/* * ARM gdb server stub * * Copyright (c) 2003-2005 Fabrice Bellard * Copyright (c) 2013 SUSE LINUX Products GmbH * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "internals.h" #include "exec/gdbstub.h" typedef struct RegisterSysregXmlParam { CPUState *cs; GString *s; int n; } RegisterSysregXmlParam; /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect whatever the target description contains. Due to a historical mishap the FPA registers appear in between core integer regs and the CPSR. We hack round this by giving the FPA regs zero size when talking to a newer gdb. */ int arm_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; if (n < 16) { /* Core integer register. */ return gdb_get_reg32(mem_buf, env->regs[n]); } if (n < 24) { /* FPA registers. */ if (gdb_has_xml) { return 0; } return gdb_get_zeroes(mem_buf, 12); } switch (n) { case 24: /* FPA status register. */ if (gdb_has_xml) { return 0; } return gdb_get_reg32(mem_buf, 0); case 25: /* CPSR, or XPSR for M-profile */ if (arm_feature(env, ARM_FEATURE_M)) { return gdb_get_reg32(mem_buf, xpsr_read(env)); } else { return gdb_get_reg32(mem_buf, cpsr_read(env)); } } /* Unknown register. */ return 0; } int arm_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; uint32_t tmp; tmp = ldl_p(mem_buf); /* * Mask out low bits of PC to workaround gdb bugs. * This avoids an assert in thumb_tr_translate_insn, because it is * architecturally impossible to misalign the pc. * This will probably cause problems if we ever implement the * Jazelle DBX extensions. */ if (n == 15) { tmp &= ~1; } if (n < 16) { /* Core integer register. */ if (n == 13 && arm_feature(env, ARM_FEATURE_M)) { /* M profile SP low bits are always 0 */ tmp &= ~3; } env->regs[n] = tmp; return 4; } if (n < 24) { /* 16-23 */ /* FPA registers (ignored). */ if (gdb_has_xml) { return 0; } return 12; } switch (n) { case 24: /* FPA status register (ignored). */ if (gdb_has_xml) { return 0; } return 4; case 25: /* CPSR, or XPSR for M-profile */ if (arm_feature(env, ARM_FEATURE_M)) { /* * Don't allow writing to XPSR.Exception as it can cause * a transition into or out of handler mode (it's not * writeable via the MSR insn so this is a reasonable * restriction). Other fields are safe to update. */ xpsr_write(env, tmp, ~XPSR_EXCP); } else { cpsr_write(env, tmp, 0xffffffff, CPSRWriteByGDBStub); } return 4; } /* Unknown register. */ return 0; } static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) { ARMCPU *cpu = env_archcpu(env); int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; /* VFP data registers are always little-endian. */ if (reg < nregs) { return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); } if (arm_feature(env, ARM_FEATURE_NEON)) { /* Aliases for Q regs. */ nregs += 16; if (reg < nregs) { uint64_t *q = aa32_vfp_qreg(env, reg - 32); return gdb_get_reg128(buf, q[0], q[1]); } } switch (reg - nregs) { case 0: return gdb_get_reg32(buf, vfp_get_fpscr(env)); } return 0; } static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) { ARMCPU *cpu = env_archcpu(env); int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; if (reg < nregs) { *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); return 8; } if (arm_feature(env, ARM_FEATURE_NEON)) { nregs += 16; if (reg < nregs) { uint64_t *q = aa32_vfp_qreg(env, reg - 32); q[0] = ldq_le_p(buf); q[1] = ldq_le_p(buf + 8); return 16; } } switch (reg - nregs) { case 0: vfp_set_fpscr(env, ldl_p(buf)); return 4; } return 0; } static int vfp_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) { switch (reg) { case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); case 1: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); } return 