblq); ST0 = fpsrcop - fptemp*dblq; q = (int)dblq; /* cutting off top bits is assumed here */ env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */ /* (C0,C1,C3) <-- (q2,q1,q0) */ env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */ env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */ env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */ } else { env->fpus |= 0x400; /* C2 <-- 1 */ fptemp = pow(2.0, expdif-50); fpsrcop = (ST0 / ST1) / fptemp; /* fpsrcop = integer obtained by chopping */ fpsrcop = (fpsrcop < 0.0)? -(floor(fabs(fpsrcop))): floor(fpsrcop); ST0 -= (ST1 * fpsrcop * fptemp); } } void helper_fyl2xp1(void) { CPU86_LDouble fptemp; fptemp = ST0; if ((fptemp+1.0)>0.0) { fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */ ST1 *= fptemp; fpop(); } else { env->fpus &= (~0x4700); env->fpus |= 0x400; } } void helper_fsqrt(void) { CPU86_LDouble fptemp; fptemp = ST0; if (fptemp<0.0) { env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */ env->fpus |= 0x400; } ST0 = sqrt(fptemp); } void helper_fsincos(void) { CPU86_LDouble fptemp; fptemp = ST0; if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) { env->fpus |= 0x400; } else { ST0 = sin(fptemp); fpush(); ST0 = cos(fptemp); env->fpus &= (~0x400); /* C2 <-- 0 */ /* the above code is for |arg| < 2**63 only */ } } void helper_frndint(void) { ST0 = rint(ST0); } void helper_fscale(void) { CPU86_LDouble fpsrcop, fptemp; fpsrcop = 2.0; fptemp = pow(fpsrcop,ST1); ST0 *= fptemp; } void helper_fsin(void) { CPU86_LDouble fptemp; fptemp = ST0; if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) { env->fpus |= 0x400; } else { ST0 = sin(fptemp); env->fpus &= (~0x400); /* C2 <-- 0 */ /* the above code is for |arg| < 2**53 only */ } } void helper_fcos(void) { CPU86_LDouble fptemp; fptemp = ST0; if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) { env->fpus |= 0x400; } else { ST0 = cos(fptemp); env->fpus &= (~0x400); /* C2 <-- 0 */ /* the above code is for |arg5 < 2**63 only */ } } /* associated heplers to reduce generated code length and to simplify relocation (FP constants are usually stored in .rodata section) */ void OPPROTO op_f2xm1(void) { helper_f2xm1(); } void OPPROTO op_fyl2x(void) { helper_fyl2x(); } void OPPROTO op_fptan(void) { helper_fptan(); } void OPPROTO op_fpatan(void) { helper_fpatan(); } void OPPROTO op_fxtract(void) { helper_fxtract(); } void OPPROTO op_fprem1(void) { helper_fprem1(); } void OPPROTO op_fprem(void) { helper_fprem(); } void OPPROTO op_fyl2xp1(void) { helper_fyl2xp1(); } void OPPROTO op_fsqrt(void) { helper_fsqrt(); } void OPPROTO op_fsincos(void) { helper_fsincos(); } void OPPROTO op_frndint(void) { helper_frndint(); } void OPPROTO op_fscale(void) { helper_fscale(); } void OPPROTO op_fsin(void) { helper_fsin(); } void OPPROTO op_fcos(void) { helper_fcos(); } void OPPROTO op_fnstsw_A0(void) { int fpus; fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; stw((void *)A0, fpus); } void OPPROTO op_fnstsw_EAX(void) { int fpus; fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; EAX = (EAX & 0xffff0000) | fpus; } void OPPROTO op_fnstcw_A0(void) { stw((void *)A0, env->fpuc); } void OPPROTO op_fldcw_A0(void) { int rnd_type; env->fpuc = lduw((void *)A0); /* set rounding mode */ switch(env->fpuc & RC_MASK) { default: case RC_NEAR: rnd_type = FE_TONEAREST; break; case RC_DOWN: rnd_type = FE_DOWNWARD; break; case RC_UP: rnd_type = FE_UPWARD; break; case RC_CHOP: rnd_type = FE_TOWARDZERO; break; } fesetround(rnd_type); } void OPPROTO op_fclex(void) { env->fpus &= 0x7f00; } void OPPROTO op_fninit(void) { env->fpus = 0; env->fpstt = 0; env->fpuc = 0x37f; env->fptags[0] = 1; env->fptags[1] = 1; env->fptags[2] = 1; env->fptags[3] = 1; env->fptags[4] = 1; env->fptags[5] = 1; env->fptags[6] = 1; env->fptags[7] = 1; }