/* * QEMU KVM support, paravirtual clock device * * Copyright (C) 2011 Siemens AG * * Authors: * Jan Kiszka * * This work is licensed under the terms of the GNU GPL version 2. * See the COPYING file in the top-level directory. * * Contributions after 2012-01-13 are licensed under the terms of the * GNU GPL, version 2 or (at your option) any later version. */ #include "qemu/osdep.h" #include "qemu-common.h" #include "cpu.h" #include "qemu/host-utils.h" #include "sysemu/sysemu.h" #include "sysemu/kvm.h" #include "kvm_i386.h" #include "hw/sysbus.h" #include "hw/kvm/clock.h" #include #include #define TYPE_KVM_CLOCK "kvmclock" #define KVM_CLOCK(obj) OBJECT_CHECK(KVMClockState, (obj), TYPE_KVM_CLOCK) typedef struct KVMClockState { /*< private >*/ SysBusDevice busdev; /*< public >*/ uint64_t clock; bool clock_valid; /* whether machine type supports reliable KVM_GET_CLOCK */ bool mach_use_reliable_get_clock; /* whether the 'clock' value was obtained in a host with * reliable KVM_GET_CLOCK */ bool clock_is_reliable; } KVMClockState; struct pvclock_vcpu_time_info { uint32_t version; uint32_t pad0; uint64_t tsc_timestamp; uint64_t system_time; uint32_t tsc_to_system_mul; int8_t tsc_shift; uint8_t flags; uint8_t pad[2]; } __attribute__((__packed__)); /* 32 bytes */ static uint64_t kvmclock_current_nsec(KVMClockState *s) { CPUState *cpu = first_cpu; CPUX86State *env = cpu->env_ptr; hwaddr kvmclock_struct_pa = env->system_time_msr & ~1ULL; uint64_t migration_tsc = env->tsc; struct pvclock_vcpu_time_info time; uint64_t delta; uint64_t nsec_lo; uint64_t nsec_hi; uint64_t nsec; if (!(env->system_time_msr & 1ULL)) { /* KVM clock not active */ return 0; } cpu_physical_memory_read(kvmclock_struct_pa, &time, sizeof(time)); assert(time.tsc_timestamp <= migration_tsc); delta = migration_tsc - time.tsc_timestamp; if (time.tsc_shift < 0) { delta >>= -time.tsc_shift; } else { delta <<= time.tsc_shift; } mulu64(&nsec_lo, &nsec_hi, delta, time.tsc_to_system_mul); nsec = (nsec_lo >> 32) | (nsec_hi << 32); return nsec + time.system_time; } static void kvm_update_clock(KVMClockState *s) { struct kvm_clock_data data; int ret; ret = kvm_vm_ioctl(kvm_state, KVM_GET_CLOCK, &data); if (ret < 0) { fprintf(stderr, "KVM_GET_CLOCK failed: %s\n", strerror(ret)); abort(); } s->clock = data.clock; /* If kvm_has_adjust_clock_stable() is false, KVM_GET_CLOCK returns * essentially CLOCK_MONOTONIC plus a guest-specific adjustment. This * can drift from the TSC-based value that is computed by the guest, * so we need to go through kvmclock_current_nsec(). If * kvm_has_adjust_clock_stable() is true, and the flags contain * KVM_CLOCK_TSC_STABLE, then KVM_GET_CLOCK returns a TSC-based value * and kvmclock_current_nsec() is not necessary. * * Here, however, we need not check KVM_CLOCK_TSC_STABLE. This is because: * * - if the host has disabled the kvmclock master clock, the guest already * has protection against time going backwards. This "safety net" is only * absent when kvmclock is stable; * * - therefore, we can replace a check like * * if last KVM_GET_CLOCK was not reliable then * read from memory * * with * * if last KVM_GET_CLOCK was not reliable && masterclock is enabled * read from memory * * However: * * - if kvm_has_adjust_clock_stable() returns false, the left side is * always true (KVM_GET_CLOCK is never reliable), and the right side is * unknown (because we don't have data.flags). We must assume it's true * and read from memory. * * - if kvm_has_adjust_clock_stable() returns true, the result of the && * is always false (masterclock is enabled iff KVM_GET_CLOCK is reliable) * * So we can just use this instead: * * if !kvm_has_adjust_clock_stable() then * read from memory */ s->clock_is_reliable = kvm_has_adjust_clock_stable(); } static void kvmclock_vm_state_change(void *opaque, int running, RunState state) { KVMClockState *s = opaque; CPUState *cpu; int cap_clock_ctrl = kvm_check_extension(kvm_state, KVM_CAP_KVMCLOCK_CTRL); int ret; if (running) { struct kvm_clock_data data = {}; /* * If the host where s->clock was read did not support reliable * KVM_GET_CLOCK, read kvmclock value from memory. */ if (!s->clock_is_reliable) { uint64_t pvclock_via_mem = kvmclock_current_nsec(s); /* We can't rely on the saved clock value, just discard it */ if (pvclock_via_mem) { s->clock = pvclock_via_mem; } } s->clock_valid = false; data.clock = s->clock; ret = kvm_vm_ioctl(kvm_state, KVM_SET_CLOCK, &data); if (ret < 0) { fprintf(stderr, "KVM_SET_CLOCK failed: %s\n", strerror(ret)); abort(); } if (!cap_clock_ctrl) { return; } CPU_FOREACH(cpu) { ret = kvm_vcpu_ioctl(cpu, KVM_KVMCLOCK_CTRL, 0); if (ret) { if (ret != -EINVAL) { fprintf(stderr, "%s: %s\n", __func__, strerror(-ret)); } return; } } } else { if (s->clock_valid) { return; } kvm_synchronize_all_tsc(); kvm_update_clock(s); /* * If the VM is stopped, declare the clock state valid to * avoid re-reading it on next vmsave (which would return * a different value). Will be reset when the VM is continued. */ s->clock_valid = true; } } static void kvmclock_realize(DeviceState *dev, Error **errp) { KVMClockState *s = KVM_CLOCK(dev); kvm_update_clock(s); qemu_add_vm_change_state_handler(kvmclock_vm_state_change, s); } static bool kvmclock_clock_is_reliable_needed(void *opaque) { KVMClockState *s = opaque; return s->mach_use_reliable_get_clock; } static const VMStateDescription kvmclock_reliable_get_clock = { .name = "kvmclock/clock_is_reliable", .version_id = 1, .minimum_version_id = 1, .needed = kvmclock_clock_is_reliable_needed, .fields = (VMStateField[]) { VMSTATE_BOOL(clock_is_reliable, KVMClockState), VMSTATE_END_OF_LIST() } }; /* * When migrating, read the clock just before migration, * so that the guest clock counts during the events * between: * * * vm_stop() * * * * pre_save() * * This reduces kvmclock difference on migration from 5s * to 0.1s (when max_downtime == 5s), because sending the * final pages of memory (which happens between vm_stop() * and pre_save()) takes max_downtime. */ static void kvmclock_pre_save(void *opaque) { KVMClockState *s = opaque; kvm_update_clock(s); } static const VMStateDescription kvmclock_vmsd = { .name = "kvmclock", .version_id = 1, .minimum_version_id = 1, .pre_save = kvmclock_pre_save, .fields = (VMStateField[]) { VMSTATE_UINT64(clock, KVMClockState), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription * []) { &kvmclock_reliable_get_clock, NULL } }; static Property kvmclock_properties[] = { DEFINE_PROP_BOOL("x-mach-use-reliable-get-clock", KVMClockState, mach_use_reliable_get_clock, true), DEFINE_PROP_END_OF_LIST(), }; static void kvmclock_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = kvmclock_realize; dc->vmsd = &kvmclock_vmsd; dc->props = kvmclock_properties; } static const TypeInfo kvmclock_info = { .name = TYPE_KVM_CLOCK, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(KVMClockState), .class_init = kvmclock_class_init, }; /* Note: Must be called after VCPU initialization. */ void kvmclock_create(void) { X86CPU *cpu = X86_CPU(first_cpu); if (kvm_enabled() && cpu->env.features[FEAT_KVM] & ((1ULL << KVM_FEATURE_CLOCKSOURCE) | (1ULL << KVM_FEATURE_CLOCKSOURCE2))) { sysbus_create_simple(TYPE_KVM_CLOCK, -1, NULL); } } static void kvmclock_register_types(void) { type_register_static(&kvmclock_info); } type_init(kvmclock_register_types)