/* * QEMU PowerPC sPAPR IRQ interface * * Copyright (c) 2018, IBM Corporation. * * This code is licensed under the GPL version 2 or later. See the * COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "hw/irq.h" #include "hw/ppc/spapr.h" #include "hw/ppc/spapr_cpu_core.h" #include "hw/ppc/spapr_xive.h" #include "hw/ppc/xics.h" #include "hw/ppc/xics_spapr.h" #include "hw/qdev-properties.h" #include "cpu-models.h" #include "sysemu/kvm.h" #include "trace.h" void spapr_irq_msi_init(SpaprMachineState *spapr, uint32_t nr_msis) { spapr->irq_map_nr = nr_msis; spapr->irq_map = bitmap_new(spapr->irq_map_nr); } int spapr_irq_msi_alloc(SpaprMachineState *spapr, uint32_t num, bool align, Error **errp) { int irq; /* * The 'align_mask' parameter of bitmap_find_next_zero_area() * should be one less than a power of 2; 0 means no * alignment. Adapt the 'align' value of the former allocator * to fit the requirements of bitmap_find_next_zero_area() */ align -= 1; irq = bitmap_find_next_zero_area(spapr->irq_map, spapr->irq_map_nr, 0, num, align); if (irq == spapr->irq_map_nr) { error_setg(errp, "can't find a free %d-IRQ block", num); return -1; } bitmap_set(spapr->irq_map, irq, num); return irq + SPAPR_IRQ_MSI; } void spapr_irq_msi_free(SpaprMachineState *spapr, int irq, uint32_t num) { bitmap_clear(spapr->irq_map, irq - SPAPR_IRQ_MSI, num); } static void spapr_irq_init_kvm(SpaprMachineState *spapr, SpaprIrq *irq, Error **errp) { MachineState *machine = MACHINE(spapr); Error *local_err = NULL; if (kvm_enabled() && machine_kernel_irqchip_allowed(machine)) { irq->init_kvm(spapr, &local_err); if (local_err && machine_kernel_irqchip_required(machine)) { error_prepend(&local_err, "kernel_irqchip requested but unavailable: "); error_propagate(errp, local_err); return; } if (!local_err) { return; } /* * We failed to initialize the KVM device, fallback to * emulated mode */ error_prepend(&local_err, "kernel_irqchip allowed but unavailable: "); error_append_hint(&local_err, "Falling back to kernel-irqchip=off\n"); warn_report_err(local_err); } } /* * XICS IRQ backend. */ static void spapr_irq_init_xics(SpaprMachineState *spapr, Error **errp) { Object *obj; Error *local_err = NULL; obj = object_new(TYPE_ICS_SPAPR); object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort); object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr), &error_fatal); object_property_set_int(obj, spapr->irq->nr_xirqs, "nr-irqs", &error_fatal); object_property_set_bool(obj, true, "realized", &local_err); if (local_err) { error_propagate(errp, local_err); return; } spapr->ics = ICS_SPAPR(obj); } static int spapr_irq_claim_xics(SpaprMachineState *spapr, int irq, bool lsi, Error **errp) { ICSState *ics = spapr->ics; assert(ics); if (!ics_valid_irq(ics, irq)) { error_setg(errp, "IRQ %d is invalid", irq); return -1; } if (!ics_irq_free(ics, irq - ics->offset)) { error_setg(errp, "IRQ %d is not free", irq); return -1; } ics_set_irq_type(ics, irq - ics->offset, lsi); return 0; } static void spapr_irq_free_xics(SpaprMachineState *spapr, int irq) { ICSState *ics = spapr->ics; uint32_t srcno = irq - ics->offset; if (ics_valid_irq(ics, irq)) { memset(&ics->irqs[srcno], 0, sizeof(ICSIRQState)); } } static void spapr_irq_print_info_xics(SpaprMachineState *spapr, Monitor *mon) { CPUState *cs; CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); icp_pic_print_info(spapr_cpu_state(cpu)->icp, mon); } ics_pic_print_info(spapr->ics, mon); } static void spapr_irq_cpu_intc_create_xics(SpaprMachineState *spapr, PowerPCCPU *cpu, Error **errp) { Error *local_err = NULL; Object *obj; SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); obj = icp_create(OBJECT(cpu), TYPE_ICP, XICS_FABRIC(spapr), &local_err); if (local_err) { error_propagate(errp, local_err); return; } spapr_cpu->icp = ICP(obj); } static int spapr_irq_post_load_xics(SpaprMachineState *spapr, int version_id) { if (!kvm_irqchip_in_kernel()) { CPUState *cs; CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); icp_resend(spapr_cpu_state(cpu)->icp); } } return 0; } static void spapr_irq_set_irq_xics(void *opaque, int irq, int val) { SpaprMachineState *spapr = opaque; uint32_t srcno = irq - spapr->ics->offset; ics_set_irq(spapr->ics, srcno, val); } static void spapr_irq_reset_xics(SpaprMachineState *spapr, Error **errp) { Error *local_err = NULL; spapr_irq_init_kvm(spapr, &spapr_irq_xics, &local_err); if (local_err) { error_propagate(errp, local_err); return; } } static void spapr_irq_init_kvm_xics(SpaprMachineState *spapr, Error **errp) { if (kvm_enabled()) { xics_kvm_connect(spapr, errp); } } SpaprIrq spapr_irq_xics = { .nr_xirqs = SPAPR_NR_XIRQS, .nr_msis = SPAPR_NR_MSIS, .ov5 = SPAPR_OV5_XIVE_LEGACY, .init = spapr_irq_init_xics, .claim = spapr_irq_claim_xics, .free = spapr_irq_free_xics, .print_info = spapr_irq_print_info_xics, .dt_populate = spapr_dt_xics, .cpu_intc_create = spapr_irq_cpu_intc_create_xics, .post_load = spapr_irq_post_load_xics, .reset = spapr_irq_reset_xics, .set_irq = spapr_irq_set_irq_xics, .init_kvm = spapr_irq_init_kvm_xics, }; /* * XIVE IRQ backend. */ static void spapr_irq_init_xive(SpaprMachineState *spapr, Error **errp) { uint32_t nr_servers = spapr_max_server_number(spapr); DeviceState *dev; int i; dev = qdev_create(NULL, TYPE_SPAPR_XIVE); qdev_prop_set_uint32(dev, "nr-irqs", spapr->irq->nr_xirqs + SPAPR_XIRQ_BASE); /* * 8 XIVE END structures per CPU. One for each available priority */ qdev_prop_set_uint32(dev, "nr-ends", nr_servers << 3); qdev_init_nofail(dev); spapr->xive = SPAPR_XIVE(dev); /* Enable the CPU IPIs */ for (i = 0; i < nr_servers; ++i) { spapr_xive_irq_claim(spapr->xive, SPAPR_IRQ_IPI + i, false); } spapr_xive_hcall_init(spapr); } static int spapr_irq_claim_xive(SpaprMachineState *spapr, int irq, bool lsi, Error **errp) { if (!spapr_xive_irq_claim(spapr->xive, irq, lsi)) { error_setg(errp, "IRQ %d is invalid", irq); return -1; } return 0; } static void spapr_irq_free_xive(SpaprMachineState *spapr, int irq) { spapr_xive_irq_free(spapr->xive, irq); } static void spapr_irq_print_info_xive(SpaprMachineState *spapr, Monitor *mon) { CPUState *cs; CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon); } spapr_xive_pic_print_info(spapr->xive, mon); } static void spapr_irq_cpu_intc_create_xive(SpaprMachineState *spapr, PowerPCCPU *cpu, Error **errp) { Error *local_err = NULL; Object *obj; SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(spapr->xive), &local_err); if (local_err) { error_propagate(errp, local_err); return; } spapr_cpu->tctx = XIVE_TCTX(obj); /* * (TCG) Early setting the OS CAM line for hotplugged CPUs as they * don't beneficiate from the reset of the XIVE IRQ backend */ spapr_xive_set_tctx_os_cam(spapr_cpu->tctx); } static int spapr_irq_post_load_xive(SpaprMachineState *spapr, int version_id) { return spapr_xive_post_load(spapr->xive, version_id); } static void spapr_irq_reset_xive(SpaprMachineState *spapr, Error **errp) { CPUState *cs; Error *local_err = NULL; CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); /* (TCG) Set the