/* * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include "fpu/softfloat.h" #include "cpu.h" #include "fma_emu.h" #include "arch.h" #include "macros.h" #define SF_BIAS 127 #define SF_MAXEXP 254 #define SF_MANTBITS 23 #define float32_nan make_float32(0xffffffff) /* * These three tables are used by the cabacdecbin instruction */ const uint8_t rLPS_table_64x4[64][4] = { {128, 176, 208, 240}, {128, 167, 197, 227}, {128, 158, 187, 216}, {123, 150, 178, 205}, {116, 142, 169, 195}, {111, 135, 160, 185}, {105, 128, 152, 175}, {100, 122, 144, 166}, {95, 116, 137, 158}, {90, 110, 130, 150}, {85, 104, 123, 142}, {81, 99, 117, 135}, {77, 94, 111, 128}, {73, 89, 105, 122}, {69, 85, 100, 116}, {66, 80, 95, 110}, {62, 76, 90, 104}, {59, 72, 86, 99}, {56, 69, 81, 94}, {53, 65, 77, 89}, {51, 62, 73, 85}, {48, 59, 69, 80}, {46, 56, 66, 76}, {43, 53, 63, 72}, {41, 50, 59, 69}, {39, 48, 56, 65}, {37, 45, 54, 62}, {35, 43, 51, 59}, {33, 41, 48, 56}, {32, 39, 46, 53}, {30, 37, 43, 50}, {29, 35, 41, 48}, {27, 33, 39, 45}, {26, 31, 37, 43}, {24, 30, 35, 41}, {23, 28, 33, 39}, {22, 27, 32, 37}, {21, 26, 30, 35}, {20, 24, 29, 33}, {19, 23, 27, 31}, {18, 22, 26, 30}, {17, 21, 25, 28}, {16, 20, 23, 27}, {15, 19, 22, 25}, {14, 18, 21, 24}, {14, 17, 20, 23}, {13, 16, 19, 22}, {12, 15, 18, 21}, {12, 14, 17, 20}, {11, 14, 16, 19}, {11, 13, 15, 18}, {10, 12, 15, 17}, {10, 12, 14, 16}, {9, 11, 13, 15}, {9, 11, 12, 14}, {8, 10, 12, 14}, {8, 9, 11, 13}, {7, 9, 11, 12}, {7, 9, 10, 12}, {7, 8, 10, 11}, {6, 8, 9, 11}, {6, 7, 9, 10}, {6, 7, 8, 9}, {2, 2, 2, 2} }; const uint8_t AC_next_state_MPS_64[64] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 62, 63 }; const uint8_t AC_next_state_LPS_64[64] = { 0, 0, 1, 2, 2, 4, 4, 5, 6, 7, 8, 9, 9, 11, 11, 12, 13, 13, 15, 15, 16, 16, 18, 18, 19, 19, 21, 21, 22, 22, 23, 24, 24, 25, 26, 26, 27, 27, 28, 29, 29, 30, 30, 30, 31, 32, 32, 33, 33, 33, 34, 34, 35, 35, 35, 36, 36, 36, 37, 37, 37, 38, 38, 63 }; #define BITS_MASK_8 0x5555555555555555ULL #define PAIR_MASK_8 0x3333333333333333ULL #define NYBL_MASK_8 0x0f0f0f0f0f0f0f0fULL #define BYTE_MASK_8 0x00ff00ff00ff00ffULL #define HALF_MASK_8 0x0000ffff0000ffffULL #define WORD_MASK_8 0x00000000ffffffffULL uint64_t interleave(uint32_t odd, uint32_t even) { /* Convert to long long */ uint64_t myodd = odd; uint64_t myeven = even; /* First, spread bits out */ myodd = (myodd | (myodd << 16)) & HALF_MASK_8; myeven = (myeven | (myeven << 16)) & HALF_MASK_8; myodd = (myodd | (myodd << 8)) & BYTE_MASK_8; myeven = (myeven | (myeven << 8)) & BYTE_MASK_8; myodd = (myodd | (myodd << 4)) & NYBL_MASK_8; myeven = (myeven | (myeven << 4)) & NYBL_MASK_8; myodd = (myodd | (myodd << 2)) & PAIR_MASK_8; myeven = (myeven | (myeven << 2)) & PAIR_MASK_8; myodd = (myodd | (myodd << 1)) & BITS_MASK_8; myeven = (myeven | (myeven << 1)) & BITS_MASK_8; /* Now OR together */ return myeven | (myodd << 1); } uint64_t deinterleave(uint64_t src) { /* Get odd and even bits */ uint64_t myodd = ((src >> 1) & BITS_MASK_8); uint64_t myeven = (src & BITS_MASK_8); /* Unspread bits */ myeven = (myeven | (myeven >> 1)) & PAIR_MASK_8; myodd = (myodd | (myodd >> 1)) & PAIR_MASK_8; myeven = (myeven | (myeven >> 2)) & NYBL_MASK_8; myodd = (myodd | (myodd >> 2)) & NYBL_MASK_8; myeven = (myeven | (myeven >> 4)) & BYTE_MASK_8; myodd = (myodd | (myodd >> 4)) & BYTE_MASK_8; myeven = (myeven | (myeven >> 8)) & HALF_MASK_8; myodd = (myodd | (myodd >> 8)) & HALF_MASK_8; myeven = (myeven | (myeven >> 16)) & WORD_MASK_8; myodd = (myodd | (myodd >> 16)) & WORD_MASK_8; /* Return odd bits in upper half */ return myeven | (myodd << 32); } int32_t conv_round(int32_t a, int n) { int64_t val; if (n == 0) { val = a; } else if ((a & ((1 << (n - 1)) - 1)) == 0) { /* N-1..0 all zero? */ /* Add LSB from int part */ val = ((fSE32_64(a)) + (int64_t) (((uint32_t) ((1 << n) & a)) >> 1)); } else { val = ((fSE32_64(a)) + (1 << (n - 1))); } val = val >> n; return (int32_t)val; } /* Floating Point Stuff */ static const FloatRoundMode softfloat_roundingmodes[] = { float_round_nearest_even, float_round_to_zero, float_round_down, float_round_up, }; void arch_fpop_start(CPUHexagonState *env) { set_float_exception_flags(0, &env->fp_status); set_float_rounding_mode( softfloat_roundingmodes[fREAD_REG_FIELD(USR, USR_FPRND)], &env->fp_status); } #ifdef CONFIG_USER_ONLY /* * Hexagon Linux kernel only sets the relevant bits in USR (user status * register). The exception isn't raised to user mode, so we don't * model it in qemu user mode. */ #define RAISE_FP_EXCEPTION do {} while (0) #endif #define SOFTFLOAT_TEST_FLAG(FLAG, MYF, MYE) \ do { \ if (flags & FLAG) { \ if (GET_USR_FIELD(USR_##MYF) == 0) { \ SET_USR_FIELD(USR_##MYF, 1); \ if (GET_USR_FIELD(USR_##MYE)) { \ RAISE_FP_EXCEPTION; \ } \ } \ } \ } while (0) void arch_fpop_end(CPUHexagonState *env) { int flags = get_float_exception_flags(&env->fp_status); if (flags != 0) { SOFTFLOAT_TEST_FLAG(float_flag_inexact, FPINPF, FPINPE); SOFTFLOAT_TEST_FLAG(float_flag_divbyzero, FPDBZF, FPDBZE); SOFTFLOAT_TEST_FLAG(float_flag_invalid, FPINVF, FPINVE); SOFTFLOAT_TEST_FLAG(float_flag_overflow, FPOVFF, FPOVFE); SOFTFLOAT_TEST_FLAG(float_flag_underflow, FPUNFF, FPUNFE); } } int arch_sf_recip_common(float32 *Rs, float32 *Rt, float32 *Rd, int *adjust, float_status *fp_status) { int n_exp; int d_exp; int ret = 0; float32 RsV, RtV, RdV; int PeV = 0; RsV = *Rs; RtV = *Rt; if (float32_is_any_nan(RsV) && float32_is_any_nan(RtV)) { if (extract32(RsV & RtV, 22, 1) == 0) { float_raise(float_flag_invalid, fp_status); } RdV = RsV = RtV = float32_nan; } else if (float32_is_any_nan(RsV)) { if (extract32(RsV, 22, 1) == 0) { float_raise(float_flag_invalid, fp_status); } RdV = RsV = RtV = float32_nan; } else if (float32_is_any_nan(RtV)) { /* or put NaN in num/den fixup? */ if (extract32(RtV, 22, 1) == 0) { float_raise(float_flag_invalid, fp_status); } RdV = RsV = RtV = float32_nan; } else if (float32_is_infinity(RsV) && float32_is_infinity(RtV)) { /* or put Inf in num fixup? */ RdV = RsV = RtV = float32_nan; float_raise(float_flag_invalid, fp_status); } else if (float32_is_zero(RsV) && float32_is_zero(RtV)) { /* or put zero in num fixup? */ RdV = RsV = RtV = float32_nan; float_raise(float_flag_invalid, fp_status); } else if (float32_is_zero(RtV)) { /* or put Inf in num fixup? */ uint8_t RsV_sign = float32_is_neg(RsV); uint8_t RtV_sign = float32_is_neg(RtV); /* Check that RsV is NOT infinite before we overwrite it */ if (!float32_is_infinity(RsV)) { float_raise(float_flag_divbyzero, fp_status); } RsV = infinite_float32(RsV_sign ^ RtV_sign); RtV = float32_one; RdV = float32_one; } else if (float32_is_infinity(RtV)) { RsV = make_float32(0x80000000 & (RsV ^ RtV)); RtV = float32_one; RdV = float32_one; } else if (float32_is_zero(RsV)) { /* Does this just work itself out? */ /* No, 0/Inf causes problems. */ RsV = make_float32(0x80000000 & (RsV ^ RtV)); RtV = float32_one; RdV = float32_one; } else if (float32_is_infinity(RsV)) { uint8_t RsV_sign = float32_is_neg(RsV); uint8_t RtV_sign = float32_is_neg(RtV); RsV = infinite_float32(RsV_sign ^ RtV_sign); RtV = float32_one; RdV = float32_one; } else { PeV = 0x00; /* Basic checks passed */ n_exp = float32_getexp(RsV); d_exp = float32_getexp(RtV); if ((n_exp - d_exp + SF_BIAS) <= SF_MANTBITS) { /* Near quotient underflow / inexact Q */ PeV = 0x80; RtV = float32_scalbn(RtV, -64, fp_status); RsV = float32_scalbn(RsV, 64, fp_status); } else if ((n_exp - d_exp + SF_BIAS) > (SF_MAXEXP - 24)) { /* Near quotient overflow */ PeV = 0x40; RtV = float32_scalbn(RtV, 32, fp_status); RsV = float32_scalbn(RsV, -32, fp_status); } else if (n_exp <= SF_MANTBITS + 2) { RtV = float32_scalbn(RtV, 64, fp_status); RsV = float32_scalbn(RsV, 64, fp_status); } else if (d_exp <= 1) { RtV = float32_scalbn(RtV, 32, fp_status); RsV = float32_scalbn(RsV, 32, fp_status); } else if (d_exp > 252) { RtV = float32_scalbn(RtV, -32, fp_status); RsV = float32_scalbn(RsV, -32, fp_status); } RdV = 0; ret = 1; } *Rs = RsV; *Rt = RtV; *Rd = RdV; *adjust = PeV; return ret; } int arch_sf_invsqrt_common(float32 *Rs, float32 *Rd, int *adjust, float_status *fp_status) { float32 RsV, RdV; int PeV = 0; int r_exp; int ret = 0; RsV = *Rs; if (float32_is_any_nan(RsV)) { if (extract32(RsV, 22, 1) == 0) { float_raise(float_flag_invalid, fp_status); } RdV = RsV = float32_nan; } else if (float32_lt(RsV, float32_zero, fp_status)) { /* Negative nonzero values are NaN */ float_raise(float_flag_invalid, fp_status); RsV = float32_nan; RdV = float32_nan; } else if (float32_is_infinity(RsV)) { /* or put Inf in num fixup? */ RsV = infinite_float32(1); RdV = infinite_float32(1); } else if (float32_is_zero(RsV)) { /* or put zero in num fixup? */ RdV = float32_one; } else { PeV = 0x00; /* Basic checks passed */ r_exp = float32_getexp(RsV); if (r_exp <= 24) { RsV = float32_scalbn(RsV, 64, fp_status); PeV = 0xe0; } RdV = 0; ret = 1; } *Rs = RsV; *Rd = RdV; *adjust = PeV; return ret; } const uint8_t recip_lookup_table[128] = { 0x0fe, 0x0fa, 0x0f6, 0x0f2, 0x0ef, 0x0eb, 0x0e7, 0x0e4, 0x0e0, 0x0dd, 0x0d9, 0x0d6, 0x0d2, 0x0cf, 0x0cc, 0x0c9, 0x0c6, 0x0c2, 0x0bf, 0x0bc, 0x0b9, 0x0b6, 0x0b3, 0x0b1, 0x0ae, 0x0ab, 0x0a8, 0x0a5, 0x0a3, 0x0a0, 0x09d, 0x09b, 0x098, 0x096, 0x093, 0x091, 0x08e, 0x08c, 0x08a, 0x087, 0x085, 0x083, 0x080, 0x07e, 0x07c, 0x07a, 0x078, 0x075, 0x073, 0x071, 0x06f, 0x06d, 0x06b, 0x069, 0x067, 0x065, 0x063, 0x061, 0x05f, 0x05e, 0x05c, 0x05a, 0x058, 0x056, 0x054, 0x053, 0x051, 0x04f, 0x04e, 0x04c, 0x04a, 0x049, 0x047, 0x045, 0x044, 0x042, 0x040, 0x03f, 0x03d, 0x03c, 0x03a, 0x039, 0x037, 0x036, 0x034, 0x033, 0x032, 0x030, 0x02f, 0x02d, 0x02c, 0x02b, 0x029, 0x028, 0x027, 0x025, 0x024, 0x023, 0x021, 0x020, 0x01f, 0x01e, 0x01c, 0x01b, 0x01a, 0x019, 0x017, 0x016, 0x015, 0x014, 0x013, 0x012, 0x011, 0x00f, 0x00e, 0x00d, 0x00c, 0x00b, 0x00a, 0x009, 0x008, 0x007, 0x006, 0x005, 0x004, 0x003, 0x002, 0x000, }; const uint8_t invsqrt_lookup_table[128] = { 0x069, 0x066, 0x063, 0x061, 0x05e, 0x05b, 0x059, 0x057, 0x054, 0x052, 0x050, 0x04d, 0x04b, 0x049, 0x047, 0x045, 0x043, 0x041, 0x03f, 0x03d, 0x03b, 0x039, 0x037, 0x036, 0x034, 0x032, 0x030, 0x02f, 0x02d, 0x02c, 0x02a, 0x028, 0x027, 0x025, 0x024, 0x022, 0x021, 0x01f, 0x01e, 0x01d, 0x01b, 0x01a, 0x019, 0x017, 0x016, 0x015, 0x014, 0x012, 0x011, 0x010, 0x00f, 0x00d, 0x00c, 0x00b, 0x00a, 0x009, 0x008, 0x007, 0x006, 0x005, 0x004, 0x003, 0x002, 0x001, 0x0fe, 0x0fa, 0x0f6, 0x0f3, 0x0ef, 0x0eb, 0x0e8, 0x0e4, 0x0e1, 0x0de, 0x0db, 0x0d7, 0x0d4, 0x0d1, 0x0ce, 0x0cb, 0x0c9, 0x0c6, 0x0c3, 0x0c0, 0x0be, 0x0bb, 0x0b8, 0x0b6, 0x0b3, 0x0b1, 0x0af, 0x0ac, 0x0aa, 0x0a8, 0x0a5, 0x0a3, 0x0a1, 0x09f, 0x09d, 0x09b, 0x099, 0x097, 0x095, 0x093, 0x091, 0x08f, 0x08d, 0x08b, 0x089, 0x087, 0x086, 0x084, 0x082, 0x080, 0x07f, 0x07d, 0x07b, 0x07a, 0x078, 0x077, 0x075, 0x074, 0x072, 0x071, 0x06f, 0x06e, 0x06c, 0x06b, };