/* * RISC-V emulation for qemu: main translation routines. * * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/log.h" #include "cpu.h" #include "tcg/tcg-op.h" #include "disas/disas.h" #include "exec/cpu_ldst.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" #include "exec/helper-gen.h" #include "exec/translator.h" #include "exec/log.h" #include "instmap.h" /* global register indices */ static TCGv cpu_gpr[32], cpu_pc, cpu_vl; static TCGv_i64 cpu_fpr[32]; /* assume F and D extensions */ static TCGv load_res; static TCGv load_val; #include "exec/gen-icount.h" typedef struct DisasContext { DisasContextBase base; /* pc_succ_insn points to the instruction following base.pc_next */ target_ulong pc_succ_insn; target_ulong priv_ver; bool virt_enabled; uint32_t opcode; uint32_t mstatus_fs; target_ulong misa; uint32_t mem_idx; /* Remember the rounding mode encoded in the previous fp instruction, which we have already installed into env->fp_status. Or -1 for no previous fp instruction. Note that we exit the TB when writing to any system register, which includes CSR_FRM, so we do not have to reset this known value. */ int frm; bool ext_ifencei; bool hlsx; /* vector extension */ bool vill; uint8_t lmul; uint8_t sew; uint16_t vlen; uint16_t mlen; bool vl_eq_vlmax; CPUState *cs; } DisasContext; static inline bool has_ext(DisasContext *ctx, uint32_t ext) { return ctx->misa & ext; } #ifdef TARGET_RISCV32 # define is_32bit(ctx) true #elif defined(CONFIG_USER_ONLY) # define is_32bit(ctx) false #else static inline bool is_32bit(DisasContext *ctx) { return (ctx->misa & RV32) == RV32; } #endif /* * RISC-V requires NaN-boxing of narrower width floating point values. * This applies when a 32-bit value is assigned to a 64-bit FP register. * For consistency and simplicity, we nanbox results even when the RVD * extension is not present. */ static void gen_nanbox_s(TCGv_i64 out, TCGv_i64 in) { tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(32, 32)); } /* * A narrow n-bit operation, where n < FLEN, checks that input operands * are correctly Nan-boxed, i.e., all upper FLEN - n bits are 1. * If so, the least-significant bits of the input are used, otherwise the * input value is treated as an n-bit canonical NaN (v2.2 section 9.2). * * Here, the result is always nan-boxed, even the canonical nan. */ static void gen_check_nanbox_s(TCGv_i64 out, TCGv_i64 in) { TCGv_i64 t_max = tcg_const_i64(0xffffffff00000000ull); TCGv_i64 t_nan = tcg_const_i64(0xffffffff7fc00000ull); tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan); tcg_temp_free_i64(t_max); tcg_temp_free_i64(t_nan); } static void generate_exception(DisasContext *ctx, int excp) { tcg_gen_movi_tl(cpu_pc, ctx->base.pc_next); TCGv_i32 helper_tmp = tcg_const_i32(excp); gen_helper_raise_exception(cpu_env, helper_tmp); tcg_temp_free_i32(helper_tmp); ctx->base.is_jmp = DISAS_NORETURN; } static void generate_exception_mtval(DisasContext *ctx, int excp) { tcg_gen_movi_tl(cpu_pc, ctx->base.pc_next); tcg_gen_st_tl(cpu_pc, cpu_env, offsetof(CPURISCVState, badaddr)); TCGv_i32 helper_tmp = tcg_const_i32(excp); gen_helper_raise_exception(cpu_env, helper_tmp); tcg_temp_free_i32(helper_tmp); ctx->base.is_jmp = DISAS_NORETURN; } static void gen_exception_debug(void) { TCGv_i32 helper_tmp = tcg_const_i32(EXCP_DEBUG); gen_helper_raise_exception(cpu_env, helper_tmp); tcg_temp_free_i32(helper_tmp); } /* Wrapper around tcg_gen_exit_tb that handles single stepping */ static void exit_tb(DisasContext *ctx) { if (ctx->base.singlestep_enabled) { gen_exception_debug(); } else { tcg_gen_exit_tb(NULL, 0); } } /* Wrapper around tcg_gen_lookup_and_goto_ptr that handles single stepping */ static void lookup_and_goto_ptr(DisasContext *ctx) { if (ctx->base.singlestep_enabled) { gen_exception_debug(); } else { tcg_gen_lookup_and_goto_ptr(); } } static void gen_exception_illegal(DisasContext *ctx) { generate_exception(ctx, RISCV_EXCP_ILLEGAL_INST); } static void gen_exception_inst_addr_mis(DisasContext *ctx) { generate_exception_mtval(ctx, RISCV_EXCP_INST_ADDR_MIS); } static inline bool use_goto_tb(DisasContext *ctx, target_ulong dest) { if (unlikely(ctx->base.singlestep_enabled)) { return false; } #ifndef CONFIG_USER_ONLY return (ctx->base.tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK); #else return true; #endif } static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest) { if (use_goto_tb(ctx, dest)) { /* chaining is only allowed when the jump is to the same page */ tcg_gen_goto_tb(n); tcg_gen_movi_tl(cpu_pc, dest); /* No need to check for single stepping here as use_goto_tb() will * return false in case of single stepping. */ tcg_gen_exit_tb(ctx->base.tb, n); } else { tcg_gen_movi_tl(cpu_pc, dest); lookup_and_goto_ptr(ctx); } } /* Wrapper for getting reg values - need to check of reg is zero since * cpu_gpr[0] is not actually allocated */ static inline void gen_get_gpr(TCGv t, int reg_num) { if (reg_num == 0) { tcg_gen_movi_tl(t, 0); } else { tcg_gen_mov_tl(t, cpu_gpr[reg_num]); } } /* Wrapper for setting reg values - need to check of reg is zero since * cpu_gpr[0] is not actually allocated. this is more for safety purposes, * since we usually avoid calling the OP_TYPE_gen function if we see a write to * $zero */ static inline void gen_set_gpr(int reg_num_dst, TCGv t) { if (reg_num_dst != 0) { tcg_gen_mov_tl(cpu_gpr[reg_num_dst], t); } } static void gen_mulhsu(TCGv ret, TCGv arg1, TCGv arg2) { TCGv rl = tcg_temp_new(); TCGv rh = tcg_temp_new(); tcg_gen_mulu2_tl(rl, rh, arg1, arg2); /* fix up for one negative */ tcg_gen_sari_tl(rl, arg1, TARGET_LONG_BITS - 1); tcg_gen_and_tl(rl, rl, arg2); tcg_gen_sub_tl(ret, rh, rl); tcg_temp_free(rl); tcg_temp_free(rh); } static void gen_div(TCGv ret, TCGv source1, TCGv source2) { TCGv cond1, cond2, zeroreg, resultopt1; /* * Handle by altering args to tcg_gen_div to produce req'd results: * For overflow: want source1 in source1 and 1 in source2 * For div by zero: want -1 in source1 and 1 in source2 -> -1 result */ cond1 = tcg_temp_new(); cond2 = tcg_temp_new(); zeroreg = tcg_const_tl(0); resultopt1 = tcg_temp_new(); tcg_gen_movi_tl(resultopt1, (target_ulong)-1); tcg_gen_setcondi_tl(TCG_COND_EQ, cond2, source2, (target_ulong)(~0L)); tcg_gen_setcondi_tl(TCG_COND_EQ, cond1, source1, ((target_ulong)1) << (TARGET_LONG_BITS - 1)); tcg_gen_and_tl(cond1, cond1, cond2); /* cond1 = overflow */ tcg_gen_setcondi_tl(TCG_COND_EQ, cond2, source2, 