OS CAM line of the thread interrupt context. */ spapr_xive_set_tctx_os_cam(spapr_cpu_state(cpu)->tctx); } spapr_irq_init_kvm(spapr, &spapr_irq_xive, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* Activate the XIVE MMIOs */ spapr_xive_mmio_set_enabled(spapr->xive, true); } static void spapr_irq_set_irq_xive(void *opaque, int irq, int val) { SpaprMachineState *spapr = opaque; if (kvm_irqchip_in_kernel()) { kvmppc_xive_source_set_irq(&spapr->xive->source, irq, val); } else { xive_source_set_irq(&spapr->xive->source, irq, val); } } static void spapr_irq_init_kvm_xive(SpaprMachineState *spapr, Error **errp) { if (kvm_enabled()) { kvmppc_xive_connect(spapr->xive, errp); } } SpaprIrq spapr_irq_xive = { .nr_xirqs = SPAPR_NR_XIRQS, .nr_msis = SPAPR_NR_MSIS, .ov5 = SPAPR_OV5_XIVE_EXPLOIT, .init = spapr_irq_init_xive, .claim = spapr_irq_claim_xive, .free = spapr_irq_free_xive, .print_info = spapr_irq_print_info_xive, .dt_populate = spapr_dt_xive, .cpu_intc_create = spapr_irq_cpu_intc_create_xive, .post_load = spapr_irq_post_load_xive, .reset = spapr_irq_reset_xive, .set_irq = spapr_irq_set_irq_xive, .init_kvm = spapr_irq_init_kvm_xive, }; /* * Dual XIVE and XICS IRQ backend. * * Both interrupt mode, XIVE and XICS, objects are created but the * machine starts in legacy interrupt mode (XICS). It can be changed * by the CAS negotiation process and, in that case, the new mode is * activated after an extra machine reset. */ /* * Returns the sPAPR IRQ backend negotiated by CAS. XICS is the * default. */ static SpaprIrq *spapr_irq_current(SpaprMachineState *spapr) { return spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT) ? &spapr_irq_xive : &spapr_irq_xics; } static void spapr_irq_init_dual(SpaprMachineState *spapr, Error **errp) { Error *local_err = NULL; spapr_irq_xics.init(spapr, &local_err); if (local_err) { error_propagate(errp, local_err); return; } spapr_irq_xive.init(spapr, &local_err); if (local_err) { error_propagate(errp, local_err); return; } } static int spapr_irq_claim_dual(SpaprMachineState *spapr, int irq, bool lsi, Error **errp) { Error *local_err = NULL; int ret; ret = spapr_irq_xics.claim(spapr, irq, lsi, &local_err); if (local_err) { error_propagate(errp, local_err); return ret; } ret = spapr_irq_xive.claim(spapr, irq, lsi, &local_err); if (local_err) { error_propagate(errp, local_err); return ret; } return ret; } static void spapr_irq_free_dual(SpaprMachineState *spapr, int irq) { spapr_irq_xics.free(spapr, irq); spapr_irq_xive.free(spapr, irq); } static void spapr_irq_print_info_dual(SpaprMachineState *spapr, Monitor *mon) { spapr_irq_current(spapr)->print_info(spapr, mon); } static void spapr_irq_dt_populate_dual(SpaprMachineState *spapr, uint32_t nr_servers, void *fdt, uint32_t phandle) { spapr_irq_current(spapr)->dt_populate(spapr, nr_servers, fdt, phandle); } static void spapr_irq_cpu_intc_create_dual(SpaprMachineState *spapr, PowerPCCPU *cpu, Error **errp) { Error *local_err = NULL; spapr_irq_xive.cpu_intc_create(spapr, cpu, &local_err); if (local_err) { error_propagate(errp, local_err); return; } spapr_irq_xics.cpu_intc_create(spapr, cpu, errp); } static int spapr_irq_post_load_dual(SpaprMachineState *spapr, int version_id) { /* * Force a reset of the XIVE backend after migration. The machine * defaults to XICS at startup. */ if (spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { if (kvm_irqchip_in_kernel()) { xics_kvm_disconnect(spapr, &error_fatal); } spapr_irq_xive.reset(spapr, &error_fatal); } return