/* * ARM Integrator CP System emulation. * * Copyright (c) 2005-2007 CodeSourcery. * Written by Paul Brook * * This code is licenced under the GPL */ #include "vl.h" #include "arm_pic.h" void DMA_run (void) { } typedef struct { uint32_t flash_offset; uint32_t cm_osc; uint32_t cm_ctrl; uint32_t cm_lock; uint32_t cm_auxosc; uint32_t cm_sdram; uint32_t cm_init; uint32_t cm_flags; uint32_t cm_nvflags; uint32_t int_level; uint32_t irq_enabled; uint32_t fiq_enabled; } integratorcm_state; static uint8_t integrator_spd[128] = { 128, 8, 4, 11, 9, 1, 64, 0, 2, 0xa0, 0xa0, 0, 0, 8, 0, 1, 0xe, 4, 0x1c, 1, 2, 0x20, 0xc0, 0, 0, 0, 0, 0x30, 0x28, 0x30, 0x28, 0x40 }; static uint32_t integratorcm_read(void *opaque, target_phys_addr_t offset) { integratorcm_state *s = (integratorcm_state *)opaque; offset -= 0x10000000; if (offset >= 0x100 && offset < 0x200) { /* CM_SPD */ if (offset >= 0x180) return 0; return integrator_spd[offset >> 2]; } switch (offset >> 2) { case 0: /* CM_ID */ return 0x411a3001; case 1: /* CM_PROC */ return 0; case 2: /* CM_OSC */ return s->cm_osc; case 3: /* CM_CTRL */ return s->cm_ctrl; case 4: /* CM_STAT */ return 0x00100000; case 5: /* CM_LOCK */ if (s->cm_lock == 0xa05f) { return 0x1a05f; } else { return s->cm_lock; } case 6: /* CM_LMBUSCNT */ /* ??? High frequency timer. */ cpu_abort(cpu_single_env, "integratorcm_read: CM_LMBUSCNT"); case 7: /* CM_AUXOSC */ return s->cm_auxosc; case 8: /* CM_SDRAM */ return s->cm_sdram; case 9: /* CM_INIT */ return s->cm_init; case 10: /* CM_REFCT */ /* ??? High frequency timer. */ cpu_abort(cpu_single_env, "integratorcm_read: CM_REFCT"); case 12: /* CM_FLAGS */ return s->cm_flags; case 14: /* CM_NVFLAGS */ return s->cm_nvflags; case 16: /* CM_IRQ_STAT */ return s->int_level & s->irq_enabled; case 17: /* CM_IRQ_RSTAT */ return s->int_level; case 18: /* CM_IRQ_ENSET */ return s->irq_enabled; case 20: /* CM_SOFT_INTSET */ return s->int_level & 1; case 24: /* CM_FIQ_STAT */ return s->int_level & s->fiq_enabled; case 25: /* CM_FIQ_RSTAT */ return s->int_level; case 26: /* CM_FIQ_ENSET */ return s->fiq_enabled; case 32: /* CM_VOLTAGE_CTL0 */ case 33: /* CM_VOLTAGE_CTL1 */ case 34: /* CM_VOLTAGE_CTL2 */ case 35: /* CM_VOLTAGE_CTL3 */ /* ??? Voltage control unimplemented. */ return 0; default: cpu_abort (cpu_single_env, "integratorcm_read: Unimplemented offset 0x%x\n", offset); return 0; } } static void integratorcm_do_remap(integratorcm_state *s, int flash) { if (flash) { cpu_register_physical_memory(0, 0x100000, IO_MEM_RAM); } else { cpu_register_physical_memory(0, 0x100000, s->flash_offset | IO_MEM_RAM); } //??? tlb_flush (cpu_single_env, 1); } static void integratorcm_set_ctrl(integratorcm_state *s, uint32_t value) { if (value & 8) { cpu_abort(cpu_single_env, "Board reset\n"); } if ((s->cm_init ^ value) & 4) { integratorcm_do_remap(s, (value & 4) == 0); } if ((s->cm_init ^ value) & 1) { printf("Green LED %s\n", (value & 1) ? "on" : "off"); } s->cm_init = (s->cm_init & ~ 5) | (value ^ 5); } static void integratorcm_update(integratorcm_state *s) { /* ??? The CPU irq/fiq is raised when either the core module or base PIC are active. */ if (s->int_level & (s->irq_enabled | s->fiq_enabled)) cpu_abort(cpu_single_env, "Core module interrupt\n"); } static void integratorcm_write(void *opaque, target_phys_addr_t offset, uint32_t value) { integratorcm_state *s = (integratorcm_state *)opaque; offset -= 0x10000000; switch (offset >> 2) { case 2: /* CM_OSC */ if (s->cm_lock == 0xa05f) s->cm_osc = value; break; case 3: /* CM_CTRL */ integratorcm_set_ctrl(s, value); break; case 5: /* CM_LOCK */ s->cm_lock = value & 0xffff; break; case 7: /* CM_AUXOSC */ if (s->cm_lock == 0xa05f) s->cm_auxosc = value; break; case 8: /* CM_SDRAM */ s->cm_sdram = value; break; case 9: /* CM_INIT */ /* ??? This can change the memory bus frequency. */ s->cm_init = value; break; case 12: /* CM_FLAGSS */ s->cm_flags |= value; break; case 13: /* CM_FLAGSC */ s->cm_flags &= ~value; break; case 14: /* CM_NVFLAGSS */ s->cm_nvflags |= value; break; case 15: /* CM_NVFLAGSS */ s->cm_nvflags &= ~value; break; case 18: /* CM_IRQ_ENSET */ s->irq_enabled |= value; integratorcm_update(s); break; case 19: /* CM_IRQ_ENCLR */ s->irq_enabled &= ~value; integratorcm_update(s); break; case 20: /* CM_SOFT_INTSET */ s->int_level |= (value & 1); integratorcm_update(s); break; case 21: /* CM_SOFT_INTCLR */ s->int_level &= ~(value & 1); integratorcm_update(s); break; case 26: /* CM_FIQ_ENSET */ s->fiq_enabled |= value; integratorcm_update(s); break; case 27: /* CM_FIQ_ENCLR */ s->fiq_enabled &= ~value; integratorcm_update(s); break; case 32: /* CM_VOLTAGE_CTL0 */ case 33: /* CM_VOLTAGE_CTL1 */ case 34: /* CM_VOLTAGE_CTL2 */ case 35: /* CM_VOLTAGE_CTL3 */ /* ??? Voltage control unimplemented. */ break; default: cpu_abort (cpu_single_env, "integratorcm_write: Unimplemented offset 0x%x\n", offset); break; } } /* Integrator/CM control registers. */ static CPUReadMemoryFunc *integratorcm_readfn[] = { integratorcm_read, integratorcm_read, integratorcm_read }; static CPUWriteMemoryFunc *integratorcm_writefn[] = { integratorcm_write, integratorcm_write, integratorcm_write }; static void integratorcm_init(int memsz, uint32_t flash_offset) { int iomemtype; integratorcm_state *s; s = (integratorcm_state *)qemu_mallocz(sizeof(integratorcm_state)); s->cm_osc = 0x01000048; /* ??? What should the high bits of this value be? */ s->cm_auxosc = 0x0007feff; s->cm_sdram = 0x00011122; if (memsz >= 256) { integrator_spd[31] = 64; s->cm_sdram |= 0x10; } else if (memsz >= 128) { integrator_spd[31] = 32; s->cm_sdram |= 0x0c; } else if (memsz >= 64) { integrator_spd[31] = 16; s->cm_sdram |= 0x08; } else if (memsz >= 32) { integrator_spd[31] = 4; s->cm_sdram |= 0x04; } else { integrator_spd[31] = 2; } memcpy(integrator_spd + 73, "QEMU-MEMORY", 11); s->cm_init = 0x00000112; s->flash_offset = flash_offset; iomemtype = cpu_register_io_memory(0, integratorcm_readfn, integratorcm_writefn, s); cpu_register_physical_memory(0x10000000, 0x00800000, iomemtype); integratorcm_do_remap(s, 1); /* ??? Save/restore. */ } /* Integrator/CP hardware emulation. */ /* Primary interrupt controller. */ typedef struct icp_pic_state { uint32_t base; uint32_t level; uint32_t irq_enabled; uint32_t fiq_enabled; qemu_irq parent_irq; qemu_irq parent_fiq; } icp_pic_state; static void icp_pic_update(icp_pic_state *s) { uint32_t flags; flags = (s->level & s->irq_enabled); qemu_set_irq(s->parent_irq, flags != 0); flags = (s->level & s->fiq_enabled); qemu_set_irq(s->parent_fiq, flags != 0); } static void icp_pic_set_irq(void *opaque, int irq, int level) { icp_pic_state *s = (icp_pic_state *)opaque; if (level) s->level |= 1 << irq; else s->level &= ~(1 << irq); icp_pic_update(s); } static uint32_t icp_pic_read(void *opaque, target_phys_addr_t offset) { icp_pic_state *s = (icp_pic_state *)opaque; offset -= s->base; switch (offset >> 2) { case 0: /* IRQ_STATUS */ return s->level & s->irq_enabled; case 1: /* IRQ_RAWSTAT */ return s->level; case 2: /* IRQ_ENABLESET */ return s->irq_enabled; case 4: /* INT_SOFTSET */ return s->level & 1; case 8: /* FRQ_STATUS */ return s->level & s->fiq_enabled; case 9: /* FRQ_RAWSTAT */ return s->level; case 10: /* FRQ_ENABLESET */ return s->fiq_enabled; case 3: /* IRQ_ENABLECLR */ case 5: /* INT_SOFTCLR */ case 11: /* FRQ_ENABLECLR */ default: printf ("icp_pic_read: Bad register offset 0x%x\n", (int)offset); return 0; } } static void icp_pic_write(void *opaque, target_phys_addr_t offset, uint32_t value) { icp_pic_state *s = (icp_pic_state *)opaque; offset -= s->base; switch (offset >> 2) { case 2: /* IRQ_ENABLESET */ s->irq_enabled |= value; break; case 3: /* IRQ_ENABLECLR */ s->irq_enabled &= ~value; break; case 4: /* INT_SOFTSET */ if (value & 1) icp_pic_set_irq(s, 0, 1); break; case 5: /* INT_SOFTCLR */ if (value & 1) icp_pic_set_irq(s, 0, 0); break; case 10: /* FRQ_ENABLESET */ s->fiq_enabled |= value; break; case 11: /* FRQ_ENABLECLR */ s->fiq_enabled &= ~value; break; case 0: /* IRQ_STATUS */ case 1: /* IRQ_RAWSTAT */ case 8: /* FRQ_STATUS */ case 9: /* FRQ_RAWSTAT */ default: printf ("icp_pic_write: Bad register offset 0x%x\n", (int)offset); return; } icp_pic_update(s); } static CPUReadMemoryFunc *icp_pic_readfn[] = { icp_pic_read, icp_pic_read, icp_pic_read }; static CPUWriteMemoryFunc *icp_pic_writefn[] = { icp_pic_write, icp_pic_write, icp_pic_write }; static qemu_irq *icp_pic_init(uint32_t base, qemu_irq parent_irq, qemu_irq parent_fiq) { icp_pic_state *s; int iomemtype; qemu_irq *qi; s = (icp_pic_state *)qemu_mallocz(sizeof(icp_pic_state)); if (!s) return NULL; qi = qemu_allocate_irqs(icp_pic_set_irq, s, 32); s->base = base; s->parent_irq = parent_irq; s->parent_fiq = parent_fiq; iomemtype = cpu_register_io_memory(0, icp_pic_readfn, icp_pic_writefn, s); cpu_register_physical_memory(base, 0x00800000, iomemtype); /* ??? Save/restore. */ return qi; } /* CP control registers. */ typedef struct { uint32_t base; } icp_control_state; static uint32_t icp_control_read(void *opaque, target_phys_addr_t offset) { icp_control_state *s = (icp_control_state *)opaque; offset -= s->base; switch (offset >> 2) { case 0: /* CP_IDFIELD */ return 0x41034003; case 1: /* CP_FLASHPROG */ return 0; case 2: /* CP_INTREG */ return 0; case 3: /* CP_DECODE */ return 0x11; default: cpu_abort (cpu_single_env, "icp_control_read: Bad offset %x\n", offset); return 0; } } static void icp_control_write(void *opaque, target_phys_addr_t offset, uint32_t value) { icp_control_state *s = (icp_control_state *)opaque; offset -= s->base; switch (offset >> 2) { case 1: /* CP_FLASHPROG */ case 2: /* CP_INTREG */ case 3: /* CP_DECODE */ /* Nothing interesting implemented yet. */ break; default: cpu_abort (cpu_single_env, "icp_control_write: Bad offset %x\n", offset); } } static CPUReadMemoryFunc *icp_control_readfn[] = { icp_control_read, icp_control_read, icp_control_read }; static CPUWriteMemoryFunc *icp_control_writefn[] = { icp_control_write, icp_control_write, icp_control_write }; static void icp_control_init(uint32_t base) { int iomemtype; icp_control_state *s; s = (icp_control_state *)qemu_mallocz(sizeof(icp_control_state)); iomemtype = cpu_register_io_memory(0, icp_control_readfn, icp_control_writefn, s); cpu_register_physical_memory(base, 0x00800000, iomemtype); s->base = base; /* ??? Save/restore. */ } /* Board init. */ static void integratorcp_init(int ram_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char **fd_filename, int snapshot, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { CPUState *env; uint32_t bios_offset; qemu_irq *pic; qemu_irq *cpu_pic; env = cpu_init(); if (!cpu_model) cpu_model = "arm926"; cpu_arm_set_model(env, cpu_model); bios_offset = ram_size + vga_ram_size; /* ??? On a real system the first 1Mb is mapped as SSRAM or boot flash. */ /* ??? RAM shoud repeat to fill physical memory space. */ /* SDRAM at address zero*/ cpu_register_physical_memory(0, ram_size, IO_MEM_RAM); /* And again at address 0x80000000 */ cpu_register_physical_memory(0x80000000, ram_size, IO_MEM_RAM); integratorcm_init(ram_size >> 20, bios_offset); cpu_pic = arm_pic_init_cpu(env); pic = icp_pic_init(0x14000000, cpu_pic[ARM_PIC_CPU_IRQ], cpu_pic[ARM_PIC_CPU_FIQ]); icp_pic_init(0xca000000, pic[26], NULL); icp_pit_init(0x13000000, pic, 5); pl031_init(0x15000000, pic[8]); pl011_init(0x16000000, pic[1], serial_hds[0]); pl011_init(0x17000000, pic[2], serial_hds[1]); icp_control_init(0xcb000000); pl050_init(0x18000000, pic[3], 0); pl050_init(0x19000000, pic[4], 1); pl181_init(0x1c000000, sd_bdrv, pic[23], pic[24]); if (nd_table[0].vlan) { if (nd_table[0].model == NULL || strcmp(nd_table[0].model, "smc91c111") == 0) { smc91c111_init(&nd_table[0], 0xc8000000, pic[27]); } else if (strcmp(nd_table[0].model, "?") == 0) { fprintf(stderr, "qemu: Supported NICs: smc91c111\n"); exit (1); } else { fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model); exit (1); } } pl110_init(ds, 0xc0000000, pic[22], 0); arm_load_kernel(env, ram_size, kernel_filename, kernel_cmdline, initrd_filename, 0x113, 0x0); } QEMUMachine integratorcp_machine = { "integratorcp", "ARM Integrator/CP (ARM926EJ-S)", integratorcp_init, };