0; } static int vfp_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) { switch (reg) { case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; case 1: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; } return 0; } static int mve_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) { switch (reg) { case 0: return gdb_get_reg32(buf, env->v7m.vpr); default: return 0; } } static int mve_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) { switch (reg) { case 0: env->v7m.vpr = ldl_p(buf); return 4; default: return 0; } } /** * arm_get/set_gdb_*: get/set a gdb register * @env: the CPU state * @buf: a buffer to copy to/from * @reg: register number (offset from start of group) * * We return the number of bytes copied */ static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) { ARMCPU *cpu = env_archcpu(env); const ARMCPRegInfo *ri; uint32_t key; key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; ri = get_arm_cp_reginfo(cpu->cp_regs, key); if (ri) { if (cpreg_field_is_64bit(ri)) { return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); } else { return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); } } return 0; } static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) { return 0; } static void arm_gen_one_xml_sysreg_tag(GString *s, DynamicGDBXMLInfo *dyn_xml, ARMCPRegInfo *ri, uint32_t ri_key, int bitsize, int regnum) { g_string_append_printf(s, "name); g_string_append_printf(s, " bitsize=\"%d\"", bitsize); g_string_append_printf(s, " regnum=\"%d\"", regnum); g_string_append_printf(s, " group=\"cp_regs\"/>"); dyn_xml->data.cpregs.keys[dyn_xml->num] = ri_key; dyn_xml->num++; } static void arm_register_sysreg_for_xml(gpointer key, gpointer value, gpointer p) { uint32_t ri_key = *(uint32_t *)key; ARMCPRegInfo *ri = value; RegisterSysregXmlParam *param = (RegisterSysregXmlParam *)p; GString *s = param->s; ARMCPU *cpu = ARM_CPU(param->cs); CPUARMState *env = &cpu->env; DynamicGDBXMLInfo *dyn_xml = &cpu->dyn_sysreg_xml; if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_NO_GDB))) { if (arm_feature(env, ARM_FEATURE_AARCH64)) { if (ri->state == ARM_CP_STATE_AA64) { arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 64, param->n++); } } else { if (ri->state == ARM_CP_STATE_AA32) { if (!arm_feature(env, ARM_FEATURE_EL3) && (ri->secure & ARM_CP_SECSTATE_S)) { return; } if (ri->type & ARM_CP_64BIT) { arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 64, param->n++); } else { arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 32, param->n++); } } } } } int arm_gen_dynamic_sysreg_xml(CPUState *cs, int base_reg) { ARMCPU *cpu = ARM_CPU(cs); GString *s = g_string_new(NULL); RegisterSysregXmlParam param = {cs, s, base_reg}; cpu->dyn_sysreg_xml.num = 0; cpu->dyn_sysreg_xml.data.cpregs.keys = g_new(uint32_t, g_hash_table_size(cpu->cp_regs)); g_string_printf(s, ""); g_string_append_printf(s, ""); g_string_append_printf(s, ""); g_hash_table_foreach(cpu->cp_regs, arm_register_sysreg_for_xml, ¶m); g_string_append_printf(s, ""); cpu->dyn_sysreg_xml.desc = g_string_free(s, false); return cpu->dyn_sysreg_xml.num; } struct TypeSize { const char *gdb_type; int size; const char sz, suffix; }; static const struct TypeSize vec_lanes[] = { /* quads */ { "uint128", 128, 'q', 'u' }, { "int128", 128, 'q', 's' }, /* 64 bit */ { "ieee_double", 64, 'd', 'f' }, { "uint64", 64, 'd', 'u' }, { "int64", 64, 'd', 's' }, /* 32 bit */ { "ieee_single", 32, 's', 'f' }, { "uint32", 32, 's', 'u' }, { "int32", 32, 's', 's' }, /* 16 bit */ { "ieee_half", 16, 'h', 'f' }, { "uint16", 16, 'h', 'u' }, { "int16", 16, 'h', 's' }, /* bytes */ { "uint8", 8, 'b', 'u' }, { "int8", 8, 'b', 's' }, }; int