/* * PowerPC MMU, TLB and BAT emulation helpers for QEMU. * * Copyright (c) 2003-2007 Jocelyn Mayer * Copyright (c) 2013 David Gibson, IBM Corporation * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "sysemu/kvm.h" #include "kvm_ppc.h" #include "internal.h" #include "mmu-hash32.h" #include "mmu-books.h" #include "exec/log.h" /* #define DEBUG_BATS */ #ifdef DEBUG_BATS # define LOG_BATS(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__) #else # define LOG_BATS(...) do { } while (0) #endif struct mmu_ctx_hash32 { hwaddr raddr; /* Real address */ int prot; /* Protection bits */ int key; /* Access key */ }; static int ppc_hash32_pp_prot(int key, int pp, int nx) { int prot; if (key == 0) { switch (pp) { case 0x0: case 0x1: case 0x2: prot = PAGE_READ | PAGE_WRITE; break; case 0x3: prot = PAGE_READ; break; default: abort(); } } else { switch (pp) { case 0x0: prot = 0; break; case 0x1: case 0x3: prot = PAGE_READ; break; case 0x2: prot = PAGE_READ | PAGE_WRITE; break; default: abort(); } } if (nx == 0) { prot |= PAGE_EXEC; } return prot; } static int ppc_hash32_pte_prot(int mmu_idx, target_ulong sr, ppc_hash_pte32_t pte) { unsigned pp, key; key = !!(mmuidx_pr(mmu_idx) ? (sr & SR32_KP) : (sr & SR32_KS)); pp = pte.pte1 & HPTE32_R_PP; return ppc_hash32_pp_prot(key, pp, !!(sr & SR32_NX)); } static target_ulong hash32_bat_size(int mmu_idx, target_ulong batu, target_ulong batl) { if ((mmuidx_pr(mmu_idx) && !(batu & BATU32_VP)) || (!mmuidx_pr(mmu_idx) && !(batu & BATU32_VS))) { return 0; } return BATU32_BEPI & ~((batu & BATU32_BL) << 15); } static int hash32_bat_prot(PowerPCCPU *cpu, target_ulong batu, target_ulong batl) { int pp, prot; prot = 0; pp = batl & BATL32_PP; if (pp != 0) { prot = PAGE_READ | PAGE_EXEC; if (pp == 0x2) { prot |= PAGE_WRITE; } } return prot; } static target_ulong hash32_bat_601_size(PowerPCCPU *cpu, target_ulong batu, target_ulong batl) { if (!(batl & BATL32_601_V)) { return 0; } return BATU32_BEPI & ~((batl & BATL32_601_BL) << 17); } static int hash32_bat_601_prot(int mmu_idx, target_ulong batu, target_ulong batl) { int key, pp; pp = batu & BATU32_601_PP; if (mmuidx_pr(mmu_idx) == 0) { key = !!(batu & BATU32_601_KS); } else { key = !!(batu & BATU32_601_KP); } return ppc_hash32_pp_prot(key, pp, 0); } static hwaddr ppc_hash32_bat_lookup(PowerPCCPU *cpu, target_ulong ea, MMUAccessType access_type, int *prot, int mmu_idx) { CPUPPCState *env = &cpu->env; target_ulong *BATlt, *BATut; bool ifetch = access_type == MMU_INST_FETCH; int i; LOG_BATS("%s: %cBAT v " TARGET_FMT_lx "\n", __func__, ifetch ? 'I' : 'D', ea); if (ifetch) { BATlt = env->IBAT[1]; BATut = env->IBAT[0]; } else { BATlt = env->DBAT[1]; BATut = env->DBAT[0]; } for (i = 0; i < env->nb_BATs; i++) { target_ulong batu = BATut[i]; target_ulong batl = BATlt[i]; target_ulong mask; if (unlikely(env->mmu_model == POWERPC_MMU_601)) { mask = hash32_bat_601_size(cpu, batu, batl); } else { mask = hash32_bat_size(mmu_idx, batu, batl); } LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx " BATl " TARGET_FMT_lx "\n", __func__, ifetch ? 