0); /* cond2 = div 0 */ /* if div by zero, set source1 to -1, otherwise don't change */ tcg_gen_movcond_tl(TCG_COND_EQ, source1, cond2, zeroreg, source1, resultopt1); /* if overflow or div by zero, set source2 to 1, else don't change */ tcg_gen_or_tl(cond1, cond1, cond2); tcg_gen_movi_tl(resultopt1, (target_ulong)1); tcg_gen_movcond_tl(TCG_COND_EQ, source2, cond1, zeroreg, source2, resultopt1); tcg_gen_div_tl(ret, source1, source2); tcg_temp_free(cond1); tcg_temp_free(cond2); tcg_temp_free(zeroreg); tcg_temp_free(resultopt1); } static void gen_divu(TCGv ret, TCGv source1, TCGv source2) { TCGv cond1, zeroreg, resultopt1; cond1 = tcg_temp_new(); zeroreg = tcg_const_tl(0); resultopt1 = tcg_temp_new(); tcg_gen_setcondi_tl(TCG_COND_EQ, cond1, source2, 0); tcg_gen_movi_tl(resultopt1, (target_ulong)-1); tcg_gen_movcond_tl(TCG_COND_EQ, source1, cond1, zeroreg, source1, resultopt1); tcg_gen_movi_tl(resultopt1, (target_ulong)1); tcg_gen_movcond_tl(TCG_COND_EQ, source2, cond1, zeroreg, source2, resultopt1); tcg_gen_divu_tl(ret, source1, source2); tcg_temp_free(cond1); tcg_temp_free(zeroreg); tcg_temp_free(resultopt1); } static void gen_rem(TCGv ret, TCGv source1, TCGv source2) { TCGv cond1, cond2, zeroreg, resultopt1; cond1 = tcg_temp_new(); cond2 = tcg_temp_new(); zeroreg = tcg_const_tl(0); resultopt1 = tcg_temp_new(); tcg_gen_movi_tl(resultopt1, 1L); tcg_gen_setcondi_tl(TCG_COND_EQ, cond2, source2, (target_ulong)-1); tcg_gen_setcondi_tl(TCG_COND_EQ, cond1, source1, (target_ulong)1 << (TARGET_LONG_BITS - 1)); tcg_gen_and_tl(cond2, cond1, cond2); /* cond1 = overflow */ tcg_gen_setcondi_tl(TCG_COND_EQ, cond1, source2, 0); /* cond2 = div 0 */ /* if overflow or div by zero, set source2 to 1, else don't change */ tcg_gen_or_tl(cond2, cond1, cond2); tcg_gen_movcond_tl(TCG_COND_EQ, source2, cond2, zeroreg, source2, resultopt1); tcg_gen_rem_tl(resultopt1, source1, source2); /* if div by zero, just return the original dividend */ tcg_gen_movcond_tl(TCG_COND_EQ, ret, cond1, zeroreg, resultopt1, source1); tcg_temp_free(cond1); tcg_temp_free(cond2); tcg_temp_free(zeroreg); tcg_temp_free(resultopt1); } static void gen_remu(TCGv ret, TCGv source1, TCGv source2) { TCGv cond1, zeroreg, resultopt1; cond1 = tcg_temp_new(); zeroreg = tcg_const_tl(0); resultopt1 = tcg_temp_new(); tcg_gen_movi_tl(resultopt1, (target_ulong)1); tcg_gen_setcondi_tl(TCG_COND_EQ, cond1, source2, 0); tcg_gen_movcond_tl(TCG_COND_EQ, source2, cond1, zeroreg, source2, resultopt1); tcg_gen_remu_tl(resultopt1, source1, source2); /* if div by zero, just return the original dividend */ tcg_gen_movcond_tl(TCG_COND_EQ, ret, cond1, zeroreg, resultopt1, source1); tcg_temp_free(cond1); tcg_temp_free(zeroreg); tcg_temp_free(resultopt1); } static void gen_jal(DisasContext *ctx, int rd, target_ulong imm) { target_ulong next_pc; /* check misaligned: */ next_pc = ctx->base.pc_next + imm; if (!has_ext(ctx, RVC)) { if ((next_pc & 0x3) != 0) { gen_exception_inst_addr_mis(ctx); return; } } if (rd != 0) { tcg_gen_movi_tl(cpu_gpr[rd], ctx->pc_succ_insn); } gen_goto_tb(ctx, 0, ctx->base.pc_next + imm); /* must use this for safety */ ctx->base.is_jmp = DISAS_NORETURN; } #ifndef CONFIG_USER_ONLY /* The states of mstatus_fs are: * 0 = disabled, 1 = initial, 2 = clean, 3 = dirty * We will have already diagnosed disabled state, * and need to turn initial/clean into dirty. */ static void mark_fs_dirty(DisasContext *ctx) { TCGv tmp; target_ulong sd; if (ctx->mstatus_fs == MSTATUS_FS) { return; } /* Remember the state change for the rest of the TB. */ ctx->mstatus_fs = MSTATUS_FS; tmp = tcg_temp_new(); sd = is_32bit(ctx) ? MSTATUS32_SD : MSTATUS64_SD; tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS | sd); tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); if (ctx->virt_enabled) { tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS | sd); tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); } tcg_temp_free(tmp); } #else static inline void mark_fs_dirty(DisasContext *ctx) { } #endif static void gen_set_rm(DisasContext *ctx, int rm) { TCGv_i32 t0; if (ctx->frm == rm) { return; } ctx->frm = rm; t0 = tcg_const_i32(rm); gen_helper_set_rounding_mode(cpu_env, t0); tcg_temp_free_i32(t0); } static int ex_plus_1(DisasContext *ctx, int nf) { return nf + 1; } #define EX_SH(amount) \ static int ex_shift_##amount(DisasContext *ctx, int imm) \ { \ return imm << amount; \ } EX_SH(1) EX_SH(2) EX_SH(3) EX_SH(4) EX_SH(12) #define REQUIRE_EXT(ctx, ext) do { \ if (!has_ext(ctx, ext)) { \ return false; \ } \ } while (0) #define REQUIRE_64BIT(ctx) do { \ if (is_32bit(ctx)) { \ return false; \ } \ } while (0) static int ex_rvc_register(DisasContext *ctx, int reg) { return 8 + reg; } static int ex_rvc_shifti(DisasContext *ctx, int imm) { /* For RV128 a shamt of 0 means a shift by 64. */ return imm ? imm : 64; } /* Include the auto-generated decoder for 32 bit insn */ #include "decode-insn32.c.inc" static bool gen_arith_imm_fn(DisasContext *ctx, arg_i *a, void (*func)(TCGv, TCGv, target_long)) { TCGv source1; source1 = tcg_temp_new(); gen_get_gpr(source1, a->rs1); (*func)(source1, source1, a->imm); gen_set_gpr(a->rd, source1); tcg_temp_free(source1); return true; } static bool gen_arith_imm_tl(DisasContext *ctx, arg_i *a, void (*func)(TCGv, TCGv, TCGv)) { TCGv source1, source2; source1 = tcg_temp_new(); source2 = tcg_temp_new(); gen_get_gpr(source1, a->rs1); tcg_gen_movi_tl(source2, a->imm); (*func)(source1, source1, source2); gen_set_gpr(a->rd, source1); tcg_temp_free(source1); tcg_temp_free(source2); return true; } static void gen_addw(TCGv ret, TCGv arg1, TCGv arg2) { tcg_gen_add_tl(ret, arg1, arg2); tcg_gen_ext32s_tl(ret, ret); } static void gen_subw(TCGv ret, TCGv arg1, TCGv arg2) { tcg_gen_sub_tl(ret, arg1, arg2); tcg_gen_ext32s_tl(ret, ret); } static void gen_mulw(TCGv ret, TCGv arg1, TCGv arg2) { tcg_gen_mul_tl(ret, arg1, arg2); tcg_gen_ext32s_tl(ret, ret); } static bool gen_arith_div_w(DisasContext *ctx, arg_r *a, void(*func)(TCGv, TCGv, TCGv)) { TCGv source1, source2; source1 = tcg_temp_new(); source2 = tcg_temp_new(); gen_get_gpr(source1, a->rs1); gen_get_gpr(source2, a->rs2); tcg_gen_ext32s_tl(source1, source1); tcg_gen_ext32s_tl(source2, source2); (*func)(source1, source1, source2); tcg_gen_ext32s_tl(source1, source1); gen_set_gpr(a->rd, source1); tcg_temp_free(source1); tcg_temp_free(source2); return true; } static bool