/* * Test Server * * Copyright IBM, Corp. 2011 * * Authors: * Anthony Liguori * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "cpu.h" #include "sysemu/qtest.h" #include "sysemu/runstate.h" #include "chardev/char-fe.h" #include "exec/ioport.h" #include "exec/memory.h" #include "hw/qdev-core.h" #include "hw/irq.h" #include "qemu/accel.h" #include "sysemu/cpu-timers.h" #include "qemu/config-file.h" #include "qemu/option.h" #include "qemu/error-report.h" #include "qemu/module.h" #include "qemu/cutils.h" #include "qapi/qmp/qerror.h" #include "qom/object_interfaces.h" #include CONFIG_DEVICES #ifdef CONFIG_PSERIES #include "hw/ppc/spapr_rtas.h" #endif #define MAX_IRQ 256 #define TYPE_QTEST "qtest" OBJECT_DECLARE_SIMPLE_TYPE(QTest, QTEST) struct QTest { Object parent; bool has_machine_link; char *chr_name; Chardev *chr; CharBackend qtest_chr; char *log; }; bool qtest_allowed; static DeviceState *irq_intercept_dev; static FILE *qtest_log_fp; static QTest *qtest; static GString *inbuf; static int irq_levels[MAX_IRQ]; static GTimer *timer; static bool qtest_opened; static void (*qtest_server_send)(void*, const char*); static void *qtest_server_send_opaque; #define FMT_timeval "%.06f" /** * DOC: QTest Protocol * * Line based protocol, request/response based. Server can send async messages * so clients should always handle many async messages before the response * comes in. * * Valid requests * ^^^^^^^^^^^^^^ * * Clock management: * """"""""""""""""" * * The qtest client is completely in charge of the QEMU_CLOCK_VIRTUAL. qtest commands * let you adjust the value of the clock (monotonically). All the commands * return the current value of the clock in nanoseconds. * * .. code-block:: none * * > clock_step * < OK VALUE * * Advance the clock to the next deadline. Useful when waiting for * asynchronous events. * * .. code-block:: none * * > clock_step NS * < OK VALUE * * Advance the clock by NS nanoseconds. * * .. code-block:: none * * > clock_set NS * < OK VALUE * * Advance the clock to NS nanoseconds (do nothing if it's already past). * * PIO and memory access: * """""""""""""""""""""" * * .. code-block:: none * * > outb ADDR VALUE * < OK * * .. code-block:: none * * > outw ADDR VALUE * < OK * * .. code-block:: none * * > outl ADDR VALUE * < OK * * .. code-block:: none * * > inb ADDR * < OK VALUE * * .. code-block:: none * * > inw ADDR * < OK VALUE * * .. code-block:: none * * > inl ADDR * < OK VALUE * * .. code-block:: none * * > writeb ADDR VALUE * < OK * * .. code-block:: none * * > writew ADDR VALUE * < OK * * .. code-block:: none * * > writel ADDR VALUE * < OK * * .. code-block:: none * * > writeq ADDR VALUE * < OK * * .. code-block:: none * * > readb ADDR * < OK VALUE * * .. code-block:: none * * > readw ADDR * < OK VALUE * * .. code-block:: none * * > readl ADDR * < OK VALUE * * .. code-block:: none * * > readq ADDR * < OK VALUE * * .. code-block:: none * * > read ADDR SIZE * < OK DATA * * .. code-block:: none * * > write ADDR SIZE DATA * < OK * * .. code-block:: none * * > b64read ADDR SIZE * < OK B64_DATA * * .. code-block:: none * * > b64write ADDR SIZE B64_DATA * < OK * * .. code-block:: none * * > memset ADDR SIZE VALUE * < OK * * ADDR, SIZE, VALUE are all integers parsed with strtoul() with a base of 0. * For 'memset' a zero size is permitted and does nothing. * * DATA is an arbitrarily long hex number prefixed with '0x'. If it's smaller * than the expected size, the value will be zero filled at the end of the data * sequence. * * B64_DATA is an arbitrarily long base64 encoded string. * If the sizes do not match, the data will be truncated. * * IRQ management: * """"""""""""""" * * .. code-block:: none * * > irq_intercept_in QOM-PATH * < OK * * .. code-block:: none * * > irq_intercept_out