'I' : 'D', i, ea, batu, batl); if (mask && ((ea & mask) == (batu & BATU32_BEPI))) { hwaddr raddr = (batl & mask) | (ea & ~mask); if (unlikely(env->mmu_model == POWERPC_MMU_601)) { *prot = hash32_bat_601_prot(mmu_idx, batu, batl); } else { *prot = hash32_bat_prot(cpu, batu, batl); } return raddr & TARGET_PAGE_MASK; } } /* No hit */ #if defined(DEBUG_BATS) if (qemu_log_enabled()) { target_ulong *BATu, *BATl; target_ulong BEPIl, BEPIu, bl; LOG_BATS("no BAT match for " TARGET_FMT_lx ":\n", ea); for (i = 0; i < 4; i++) { BATu = &BATut[i]; BATl = &BATlt[i]; BEPIu = *BATu & BATU32_BEPIU; BEPIl = *BATu & BATU32_BEPIL; bl = (*BATu & 0x00001FFC) << 15; LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx " BATl " TARGET_FMT_lx "\n\t" TARGET_FMT_lx " " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, ifetch ? 'I' : 'D', i, ea, *BATu, *BATl, BEPIu, BEPIl, bl); } } #endif return -1; } static bool ppc_hash32_direct_store(PowerPCCPU *cpu, target_ulong sr, target_ulong eaddr, MMUAccessType access_type, hwaddr *raddr, int *prot, int mmu_idx, bool guest_visible) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; int key = !!(mmuidx_pr(mmu_idx) ? (sr & SR32_KP) : (sr & SR32_KS)); qemu_log_mask(CPU_LOG_MMU, "direct store...\n"); if ((sr & 0x1FF00000) >> 20 == 0x07f) { /* * Memory-forced I/O controller interface access * * If T=1 and BUID=x'07F', the 601 performs a memory access * to SR[28-31] LA[4-31], bypassing all protection mechanisms. */ *raddr = ((sr & 0xF) << 28) | (eaddr & 0x0FFFFFFF); *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return true; } if (access_type == MMU_INST_FETCH) { /* No code fetch is allowed in direct-store areas */ if (guest_visible) { cs->exception_index = POWERPC_EXCP_ISI; env->error_code = 0x10000000; } return false; } /* * From ppc_cpu_get_phys_page_debug, env->access_type is not set. * Assume ACCESS_INT for that case. */ switch (guest_visible ? env->access_type : ACCESS_INT) { case ACCESS_INT: /* Integer load/store : only access allowed */ break; case ACCESS_FLOAT: /* Floating point load/store */ cs->exception_index = POWERPC_EXCP_ALIGN; env->error_code = POWERPC_EXCP_ALIGN_FP; env->spr[SPR_DAR] = eaddr; return false; case ACCESS_RES: /* lwarx, ldarx or srwcx. */ env->error_code = 0; env->spr[SPR_DAR] = eaddr; if (access_type == MMU_DATA_STORE) { env->spr[SPR_DSISR] = 0x06000000; } else { env->spr[SPR_DSISR] = 0x04000000; } return false; case ACCESS_CACHE: /* * dcba, dcbt, dcbtst, dcbf, dcbi, dcbst, dcbz, or icbi * * Should make the instruction do no-op. As it already do * no-op, it's quite easy :-) */ *raddr = eaddr; return true; case ACCESS_EXT: /* eciwx or ecowx */ cs->exception_index = POWERPC_EXCP_DSI; env->error_code = 0; env->spr[SPR_DAR] = eaddr; if (access_type == MMU_DATA_STORE) { env->spr[SPR_DSISR] = 0x06100000; } else { env->spr[SPR_DSISR] = 0x04100000; } return false; default: cpu_abort(cs, "ERROR: insn should not need address translation\n"); } *prot = key ? PAGE_READ | PAGE_WRITE : PAGE_READ; if (*prot & prot_for_access_type(access_type)) { *raddr = eaddr; return true; } if (guest_visible) { cs->exception_index = POWERPC_EXCP_DSI; env->error_code = 0; env->spr[SPR_DAR] = eaddr; if (access_type == MMU_DATA_STORE) { env->spr[SPR_DSISR] = 0x0a000000; } else { env->spr[SPR_DSISR] = 0x08000000; } } return false; } hwaddr get_pteg_offset32(PowerPCCPU *cpu, hwaddr hash) { target_ulong mask = ppc_hash32_hpt_mask(cpu); return (hash * HASH_PTEG_SIZE_32) & mask; } static hwaddr ppc_hash32_pteg_search(PowerPCCPU *cpu, hwaddr pteg_off, bool secondary, target_ulong ptem, ppc_hash_pte32_t *pte) { hwaddr pte_offset = pteg_off; target_ulong pte0, pte1; int i; for (i = 0; i < HPTES_PER_GROUP; i++) { pte0 = ppc_hash32_load_hpte0(cpu, pte_offset); /* * pte0 contains the valid bit and must be read before pte1, * otherwise we might see an old pte1 with a new valid bit and * thus an inconsistent hpte value */ smp_rmb(); pte1 = ppc_hash32_load_hpte1(cpu, pte_offset); if ((pte0 & HPTE32_V_VALID) && (secondary == !!(pte0 & HPTE32_V_SECONDARY)) && HPTE32_V_COMPARE(pte0, ptem)) { pte->pte0 = pte0; pte->pte1 = pte1; return pte_offset; } pte_offset += HASH_PTE_SIZE_32; } return -1; } static void ppc_hash32_set_r(PowerPCCPU *cpu, hwaddr pte_offset, uint32_t pte1) { target_ulong base = ppc_hash32_hpt_base(cpu); hwaddr offset = pte_offset + 6; /* The HW performs a non-atomic byte update */ stb_phys(CPU(cpu)->as, base + offset, ((pte1 >> 8) & 0xff) | 0x01); } static void ppc_hash32_set_c(PowerPCCPU *cpu, hwaddr pte_offset, uint64_t pte1) { target_ulong base = ppc_hash32_hpt_base(cpu); hwaddr offset = pte_offset + 7; /* The HW performs a non-atomic byte update */ stb_phys(CPU(cpu)->as, base + offset, (pte1 & 0xff) | 0x80); } static hwaddr ppc_hash32_htab_lookup(PowerPCCPU *cpu, target_ulong sr, target_ulong eaddr, ppc_hash_pte32_t *pte) { hwaddr pteg_off, pte_offset; hwaddr hash; uint32_t vsid, pgidx, ptem; vsid = sr & SR32_VSID; pgidx = (eaddr & ~SEGMENT_MASK_256M) >> TARGET_PAGE_BITS; hash = vsid ^ pgidx; ptem = (vsid << 7) | (pgidx >> 10); /* Page address translation */ qemu_log_mask(CPU_LOG_MMU, "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx " hash " TARGET_FMT_plx "\n", ppc_hash32_hpt_base(cpu), ppc_hash32_hpt_mask(cpu), hash); /* Primary PTEG lookup */ qemu_log_mask(CPU_LOG_MMU, "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx " vsid=%" PRIx32 " ptem=%" PRIx32 " hash=" TARGET_FMT_plx "\n", ppc_hash32_hpt_base(cpu), ppc_hash32_hpt_mask(cpu), vsid, ptem, hash); pteg_off = get_pteg_offset32(cpu, hash); pte_offset = ppc_hash32_pteg_search(cpu, pteg_off, 0, ptem, pte); if (pte_offset == -1) { /* Secondary PTEG lookup */ qemu_log_mask(CPU_LOG_MMU, "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx " vsid=%" PRIx32 " api=%" PRIx32 " hash=" TARGET_FMT_plx "\n", ppc_hash32_hpt_base(cpu), ppc_hash32_hpt_mask(cpu), vsid, ptem, ~hash); pteg_off = get_pteg_offset32(cpu, ~hash); pte_offset = ppc_hash32_pteg_search(cpu, pteg_off, 1, ptem, pte); } return pte_offset; } static hwaddr ppc_hash32_pte_raddr(target_ulong sr, ppc_hash_pte32_t pte, target_ulong eaddr) { hwaddr rpn = pte.pte1 & HPTE32_R_RPN; hwaddr mask = ~TARGET_PAGE_MASK; return (rpn & ~mask) | (eaddr & mask); } bool ppc_hash32_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type, hwaddr *raddrp, int *psizep, int *protp, int mmu_idx, bool guest_visible) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; target_ulong