gen_arith_div_uw(DisasContext *ctx, arg_r *a, void(*func)(TCGv, TCGv, TCGv)) { TCGv source1, source2; source1 = tcg_temp_new(); source2 = tcg_temp_new(); gen_get_gpr(source1, a->rs1); gen_get_gpr(source2, a->rs2); tcg_gen_ext32u_tl(source1, source1); tcg_gen_ext32u_tl(source2, source2); (*func)(source1, source1, source2); tcg_gen_ext32s_tl(source1, source1); gen_set_gpr(a->rd, source1); tcg_temp_free(source1); tcg_temp_free(source2); return true; } static void gen_pack(TCGv ret, TCGv arg1, TCGv arg2) { tcg_gen_deposit_tl(ret, arg1, arg2, TARGET_LONG_BITS / 2, TARGET_LONG_BITS / 2); } static void gen_packu(TCGv ret, TCGv arg1, TCGv arg2) { TCGv t = tcg_temp_new(); tcg_gen_shri_tl(t, arg1, TARGET_LONG_BITS / 2); tcg_gen_deposit_tl(ret, arg2, t, 0, TARGET_LONG_BITS / 2); tcg_temp_free(t); } static void gen_packh(TCGv ret, TCGv arg1, TCGv arg2) { TCGv t = tcg_temp_new(); tcg_gen_ext8u_tl(t, arg2); tcg_gen_deposit_tl(ret, arg1, t, 8, TARGET_LONG_BITS - 8); tcg_temp_free(t); } static void gen_sbop_mask(TCGv ret, TCGv shamt) { tcg_gen_movi_tl(ret, 1); tcg_gen_shl_tl(ret, ret, shamt); } static void gen_bset(TCGv ret, TCGv arg1, TCGv shamt) { TCGv t = tcg_temp_new(); gen_sbop_mask(t, shamt); tcg_gen_or_tl(ret, arg1, t); tcg_temp_free(t); } static void gen_bclr(TCGv ret, TCGv arg1, TCGv shamt) { TCGv t = tcg_temp_new(); gen_sbop_mask(t, shamt); tcg_gen_andc_tl(ret, arg1, t); tcg_temp_free(t); } static void gen_binv(TCGv ret, TCGv arg1, TCGv shamt) { TCGv t = tcg_temp_new(); gen_sbop_mask(t, shamt); tcg_gen_xor_tl(ret, arg1, t); tcg_temp_free(t); } static void gen_bext(TCGv ret, TCGv arg1, TCGv shamt) { tcg_gen_shr_tl(ret, arg1, shamt); tcg_gen_andi_tl(ret, ret, 1); } static void gen_slo(TCGv ret, TCGv arg1, TCGv arg2) { tcg_gen_not_tl(ret, arg1); tcg_gen_shl_tl(ret, ret, arg2); tcg_gen_not_tl(ret, ret); } static void gen_sro(TCGv ret, TCGv arg1, TCGv arg2) { tcg_gen_not_tl(ret, arg1); tcg_gen_shr_tl(ret, ret, arg2); tcg_gen_not_tl(ret, ret); } static bool gen_grevi(DisasContext *ctx, arg_grevi *a) { TCGv source1 = tcg_temp_new(); TCGv source2; gen_get_gpr(source1, a->rs1); if (a->shamt == (TARGET_LONG_BITS - 8)) { /* rev8, byte swaps */ tcg_gen_bswap_tl(source1, source1); } else { source2 = tcg_temp_new(); tcg_gen_movi_tl(source2, a->shamt); gen_helper_grev(source1, source1, source2); tcg_temp_free(source2); } gen_set_gpr(a->rd, source1); tcg_temp_free(source1); return true; } #define GEN_SHADD(SHAMT) \ static void gen_sh##SHAMT##add(TCGv ret, TCGv arg1, TCGv arg2) \ { \ TCGv t = tcg_temp_new(); \ \ tcg_gen_shli_tl(t, arg1, SHAMT); \ tcg_gen_add_tl(ret, t, arg2); \ \ tcg_temp_free(t); \ } GEN_SHADD(1) GEN_SHADD(2) GEN_SHADD(3) static void gen_ctzw(TCGv ret, TCGv arg1) { tcg_gen_ori_tl(ret, arg1, (target_ulong)MAKE_64BIT_MASK(32, 32)); tcg_gen_ctzi_tl(ret, ret, 64); } static void gen_clzw(TCGv ret, TCGv arg1) { tcg_gen_ext32u_tl(ret, arg1); tcg_gen_clzi_tl(ret, ret, 64); tcg_gen_subi_tl(ret, ret, 32); } static void gen_cpopw(TCGv ret, TCGv arg1) { tcg_gen_ext32u_tl(arg1, arg1); tcg_gen_ctpop_tl(ret, arg1); } static void gen_packw(TCGv ret, TCGv arg1, TCGv arg2) { TCGv t = tcg_temp_new(); tcg_gen_ext16s_tl(t, arg2); tcg_gen_deposit_tl(ret, arg1, t, 16, 