QOM-PATH * < OK * * Attach to the gpio-in (resp. gpio-out) pins exported by the device at * QOM-PATH. When the pin is triggered, one of the following async messages * will be printed to the qtest stream:: * * IRQ raise NUM * IRQ lower NUM * * where NUM is an IRQ number. For the PC, interrupts can be intercepted * simply with "irq_intercept_in ioapic" (note that IRQ0 comes out with * NUM=0 even though it is remapped to GSI 2). * * Setting interrupt level: * """""""""""""""""""""""" * * .. code-block:: none * * > set_irq_in QOM-PATH NAME NUM LEVEL * < OK * * where NAME is the name of the irq/gpio list, NUM is an IRQ number and * LEVEL is an signed integer IRQ level. * * Forcibly set the given interrupt pin to the given level. * */ static int hex2nib(char ch) { if (ch >= '0' && ch <= '9') { return ch - '0'; } else if (ch >= 'a' && ch <= 'f') { return 10 + (ch - 'a'); } else if (ch >= 'A' && ch <= 'F') { return 10 + (ch - 'A'); } else { return -1; } } static void qtest_send_prefix(CharBackend *chr) { if (!qtest_log_fp || !qtest_opened) { return; } fprintf(qtest_log_fp, "[S +" FMT_timeval "] ", g_timer_elapsed(timer, NULL)); } static void G_GNUC_PRINTF(1, 2) qtest_log_send(const char *fmt, ...) { va_list ap; if (!qtest_log_fp || !qtest_opened) { return; } qtest_send_prefix(NULL); va_start(ap, fmt); vfprintf(qtest_log_fp, fmt, ap); va_end(ap); } static void qtest_server_char_be_send(void *opaque, const char *str) { size_t len = strlen(str); CharBackend* chr = (CharBackend *)opaque; qemu_chr_fe_write_all(chr, (uint8_t *)str, len); if (qtest_log_fp && qtest_opened) { fprintf(qtest_log_fp, "%s", str); } } static void qtest_send(CharBackend *chr, const char *str) { qtest_server_send(qtest_server_send_opaque, str); } static void G_GNUC_PRINTF(2, 3) qtest_sendf(CharBackend *chr, const char *fmt, ...) { va_list ap; gchar *buffer; va_start(ap, fmt); buffer = g_strdup_vprintf(fmt, ap); qtest_send(chr, buffer); g_free(buffer); va_end(ap); } static void qtest_irq_handler(void *opaque, int n, int level) { qemu_irq old_irq = *(qemu_irq *)opaque; qemu_set_irq(old_irq, level); if (irq_levels[n] != level) { CharBackend *chr = &qtest->qtest_chr; irq_levels[n] = level; qtest_send_prefix(chr); qtest_sendf(chr, "IRQ %s %d\n", level ? "raise" : "lower", n); } } static int64_t qtest_clock_counter; int64_t qtest_get_virtual_clock(void) { return qatomic_read_i64(&qtest_clock_counter); } static void qtest_set_virtual_clock(int64_t count) { qatomic_set_i64(&qtest_clock_counter, count); } static void qtest_clock_warp(int64_t dest) { int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); AioContext *aio_context; assert(qtest_enabled()); aio_context = qemu_get_aio_context(); while (clock < dest) { int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL, QEMU_TIMER_ATTR_ALL); int64_t warp = qemu_soonest_timeout(dest - clock, deadline); qtest_set_virtual_clock(qtest_get_virtual_clock() + warp); qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL); timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]); clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); } qemu_clock_notify(QEMU_CLOCK_VIRTUAL); } static void qtest_process_command(CharBackend *chr, gchar **words) { const gchar *command; g_assert(words); command = words[0]; if (qtest_log_fp) { int i; fprintf(qtest_log_fp, "[R +" FMT_timeval "]", g_timer_elapsed(timer, NULL)); for (i = 0; words[i]; i++) { fprintf(qtest_log_fp, " %s", words[i]); } fprintf(qtest_log_fp, "\n"); } g_assert(command); if (strcmp(words[0], "irq_intercept_out") == 0 || strcmp(words[0], "irq_intercept_in") == 0) { DeviceState *dev; NamedGPIOList *ngl; g_assert(words[1]); dev = DEVICE(object_resolve_path(words[1], NULL)); if (!dev) { qtest_send_prefix(chr); qtest_send(chr, "FAIL