arm_gen_dynamic_svereg_xml(CPUState *cs, int base_reg) { ARMCPU *cpu = ARM_CPU(cs); GString *s = g_string_new(NULL); DynamicGDBXMLInfo *info = &cpu->dyn_svereg_xml; g_autoptr(GString) ts = g_string_new(""); int i, j, bits, reg_width = (cpu->sve_max_vq * 128); info->num = 0; g_string_printf(s, ""); g_string_append_printf(s, ""); g_string_append_printf(s, ""); /* First define types and totals in a whole VL */ for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) { int count = reg_width / vec_lanes[i].size; g_string_printf(ts, "svev%c%c", vec_lanes[i].sz, vec_lanes[i].suffix); g_string_append_printf(s, "", ts->str, vec_lanes[i].gdb_type, count); } /* * Now define a union for each size group containing unsigned and * signed and potentially float versions of each size from 128 to * 8 bits. */ for (bits = 128, i = 0; bits >= 8; bits /= 2, i++) { const char suf[] = { 'q', 'd', 's', 'h', 'b' }; g_string_append_printf(s, "", suf[i]); for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) { if (vec_lanes[j].size == bits) { g_string_append_printf(s, "", vec_lanes[j].suffix, vec_lanes[j].sz, vec_lanes[j].suffix); } } g_string_append(s, ""); } /* And now the final union of unions */ g_string_append(s, ""); for (bits = 128, i = 0; bits >= 8; bits /= 2, i++) { const char suf[] = { 'q', 'd', 's', 'h', 'b' }; g_string_append_printf(s, "", suf[i], suf[i]); } g_string_append(s, ""); /* Finally the sve prefix type */ g_string_append_printf(s, "", reg_width / 8); /* Then define each register in parts for each vq */ for (i = 0; i < 32; i++) { g_string_append_printf(s, "", i, reg_width, base_reg++); info->num++; } /* fpscr & status registers */ g_string_append_printf(s, "", base_reg++); g_string_append_printf(s, "", base_reg++); info->num += 2; for (i = 0; i < 16; i++) { g_string_append_printf(s, "", i, cpu->sve_max_vq * 16, base_reg++); info->num++; } g_string_append_printf(s, "", cpu->sve_max_vq * 16, base_reg++); g_string_append_printf(s, "", base_reg++); info->num += 2; g_string_append_printf(s, ""); cpu->dyn_svereg_xml.desc = g_string_free(s, false); return cpu->dyn_svereg_xml.num; } const char *arm_gdb_get_dynamic_xml(CPUState *cs, const char *xmlname) { ARMCPU *cpu = ARM_CPU(cs); if (strcmp(xmlname, "system-registers.xml") == 0) { return cpu->dyn_sysreg_xml.desc; } else if (strcmp(xmlname, "sve-registers.xml") == 0) { return cpu->dyn_svereg_xml.desc; } return NULL; } void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) { CPUState *cs = CPU(cpu); CPUARMState *env = &cpu->env; if (arm_feature(env, ARM_FEATURE_AARCH64)) { /* * The lower part of each SVE register aliases to the FPU * registers so we don't need to include both. */ #ifdef TARGET_AARCH64 if (isar_feature_aa64_sve(&cpu->isar)) { gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), "sve-registers.xml", 0); } else { gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, aarch64_fpu_gdb_set_reg, 34, "aarch64-fpu.xml", 0); } #endif } else { if (arm_feature(env, ARM_FEATURE_NEON)) { gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 49, "arm-neon.xml", 0); } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 33, "arm-vfp3.xml", 0); } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 17, "arm-vfp.xml", 0); } if (!arm_feature(env, ARM_FEATURE_M)) { /* * A and R profile have FP sysregs FPEXC and FPSID that we * expose to gdb. */ gdb_register_coprocessor(cs, vfp_gdb_get_sysreg, vfp_gdb_set_sysreg, 2, "arm-vfp-sysregs.xml", 0); } } if (cpu_isar_feature(aa32_mve, cpu)) { gdb_register_coprocessor(cs, mve_gdb_get_reg, mve_gdb_set_reg, 1, "arm-m-profile-mve.xml", 0); } gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), "system-registers.xml", 0); }