48); tcg_temp_free(t); } static void gen_packuw(TCGv ret, TCGv arg1, TCGv arg2) { TCGv t = tcg_temp_new(); tcg_gen_shri_tl(t, arg1, 16); tcg_gen_deposit_tl(ret, arg2, t, 0, 16); tcg_gen_ext32s_tl(ret, ret); tcg_temp_free(t); } static void gen_rorw(TCGv ret, TCGv arg1, TCGv arg2) { TCGv_i32 t1 = tcg_temp_new_i32(); TCGv_i32 t2 = tcg_temp_new_i32(); /* truncate to 32-bits */ tcg_gen_trunc_tl_i32(t1, arg1); tcg_gen_trunc_tl_i32(t2, arg2); tcg_gen_rotr_i32(t1, t1, t2); /* sign-extend 64-bits */ tcg_gen_ext_i32_tl(ret, t1); tcg_temp_free_i32(t1); tcg_temp_free_i32(t2); } static void gen_rolw(TCGv ret, TCGv arg1, TCGv arg2) { TCGv_i32 t1 = tcg_temp_new_i32(); TCGv_i32 t2 = tcg_temp_new_i32(); /* truncate to 32-bits */ tcg_gen_trunc_tl_i32(t1, arg1); tcg_gen_trunc_tl_i32(t2, arg2); tcg_gen_rotl_i32(t1, t1, t2); /* sign-extend 64-bits */ tcg_gen_ext_i32_tl(ret, t1); tcg_temp_free_i32(t1); tcg_temp_free_i32(t2); } static void gen_grevw(TCGv ret, TCGv arg1, TCGv arg2) { tcg_gen_ext32u_tl(arg1, arg1); gen_helper_grev(ret, arg1, arg2); } static void gen_gorcw(TCGv ret, TCGv arg1, TCGv arg2) { tcg_gen_ext32u_tl(arg1, arg1); gen_helper_gorcw(ret, arg1, arg2); } #define GEN_SHADD_UW(SHAMT) \ static void gen_sh##SHAMT##add_uw(TCGv ret, TCGv arg1, TCGv arg2) \ { \ TCGv t = tcg_temp_new(); \ \ tcg_gen_ext32u_tl(t, arg1); \ \ tcg_gen_shli_tl(t, t, SHAMT); \ tcg_gen_add_tl(ret, t, arg2); \ \ tcg_temp_free(t); \ } GEN_SHADD_UW(1) GEN_SHADD_UW(2) GEN_SHADD_UW(3) static void gen_add_uw(TCGv ret, TCGv arg1, TCGv arg2) { tcg_gen_ext32u_tl(arg1, arg1); tcg_gen_add_tl(ret, arg1, arg2); } static bool gen_arith(DisasContext *ctx, arg_r *a, void(*func)(TCGv, TCGv, TCGv)) { TCGv source1, source2; source1 = tcg_temp_new(); source2 = tcg_temp_new(); gen_get_gpr(source1, a->rs1); gen_get_gpr(source2, a->rs2); (*func)(source1, source1, source2); gen_set_gpr(a->rd, source1); tcg_temp_free(source1); tcg_temp_free(source2); return true; } static bool gen_shift(DisasContext *ctx, arg_r *a, void(*func)(TCGv, TCGv, TCGv)) { TCGv source1 = tcg_temp_new(); TCGv source2 = tcg_temp_new(); gen_get_gpr(source1, a->rs1); gen_get_gpr(source2, a->rs2); tcg_gen_andi_tl(source2, source2, TARGET_LONG_BITS - 1); (*func)(source1, source1, source2); gen_set_gpr(a->rd, source1); tcg_temp_free(source1); tcg_temp_free(source2); return true; } static uint32_t opcode_at(DisasContextBase *dcbase, target_ulong pc) { DisasContext *ctx = container_of(dcbase, DisasContext, base); CPUState *cpu = ctx->cs; CPURISCVState *env = cpu->env_ptr; return cpu_ldl_code(env, pc); } static bool gen_shifti(DisasContext *ctx, arg_shift *a, void(*func)(TCGv, TCGv, TCGv)) { if (a->shamt >= TARGET_LONG_BITS) { return false; } TCGv source1 = tcg_temp_new(); TCGv source2 = tcg_temp_new(); gen_get_gpr(source1, a->rs1); tcg_gen_movi_tl(source2, a->shamt); (*func)(source1, source1, source2); gen_set_gpr(a->rd, source1); tcg_temp_free(source1); tcg_temp_free(source2); return true; } static bool gen_shiftw(DisasContext *ctx, arg_r *a, void(*func)(TCGv, TCGv, TCGv)) { TCGv source1 = tcg_temp_new(); TCGv source2 = tcg_temp_new(); gen_get_gpr(source1, a->rs1); gen_get_gpr(source2, a->rs2); tcg_gen_andi_tl(source2, source2, 