Unknown device\n"); return; } if (irq_intercept_dev) { qtest_send_prefix(chr); if (irq_intercept_dev != dev) { qtest_send(chr, "FAIL IRQ intercept already enabled\n"); } else { qtest_send(chr, "OK\n"); } return; } QLIST_FOREACH(ngl, &dev->gpios, node) { /* We don't support intercept of named GPIOs yet */ if (ngl->name) { continue; } if (words[0][14] == 'o') { int i; for (i = 0; i < ngl->num_out; ++i) { qemu_irq *disconnected = g_new0(qemu_irq, 1); qemu_irq icpt = qemu_allocate_irq(qtest_irq_handler, disconnected, i); *disconnected = qdev_intercept_gpio_out(dev, icpt, ngl->name, i); } } else { qemu_irq_intercept_in(ngl->in, qtest_irq_handler, ngl->num_in); } } irq_intercept_dev = dev; qtest_send_prefix(chr); qtest_send(chr, "OK\n"); } else if (strcmp(words[0], "set_irq_in") == 0) { DeviceState *dev; qemu_irq irq; char *name; int ret; int num; int level; g_assert(words[1] && words[2] && words[3] && words[4]); dev = DEVICE(object_resolve_path(words[1], NULL)); if (!dev) { qtest_send_prefix(chr); qtest_send(chr, "FAIL Unknown device\n"); return; } if (strcmp(words[2], "unnamed-gpio-in") == 0) { name = NULL; } else { name = words[2]; } ret = qemu_strtoi(words[3], NULL, 0, &num); g_assert(!ret); ret = qemu_strtoi(words[4], NULL, 0, &level); g_assert(!ret); irq = qdev_get_gpio_in_named(dev, name, num); qemu_set_irq(irq, level); qtest_send_prefix(chr); qtest_send(chr, "OK\n"); } else if (strcmp(words[0], "outb") == 0 || strcmp(words[0], "outw") == 0 || strcmp(words[0], "outl") == 0) { unsigned long addr; unsigned long value; int ret; g_assert(words[1] && words[2]); ret = qemu_strtoul(words[1], NULL, 0, &addr); g_assert(ret == 0); ret = qemu_strtoul(words[2], NULL, 0, &value); g_assert(ret == 0); g_assert(addr <= 0xffff); if (words[0][3] == 'b') { cpu_outb(addr, value); } else if (words[0][3] == 'w') { cpu_outw(addr, value); } else if (words[0][3] == 'l') { cpu_outl(addr, value); } qtest_send_prefix(chr); qtest_send(chr, "OK\n"); } else if (strcmp(words[0], "inb") == 0 || strcmp(words[0], "inw") == 0 || strcmp(words[0], "inl") == 0) { unsigned long addr; uint32_t value = -1U; int ret; g_assert(words[1]); ret = qemu_strtoul(words[1], NULL, 0, &addr); g_assert(ret == 0); g_assert(addr <= 0xffff); if (words[0][2] == 'b') { value = cpu_inb(addr); } else if (words[0][2] == 'w') { value = cpu_inw(addr); } else if (words[0][2] == 'l') { value = cpu_inl(addr); } qtest_send_prefix(chr); qtest_sendf(chr, "OK 0x%04x\n", value); } else if (strcmp(words[0], "writeb") == 0 || strcmp(words[0], "writew") == 0 || strcmp(words[0], "writel") == 0 || strcmp(words[0], "writeq") == 0) { uint64_t addr; uint64_t value; int ret; g_assert(words[1] && words[2]); ret = qemu_strtou64(words[1], NULL, 0, &addr); g_assert(ret == 0); ret = qemu_strtou64(words[2], NULL, 0, &value); g_assert(ret == 0); if (words[0][5] == 'b') { uint8_t data = value; address_space_write(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, &data, 1); } else if (words[0][5] == 'w') { uint16_t data = value; tswap16s(&data); address_space_write(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, &data, 2); } else if (words[0][5] == 'l') { uint32_t data = value; tswap32s(&data); address_space_write(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, &data, 4); } else if (words[0][5] == 'q') { uint64_t data = value; tswap64s(&data); address_space_write(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, &data, 8); } qtest_send_prefix(chr); qtest_send(chr, "OK\n"); } else if (strcmp(words[0], "readb") == 0 || strcmp(words[0], "readw") == 0 || strcmp(words[0], "readl") == 0 || strcmp(words[0], "readq") == 0) { uint64_t addr; uint64_t value = UINT64_C(-1); int ret; g_assert(words[1]); ret = qemu_strtou64(words[1], NULL, 