sr; hwaddr pte_offset; ppc_hash_pte32_t pte; int prot; int need_prot; hwaddr raddr; /* There are no hash32 large pages. */ *psizep = TARGET_PAGE_BITS; /* 1. Handle real mode accesses */ if (mmuidx_real(mmu_idx)) { /* Translation is off */ *raddrp = eaddr; *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return true; } need_prot = prot_for_access_type(access_type); /* 2. Check Block Address Translation entries (BATs) */ if (env->nb_BATs != 0) { raddr = ppc_hash32_bat_lookup(cpu, eaddr, access_type, protp, mmu_idx); if (raddr != -1) { if (need_prot & ~*protp) { if (guest_visible) { if (access_type == MMU_INST_FETCH) { cs->exception_index = POWERPC_EXCP_ISI; env->error_code = 0x08000000; } else { cs->exception_index = POWERPC_EXCP_DSI; env->error_code = 0; env->spr[SPR_DAR] = eaddr; if (access_type == MMU_DATA_STORE) { env->spr[SPR_DSISR] = 0x0a000000; } else { env->spr[SPR_DSISR] = 0x08000000; } } } return false; } *raddrp = raddr; return true; } } /* 3. Look up the Segment Register */ sr = env->sr[eaddr >> 28]; /* 4. Handle direct store segments */ if (sr & SR32_T) { return ppc_hash32_direct_store(cpu, sr, eaddr, access_type, raddrp, protp, mmu_idx, guest_visible); } /* 5. Check for segment level no-execute violation */ if (access_type == MMU_INST_FETCH && (sr & SR32_NX)) { if (guest_visible) { cs->exception_index = POWERPC_EXCP_ISI; env->error_code = 0x10000000; } return false; } /* 6. Locate the PTE in the hash table */ pte_offset = ppc_hash32_htab_lookup(cpu, sr, eaddr, &pte); if (pte_offset == -1) { if (guest_visible) { if (access_type == MMU_INST_FETCH) { cs->exception_index = POWERPC_EXCP_ISI; env->error_code = 0x40000000; } else { cs->exception_index = POWERPC_EXCP_DSI; env->error_code = 0; env->spr[SPR_DAR] = eaddr; if (access_type == MMU_DATA_STORE) { env->spr[SPR_DSISR] = 0x42000000; } else { env->spr[SPR_DSISR] = 0x40000000; } } } return false; } qemu_log_mask(CPU_LOG_MMU, "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset); /* 7. Check access permissions */ prot = ppc_hash32_pte_prot(mmu_idx, sr, pte); if (need_prot & ~prot) { /* Access right violation */ qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n"); if (guest_visible) { if (access_type == MMU_INST_FETCH) { cs->exception_index = POWERPC_EXCP_ISI; env->error_code = 0x08000000; } else { cs->exception_index = POWERPC_EXCP_DSI; env->error_code = 0; env->spr[SPR_DAR] = eaddr; if (access_type == MMU_DATA_STORE) { env->spr[SPR_DSISR] = 0x0a000000; } else { env->spr[SPR_DSISR] = 0x08000000; } } } return false; } qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n"); /* 8. Update PTE referenced and changed bits if necessary */ if (!(pte.pte1 & HPTE32_R_R)) { ppc_hash32_set_r(cpu, pte_offset, pte.pte1); } if (!(pte.pte1 & HPTE32_R_C)) { if (access_type == MMU_DATA_STORE) { ppc_hash32_set_c(cpu, pte_offset, pte.pte1); } else { /* * Treat the page as read-only for now, so that a later write * will pass through this function again to set the C bit */ prot &= ~PAGE_WRITE; } } /* 9. Determine the real address from the PTE */ *raddrp = ppc_hash32_pte_raddr(sr, pte, eaddr); *protp = prot; return true; }