spapr_irq_current(spapr)->post_load(spapr, version_id); } static void spapr_irq_reset_dual(SpaprMachineState *spapr, Error **errp) { Error *local_err = NULL; /* * Deactivate the XIVE MMIOs. The XIVE backend will reenable them * if selected. */ spapr_xive_mmio_set_enabled(spapr->xive, false); /* Destroy all KVM devices */ if (kvm_irqchip_in_kernel()) { xics_kvm_disconnect(spapr, &local_err); if (local_err) { error_propagate(errp, local_err); error_prepend(errp, "KVM XICS disconnect failed: "); return; } kvmppc_xive_disconnect(spapr->xive, &local_err); if (local_err) { error_propagate(errp, local_err); error_prepend(errp, "KVM XIVE disconnect failed: "); return; } } spapr_irq_current(spapr)->reset(spapr, errp); } static void spapr_irq_set_irq_dual(void *opaque, int irq, int val) { SpaprMachineState *spapr = opaque; spapr_irq_current(spapr)->set_irq(spapr, irq, val); } /* * Define values in sync with the XIVE and XICS backend */ SpaprIrq spapr_irq_dual = { .nr_xirqs = SPAPR_NR_XIRQS, .nr_msis = SPAPR_NR_MSIS, .ov5 = SPAPR_OV5_XIVE_BOTH, .init = spapr_irq_init_dual, .claim = spapr_irq_claim_dual, .free = spapr_irq_free_dual, .print_info = spapr_irq_print_info_dual, .dt_populate = spapr_irq_dt_populate_dual, .cpu_intc_create = spapr_irq_cpu_intc_create_dual, .post_load = spapr_irq_post_load_dual, .reset = spapr_irq_reset_dual, .set_irq = spapr_irq_set_irq_dual, .init_kvm = NULL, /* should not be used */ }; static void spapr_irq_check(SpaprMachineState *spapr, Error **errp) { MachineState *machine = MACHINE(spapr); /* * Sanity checks on non-P9 machines. On these, XIVE is not * advertised, see spapr_dt_ov5_platform_support() */ if (!ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, spapr->max_compat_pvr)) { /* * If the 'dual' interrupt mode is selected, force XICS as CAS * negotiation is useless. */ if (spapr->irq == &spapr_irq_dual) { spapr->irq = &spapr_irq_xics; return; } /* * Non-P9 machines using only XIVE is a bogus setup. We have two * scenarios to take into account because of the compat mode: * * 1. POWER7/8 machines should fail to init later on when creating * the XIVE interrupt presenters because a POWER9 exception * model is required. * 2. POWER9 machines using the POWER8 compat mode won't fail and * will let the OS boot with a partial XIVE setup : DT * properties but no hcalls. * * To cover both and not confuse the OS, add an early failure in * QEMU. */ if (spapr->irq == &spapr_irq_xive) { error_setg(errp, "XIVE-only machines require a POWER9 CPU"); return; } } /* * On a POWER9 host, some older KVM XICS devices cannot be destroyed and * re-created. Detect that early to avoid QEMU to exit later when the * guest reboots. */ if (kvm_enabled() && spapr->irq == &spapr_irq_dual && machine_kernel_irqchip_required(machine) && xics_kvm_has_broken_disconnect(spapr)) { error_setg(errp, "KVM is too old to support ic-mode=dual,kernel-irqchip=on"); return; } } /* * sPAPR IRQ frontend routines for devices */ void spapr_irq_init(SpaprMachineState *spapr, Error **errp) { MachineState *machine = MACHINE(spapr); Error *local_err = NULL; if (machine_kernel_irqchip_split(machine)) { error_setg(errp, "kernel_irqchip split mode not supported on pseries"); return; } if (!kvm_enabled() && machine_kernel_irqchip_required(machine)) { error_setg(errp, "kernel_irqchip requested but only available with KVM"); return; } spapr_irq_check(spapr, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* Initialize the MSI IRQ allocator. */ if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { spapr_irq_msi_init(spapr, spapr->irq->nr_msis); } spapr->irq->init(spapr, errp); spapr->qirqs = qemu_allocate_irqs(spapr->irq->set_irq, spapr, spapr->irq->nr_xirqs + SPAPR_XIRQ_BASE); } int spapr_irq_claim(SpaprMachineState *spapr, int irq, bool lsi, Error **errp) { return spapr->irq->claim(spapr, irq, lsi, errp); } void spapr_irq_free(SpaprMachineState *spapr, int irq, int num) { int i; for (i = irq; i < (irq + num); i++) { spapr->irq->free(spapr, i); } } qemu_irq spapr_qirq(SpaprMachineState *spapr, int irq) { /* * This interface is basically for VIO and PHB devices to find the * right qemu_irq to manipulate, so we only allow access to the * external irqs for now. Currently anything which needs to * access the IPIs most naturally gets there via the guest side * interfaces, we can change this if we need to in future. */ assert(irq >= SPAPR_XIRQ_BASE); assert(irq < (spapr->irq->nr_xirqs + SPAPR_XIRQ_BASE)); if (spapr->ics) { assert(ics_valid_irq(spapr->ics, irq)); } if (spapr->xive) { assert(irq < spapr->xive->nr_irqs); assert(xive_eas_is_valid(&spapr->xive->eat[irq])); } return spapr->qirqs[irq]; } int spapr_irq_post_load(SpaprMachineState *spapr, int version_id) { return spapr->irq->post_load(spapr, version_id); } void spapr_irq_reset(SpaprMachineState *spapr, Error **errp) { assert(!spapr->irq_map || bitmap_empty(spapr->irq_map, spapr->irq_map_nr)); if (spapr->irq->reset) { spapr->irq->reset(spapr, errp); } } int spapr_irq_get_phandle(SpaprMachineState *spapr, void *fdt, Error **errp) { const char *nodename = "interrupt-controller"; int offset, phandle; offset = fdt_subnode_offset(fdt, 0, nodename); if (offset < 0) { error_setg(errp, "Can't find node \"%s\": %s", nodename, fdt_strerror(offset)); return -1; } phandle = fdt_get_phandle(fdt, offset); if (!phandle) { error_setg(errp, "Can't get phandle of node \"%s\"", nodename); return -1; } return phandle; } /* * XICS legacy routines - to deprecate one day */ static int ics_find_free_block(ICSState *ics, int num, int alignnum) { int first, i; for (first = 0; first < ics->nr_irqs; first += alignnum) { if (num > (ics->nr_irqs - first)) { return -1; } for (i = first; i < first + num; ++i) { if (!ics_irq_free(ics, i)) { break; } } if (i == (first + num)) { return first; } } return -1; } int spapr_irq_find(SpaprMachineState *spapr, int num, bool align, Error **errp) { ICSState *ics = spapr->ics; int first = -1; assert(ics); /* * MSIMesage::data is used for storing VIRQ so * it has to be aligned to num to support multiple * MSI vectors. MSI-X is not affected by this. * The hint is used for the first IRQ, the rest should * be allocated continuously. */ if (align) { assert((num == 1) || (num == 2) || (num == 4) || (num == 8) || (num == 16) || (num == 32)); first = ics_find_free_block(ics, num, num); } else { first = ics_find_free_block(ics, num, 1); } if (first < 0) { error_setg(errp, "can't find a free %d-IRQ block", num); return -1; } return first + ics->offset; } #define SPAPR_IRQ_XICS_LEGACY_NR_XIRQS 0x400 SpaprIrq spapr_irq_xics_legacy = { .nr_xirqs = SPAPR_IRQ_XICS_LEGACY_NR_XIRQS, .nr_msis = SPAPR_IRQ_XICS_LEGACY_NR_XIRQS, .ov5 = SPAPR_OV5_XIVE_LEGACY, .init = spapr_irq_init_xics, .claim = spapr_irq_claim_xics, .free = spapr_irq_free_xics, .print_info = spapr_irq_print_info_xics, .dt_populate = spapr_dt_xics, .cpu_intc_create = spapr_irq_cpu_intc_create_xics, .post_load = spapr_irq_post_load_xics, .reset = spapr_irq_reset_xics, .set_irq = spapr_irq_set_irq_xics, .init_kvm = spapr_irq_init_kvm_xics, };