0, &addr); g_assert(ret == 0); if (words[0][4] == 'b') { uint8_t data; address_space_read(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, &data, 1); value = data; } else if (words[0][4] == 'w') { uint16_t data; address_space_read(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, &data, 2); value = tswap16(data); } else if (words[0][4] == 'l') { uint32_t data; address_space_read(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, &data, 4); value = tswap32(data); } else if (words[0][4] == 'q') { address_space_read(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, &value, 8); tswap64s(&value); } qtest_send_prefix(chr); qtest_sendf(chr, "OK 0x%016" PRIx64 "\n", value); } else if (strcmp(words[0], "read") == 0) { uint64_t addr, len, i; uint8_t *data; char *enc; int ret; g_assert(words[1] && words[2]); ret = qemu_strtou64(words[1], NULL, 0, &addr); g_assert(ret == 0); ret = qemu_strtou64(words[2], NULL, 0, &len); g_assert(ret == 0); /* We'd send garbage to libqtest if len is 0 */ g_assert(len); data = g_malloc(len); address_space_read(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, data, len); enc = g_malloc(2 * len + 1); for (i = 0; i < len; i++) { sprintf(&enc[i * 2], "%02x", data[i]); } qtest_send_prefix(chr); qtest_sendf(chr, "OK 0x%s\n", enc); g_free(data); g_free(enc); } else if (strcmp(words[0], "b64read") == 0) { uint64_t addr, len; uint8_t *data; gchar *b64_data; int ret; g_assert(words[1] && words[2]); ret = qemu_strtou64(words[1], NULL, 0, &addr); g_assert(ret == 0); ret = qemu_strtou64(words[2], NULL, 0, &len); g_assert(ret == 0); data = g_malloc(len); address_space_read(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, data, len); b64_data = g_base64_encode(data, len); qtest_send_prefix(chr); qtest_sendf(chr, "OK %s\n", b64_data); g_free(data); g_free(b64_data); } else if (strcmp(words[0], "write") == 0) { uint64_t addr, len, i; uint8_t *data; size_t data_len; int ret; g_assert(words[1] && words[2] && words[3]); ret = qemu_strtou64(words[1], NULL, 0, &addr); g_assert(ret == 0); ret = qemu_strtou64(words[2], NULL, 0, &len); g_assert(ret == 0); data_len = strlen(words[3]); if (data_len < 3) { qtest_send(chr, "ERR invalid argument size\n"); return; } data = g_malloc(len); for (i = 0; i < len; i++) { if ((i * 2 + 4) <= data_len) { data[i] = hex2nib(words[3][i * 2 + 2]) << 4; data[i] |= hex2nib(words[3][i * 2 + 3]); } else { data[i] = 0; } } address_space_write(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, data, len); g_free(data); qtest_send_prefix(chr); qtest_send(chr, "OK\n"); } else if (strcmp(words[0], "memset") == 0) { uint64_t addr, len; uint8_t *data; unsigned long pattern; int ret; g_assert(words[1] && words[2] && words[3]); ret = qemu_strtou64(words[1], NULL, 0, &addr); g_assert(ret == 0); ret = qemu_strtou64(words[2], NULL, 0, &len); g_assert(ret == 0); ret = qemu_strtoul(words[3], NULL, 0, &pattern); g_assert(ret == 0); if (len) { data = g_malloc(len); memset(data, pattern, len); address_space_write(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, data, len); g_free(data); } qtest_send_prefix(chr); qtest_send(chr, "OK\n"); } else if (strcmp(words[0], "b64write") == 0) { uint64_t addr, len; uint8_t *data; size_t data_len; gsize out_len; int ret; g_assert(words[1] && words[2] && words[3]); ret = qemu_strtou64(words[1], NULL, 0, &addr); g_assert(ret == 0); ret = qemu_strtou64(words[2], NULL, 0, &len); g_assert(ret == 0); data_len = strlen(words[3]); if (data_len < 3) { qtest_send(chr, "ERR invalid argument size\n"); return; } data = g_base64_decode_inplace(words[3], &out_len); if (out_len != len) { qtest_log_send("b64write: data length mismatch (told %"PRIu64", " "found %zu)\n", len, out_len); out_len = MIN(out_len, len); } address_space_write(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, data, len); qtest_send_prefix(chr); qtest_send(chr, "OK\n"); } else if (strcmp(words[0], "endianness") == 0) { qtest_send_prefix(chr); #if TARGET_BIG_ENDIAN qtest_sendf(chr, "OK big\n"); #else qtest_sendf(chr, "OK little\n"); #endif #ifdef CONFIG_PSERIES } else if (strcmp(words[0], "rtas") == 0) { uint64_t res, args, ret; unsigned long nargs, nret; int rc; rc = qemu_strtoul(words[2], NULL, 0, &nargs); g_assert(rc == 0); rc = qemu_strtou64(words[3], NULL, 0, &args); g_assert(rc == 0); rc = qemu_strtoul(words[4], NULL, 0, &nret); g_assert(rc == 0); rc = qemu_strtou64(words[5], NULL, 0, &ret); g_assert(rc == 0); res = qtest_rtas_call(words[1], nargs, args, nret, ret); qtest_send_prefix(chr); qtest_sendf(chr, "OK %"PRIu64"\n", res); #endif } else if (qtest_enabled() && strcmp(words[0], "clock_step") == 0) { int64_t ns; if (words[1]) { int ret = qemu_strtoi64(words[1], NULL, 0, &ns); g_assert(ret == 0); } else { ns = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL, QEMU_TIMER_ATTR_ALL); } qtest_clock_warp(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns); qtest_send_prefix(chr); qtest_sendf(chr, "OK %"PRIi64"\n", (int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); } else if (strcmp(words[0], "module_load") == 0) { g_assert(words[1] && words[2]); qtest_send_prefix(chr); if (module_load_one(words[1], words[2], false)) { qtest_sendf(chr, "OK\n"); } else { qtest_sendf(chr, "FAIL\n"); } } else if (qtest_enabled() && strcmp(words[0], "clock_set") == 0) { int64_t ns; int ret; g_assert(words[1]); ret = qemu_strtoi64(words[1], NULL, 0, &ns); g_assert(ret == 0); qtest_clock_warp(ns); qtest_send_prefix(chr); qtest_sendf(chr, "OK %"PRIi64"\n", (int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); } else { qtest_send_prefix(chr); qtest_sendf(chr, "FAIL Unknown command '%s'\n", words[0]); } } static void qtest_process_inbuf(CharBackend *chr, GString *inbuf) { char *end; while ((end = strchr(inbuf->str, '\n')) != NULL) { size_t offset; GString *cmd; gchar **words; offset = end - inbuf->str; cmd = g_string_new_len(inbuf->str, offset); g_string_erase(inbuf, 0, offset + 1); words = g_strsplit(cmd->str, " ", 0); qtest_process_command(chr, words); g_strfreev(words); g_string_free(cmd, TRUE); } } static void qtest_read(void *opaque, const uint8_t *buf, int size) { CharBackend *chr = opaque; g_string_append_len(inbuf, (const gchar *)buf, size); qtest_process_inbuf(chr, inbuf); } static int qtest_can_read(void *opaque) { return 1024; } static void qtest_event(void *opaque, QEMUChrEvent event) { int i; switch (event) { case CHR_EVENT_OPENED: /* * We used to call qemu_system_reset() here, hoping we could * use the same process for multiple tests that way. Never * used. Injects an extra reset even when it's not used, and * that can mess up tests, e.g. -boot once. */ for (i = 0; i < ARRAY_SIZE(irq_levels); i++) { irq_levels[i] = 0; } g_clear_pointer(&timer, g_timer_destroy); timer = g_timer_new(); qtest_opened = true; if (qtest_log_fp) { fprintf(qtest_log_fp, "[I " FMT_timeval "] OPENED\n", g_timer_elapsed(timer, NULL)); } break; case CHR_EVENT_CLOSED: qtest_opened = false; if (qtest_log_fp) { fprintf(qtest_log_fp, "[I +" FMT_timeval "] CLOSED\n", g_timer_elapsed(timer, NULL)); } g_clear_pointer(&timer, g_timer_destroy); break; default: break; } } void qtest_server_init(const char *qtest_chrdev, const char *qtest_log, Error **errp) { ERRP_GUARD(); Chardev *chr; Object *qtest; chr = qemu_chr_new("qtest", qtest_chrdev, NULL); if (chr == NULL) { error_setg(errp, "Failed to initialize device for qtest: \"%s\"", qtest_chrdev); return; } qtest = object_new(TYPE_QTEST); object_property_set_str(qtest, "chardev", "qtest", &error_abort); if (qtest_log) { object_property_set_str(qtest, "log", qtest_log, &error_abort); } object_property_add_child(qdev_get_machine(), "qtest", qtest); user_creatable_complete(USER_CREATABLE(qtest), errp); if (*errp) { object_unparent(qtest); } object_unref(OBJECT(chr)); object_unref(qtest); } static bool qtest_server_start(QTest *q, Error **errp) { Chardev *chr = q->chr; const char *qtest_log = q->log; if (qtest_log) { if (strcmp(qtest_log, "none") != 0) { qtest_log_fp = fopen(qtest_log, "w+"); } } else { qtest_log_fp = stderr; } if (!qemu_chr_fe_init(&q->qtest_chr, chr, errp)) { return false; } qemu_chr_fe_set_handlers(&q->qtest_chr, qtest_can_read, qtest_read, qtest_event, NULL, &q->qtest_chr, NULL, true); qemu_chr_fe_set_echo(&q->qtest_chr, true); inbuf = g_string_new(""); if (!qtest_server_send) { qtest_server_set_send_handler(qtest_server_char_be_send, &q->qtest_chr); } qtest = q; return true; } void qtest_server_set_send_handler(void (*send)(void*, const char*), void *opaque) { qtest_server_send = send; qtest_server_send_opaque = opaque; } bool qtest_driver(void) { return qtest && qtest->qtest_chr.chr != NULL; } void qtest_server_inproc_recv(void *dummy, const char *buf) { static GString *gstr; if (!gstr) { gstr = g_string_new(NULL); } g_string_append(gstr, buf); if (gstr->str[gstr->len - 1] == '\n') { qtest_process_inbuf(NULL, gstr); g_string_truncate(gstr, 0); } } static void qtest_complete(UserCreatable *uc, Error **errp) { QTest *q = QTEST(uc); if (qtest) { error_setg(errp, "Only one instance of qtest can be created"); return; } if (!q->chr_name) { error_setg(errp, "No backend specified"); return; } if (OBJECT(uc)->parent != qdev_get_machine()) { q->has_machine_link = true; object_property_add_const_link(qdev_get_machine(), "qtest", OBJECT(uc)); } else { /* -qtest was used. */ } qtest_server_start(q, errp); } static void qtest_unparent(Object *obj) { QTest *q = QTEST(obj); if (qtest == q) { qemu_chr_fe_disconnect(&q->qtest_chr); assert(!qtest_opened); qemu_chr_fe_deinit(&q->qtest_chr, false); if (qtest_log_fp) { fclose(qtest_log_fp); qtest_log_fp = NULL; } qtest = NULL; } if (q->has_machine_link) { object_property_del(qdev_get_machine(), "qtest"); q->has_machine_link = false; } } static void qtest_set_log(Object *obj, const char *value, Error **errp) { QTest *q = QTEST(obj); if (qtest == q) { error_setg(errp, "Property 'log' can not be set now"); } else { g_free(q->log); q->log = g_strdup(value); } } static char *qtest_get_log(Object *obj, Error **errp) { QTest *q = QTEST(obj); return g_strdup(q->log); } static void qtest_set_chardev(Object *obj, const char *value, Error **errp) { QTest *q = QTEST(obj); Chardev *chr; if (qtest == q) { error_setg(errp, "Property 'chardev' can not be set now"); return; } chr = qemu_chr_find(value); if (!chr) { error_setg(errp, "Cannot find character device '%s'", value); return; } g_free(q->chr_name); q->chr_name = g_strdup(value); if (q->chr) { object_unref(q->chr); } q->chr = chr; object_ref(chr); } static char *qtest_get_chardev(Object *obj, Error **errp) { QTest *q = QTEST(obj); return g_strdup(q->chr_name); } static void qtest_class_init(ObjectClass *oc, void *data) { UserCreatableClass *ucc = USER_CREATABLE_CLASS(oc); oc->unparent = qtest_unparent; ucc->complete = qtest_complete; object_class_property_add_str(oc, "chardev", qtest_get_chardev, qtest_set_chardev); object_class_property_add_str(oc, "log", qtest_get_log, qtest_set_log); } static const TypeInfo qtest_info = { .name = TYPE_QTEST, .parent = TYPE_OBJECT, .class_init = qtest_class_init, .instance_size = sizeof(QTest), .interfaces = (InterfaceInfo[]) { { TYPE_USER_CREATABLE }, { } } }; static void register_types(void) { type_register_static(&qtest_info); } type_init(register_types);