31); (*func)(source1, source1, source2); tcg_gen_ext32s_tl(source1, source1); gen_set_gpr(a->rd, source1); tcg_temp_free(source1); tcg_temp_free(source2); return true; } static bool gen_shiftiw(DisasContext *ctx, arg_shift *a, void(*func)(TCGv, TCGv, TCGv)) { TCGv source1 = tcg_temp_new(); TCGv source2 = tcg_temp_new(); gen_get_gpr(source1, a->rs1); tcg_gen_movi_tl(source2, a->shamt); (*func)(source1, source1, source2); tcg_gen_ext32s_tl(source1, source1); gen_set_gpr(a->rd, source1); tcg_temp_free(source1); tcg_temp_free(source2); return true; } static void gen_ctz(TCGv ret, TCGv arg1) { tcg_gen_ctzi_tl(ret, arg1, TARGET_LONG_BITS); } static void gen_clz(TCGv ret, TCGv arg1) { tcg_gen_clzi_tl(ret, arg1, TARGET_LONG_BITS); } static bool gen_unary(DisasContext *ctx, arg_r2 *a, void(*func)(TCGv, TCGv)) { TCGv source = tcg_temp_new(); gen_get_gpr(source, a->rs1); (*func)(source, source); gen_set_gpr(a->rd, source); tcg_temp_free(source); return true; } /* Include insn module translation function */ #include "insn_trans/trans_rvi.c.inc" #include "insn_trans/trans_rvm.c.inc" #include "insn_trans/trans_rva.c.inc" #include "insn_trans/trans_rvf.c.inc" #include "insn_trans/trans_rvd.c.inc" #include "insn_trans/trans_rvh.c.inc" #include "insn_trans/trans_rvv.c.inc" #include "insn_trans/trans_rvb.c.inc" #include "insn_trans/trans_privileged.c.inc" /* Include the auto-generated decoder for 16 bit insn */ #include "decode-insn16.c.inc" static void decode_opc(CPURISCVState *env, DisasContext *ctx, uint16_t opcode) { /* check for compressed insn */ if (extract16(opcode, 0, 2) != 3) { if (!has_ext(ctx, RVC)) { gen_exception_illegal(ctx); } else { ctx->pc_succ_insn = ctx->base.pc_next + 2; if (!decode_insn16(ctx, opcode)) { gen_exception_illegal(ctx); } } } else { uint32_t opcode32 = opcode; opcode32 = deposit32(opcode32, 16, 16, translator_lduw(env, ctx->base.pc_next + 2)); ctx->pc_succ_insn = ctx->base.pc_next + 4; if (!decode_insn32(ctx, opcode32)) { gen_exception_illegal(ctx); } } } static void riscv_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) { DisasContext *ctx = container_of(dcbase, DisasContext, base); CPURISCVState *env = cs->env_ptr; RISCVCPU *cpu = RISCV_CPU(cs); uint32_t tb_flags = ctx->base.tb->flags; ctx->pc_succ_insn = ctx->base.pc_first; ctx->mem_idx = tb_flags & TB_FLAGS_MMU_MASK; ctx->mstatus_fs = tb_flags & TB_FLAGS_MSTATUS_FS; ctx->priv_ver = env->priv_ver; #if !defined(CONFIG_USER_ONLY) if (riscv_has_ext(env, RVH)) { ctx->virt_enabled = riscv_cpu_virt_enabled(env); } else { ctx->virt_enabled = false; } #else ctx->virt_enabled = false; #endif ctx->misa = env->misa; ctx->frm = -1; /* unknown rounding mode */ ctx->ext_ifencei = cpu->cfg.ext_ifencei; ctx->vlen = cpu->cfg.vlen; ctx->hlsx = FIELD_EX32(tb_flags, TB_FLAGS, HLSX); ctx->vill = FIELD_EX32(tb_flags, TB_FLAGS, VILL); ctx->sew = FIELD_EX32(tb_flags, TB_FLAGS, SEW); ctx->lmul = FIELD_EX32(tb_flags, TB_FLAGS, LMUL); ctx->mlen = 1 << (ctx->sew + 3 - ctx->lmul); ctx->vl_eq_vlmax = FIELD_EX32(tb_flags, TB_FLAGS, VL_EQ_VLMAX); ctx->cs = cs; } static void riscv_tr_tb_start(DisasContextBase *db, CPUState *cpu) { } static void riscv_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) { DisasContext *ctx = container_of(dcbase, DisasContext, base); tcg_gen_insn_start(ctx->base.pc_next); } static bool riscv_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu, const CPUBreakpoint *bp) { DisasContext *ctx = container_of(dcbase, DisasContext, base); tcg_gen_movi_tl(cpu_pc, ctx->base.pc_next); ctx->base.is_jmp = DISAS_NORETURN; gen_exception_debug(); /* The address covered by the breakpoint must be included in [tb->pc, tb->pc + tb->size) in order to for it to be properly cleared -- thus we increment the PC here so that the logic setting tb->size below does the right thing. */ ctx->base.pc_next += 4; return true; } static void riscv_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) { DisasContext *ctx = container_of(dcbase, DisasContext, base); CPURISCVState *env = cpu->env_ptr; uint16_t opcode16 = translator_lduw(env, ctx->base.pc_next); decode_opc(env, ctx, opcode16); ctx->base.pc_next = ctx->pc_succ_insn; if (ctx->base.is_jmp == DISAS_NEXT) { target_ulong page_start; page_start = ctx->base.pc_first & TARGET_PAGE_MASK; if (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE) { ctx->base.is_jmp = DISAS_TOO_MANY; } } } static void riscv_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) { DisasContext *ctx = container_of(dcbase, DisasContext, base); switch (ctx->base.is_jmp) { case DISAS_TOO_MANY: gen_goto_tb(ctx, 0, ctx->base.pc_next); break; case DISAS_NORETURN: break; default: g_assert_not_reached(); } } static void riscv_tr_disas_log(const DisasContextBase *dcbase, CPUState *cpu) { #ifndef CONFIG_USER_ONLY RISCVCPU *rvcpu = RISCV_CPU(cpu); CPURISCVState *env = &rvcpu->env; #endif qemu_log("IN: %s\n", lookup_symbol(dcbase->pc_first)); #ifndef CONFIG_USER_ONLY qemu_log("Priv: "TARGET_FMT_ld"; Virt: "TARGET_FMT_ld"\n", env->priv, env->virt); #endif log_target_disas(cpu, dcbase->pc_first, dcbase->tb->size); } static const TranslatorOps riscv_tr_ops = { .init_disas_context = riscv_tr_init_disas_context, .tb_start = riscv_tr_tb_start, .insn_start = riscv_tr_insn_start, .breakpoint_check = riscv_tr_breakpoint_check, .translate_insn = riscv_tr_translate_insn, .tb_stop = riscv_tr_tb_stop, .disas_log = riscv_tr_disas_log, }; void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns) { DisasContext ctx; translator_loop(&riscv_tr_ops, &ctx.base, cs, tb, max_insns); } void riscv_translate_init(void) { int i; /* cpu_gpr[0] is a placeholder for the zero register. Do not use it. */ /* Use the gen_set_gpr and gen_get_gpr helper functions when accessing */ /* registers, unless you specifically block reads/writes to reg 0 */ cpu_gpr[0] = NULL; for (i = 1; i < 32; i++) { cpu_gpr[i] = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, gpr[i]), riscv_int_regnames[i]); } for (i = 0; i < 32; i++) { cpu_fpr[i] = tcg_global_mem_new_i64(cpu_env, offsetof(CPURISCVState, fpr[i]), riscv_fpr_regnames[i]); } cpu_pc = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, pc), "pc"); cpu_vl = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, vl), "vl"); load_res = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, load_res), "load_res"); load_val = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, load_val), "load_val"); }