#include "cpu.h" #include "internals.h" #include "exec/gdbstub.h" #include "exec/helper-proto.h" #include "qemu/host-utils.h" #include "sysemu/arch_init.h" #include "sysemu/sysemu.h" #include "qemu/bitops.h" #include "qemu/crc32c.h" #include "exec/cpu_ldst.h" #include "arm_ldst.h" #include /* For crc32 */ #ifndef CONFIG_USER_ONLY static inline int get_phys_addr(CPUARMState *env, target_ulong address, int access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, target_ulong *page_size); /* Definitions for the PMCCNTR and PMCR registers */ #define PMCRD 0x8 #define PMCRC 0x4 #define PMCRE 0x1 #endif static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) { int nregs; /* VFP data registers are always little-endian. */ nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; if (reg < nregs) { stfq_le_p(buf, env->vfp.regs[reg]); return 8; } if (arm_feature(env, ARM_FEATURE_NEON)) { /* Aliases for Q regs. */ nregs += 16; if (reg < nregs) { stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); return 16; } } switch (reg - nregs) { case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; } return 0; } static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) { int nregs; nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; if (reg < nregs) { env->vfp.regs[reg] = ldfq_le_p(buf); return 8; } if (arm_feature(env, ARM_FEATURE_NEON)) { nregs += 16; if (reg < nregs) { env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); return 16; } } switch (reg - nregs) { case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; } return 0; } static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) { switch (reg) { case 0 ... 31: /* 128 bit FP register */ stfq_le_p(buf, env->vfp.regs[reg * 2]); stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); return 16; case 32: /* FPSR */ stl_p(buf, vfp_get_fpsr(env)); return 4; case 33: /* FPCR */ stl_p(buf, vfp_get_fpcr(env)); return 4; default: return 0; } } static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) { switch (reg) { case 0 ... 31: /* 128 bit FP register */ env->vfp.regs[reg * 2] = ldfq_le_p(buf); env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); return 16; case 32: /* FPSR */ vfp_set_fpsr(env, ldl_p(buf)); return 4; case 33: /* FPCR */ vfp_set_fpcr(env, ldl_p(buf)); return 4; default: return 0; } } static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) { assert(ri->fieldoffset); if (cpreg_field_is_64bit(ri)) { return CPREG_FIELD64(env, ri); } else { return CPREG_FIELD32(env, ri); } } static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { assert(ri->fieldoffset); if (cpreg_field_is_64bit(ri)) { CPREG_FIELD64(env, ri) = value; } else { CPREG_FIELD32(env, ri) = value; } } static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) { return (char *)env + ri->fieldoffset; } static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) { /* Raw read of a coprocessor register (as needed for migration, etc). */ if (ri->type & ARM_CP_CONST) { return ri->resetvalue; } else if (ri->raw_readfn) { return ri->raw_readfn(env, ri); } else if (ri->readfn) { return ri->readfn(env, ri); } else { return raw_read(env, ri); } } static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t v) { /* Raw write of a coprocessor register (as needed for migration, etc). * Note that constant registers are treated as write-ignored; the * caller should check for success by whether a readback gives the * value written. */ if (ri->type & ARM_CP_CONST) { return; } else if (ri->raw_writefn) { ri->raw_writefn(env, ri, v); } else if (ri->writefn) { ri->writefn(env, ri, v); } else { raw_write(env, ri, v); } } static bool raw_accessors_invalid(const ARMCPRegInfo *ri) { /* Return true if the regdef would cause an assertion if you called * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a * program bug for it not to have the NO_RAW flag). * NB that returning false here doesn't necessarily mean that calling * read/write_raw_cp_reg() is safe, because we can't distinguish "has * read/write access functions which are safe for raw use" from "has * read/write access functions which have side effects but has forgotten * to provide raw access functions". * The tests here line up with the conditions in read/write_raw_cp_reg() * and assertions in raw_read()/raw_write(). */ if ((ri->type & ARM_CP_CONST) || ri->fieldoffset || ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { return false; } return true; } bool write_cpustate_to_list(ARMCPU *cpu) { /* Write the coprocessor state from cpu->env to the (index,value) list. */ int i; bool ok = true; for (i = 0; i < cpu->cpreg_array_len; i++) { uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); const ARMCPRegInfo *ri; ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); if (!ri) { ok = false; continue; } if (ri->type & ARM_CP_NO_RAW) { continue; } cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); } return ok; } bool write_list_to_cpustate(ARMCPU *cpu) { int i; bool ok = true; for (i = 0; i < cpu->cpreg_array_len; i++) { uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); uint64_t v = cpu->cpreg_values[i]; const ARMCPRegInfo *ri; ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); if (!ri) { ok = false; continue; } if (ri->type & ARM_CP_NO_RAW) { continue; } /* Write value and confirm it reads back as written * (to catch read-only registers and partially read-only * registers where the incoming migration value doesn't match) */ write_raw_cp_reg(&cpu->env, ri, v); if (read_raw_cp_reg(&cpu->env, ri) != v) { ok = false; } } return ok; } static void add_cpreg_to_list(gpointer key, gpointer opaque) { ARMCPU *cpu = opaque; uint64_t regidx; const ARMCPRegInfo *ri; regidx = *(uint32_t *)key; ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); /* The value array need not be initialized at this point */ cpu->cpreg_array_len++; } } static void count_cpreg(gpointer key, gpointer opaque) { ARMCPU *cpu = opaque; uint64_t regidx; const ARMCPRegInfo *ri; regidx = *(uint32_t *)key; ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { cpu->cpreg_array_len++; } } static gint cpreg_key_compare(gconstpointer a, gconstpointer b) { uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); if (aidx > bidx) { return 1; } if (aidx < bidx) { return -1; } return 0; } void init_cpreg_list(ARMCPU *cpu) { /* Initialise the cpreg_tuples[] array based on the cp_regs hash. * Note that we require cpreg_tuples[] to be sorted by key ID. */ GList *keys; int arraylen; keys = g_hash_table_get_keys(cpu->cp_regs); keys = g_list_sort(keys, cpreg_key_compare); cpu->cpreg_array_len = 0; g_list_foreach(keys, count_cpreg, cpu); arraylen = cpu->cpreg_array_len; cpu->cpreg_indexes = g_new(uint64_t, arraylen); cpu->cpreg_values = g_new(uint64_t, arraylen); cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; cpu->cpreg_array_len = 0; g_list_foreach(keys, add_cpreg_to_list, cpu); assert(cpu->cpreg_array_len == arraylen); g_list_free(keys); } static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); raw_write(env, ri, value); tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */ } static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); if (raw_read(env, ri) != value) { /* Unlike real hardware the qemu TLB uses virtual addresses, * not modified virtual addresses, so this causes a TLB flush. */ tlb_flush(CPU(cpu), 1); raw_write(env, ri, value); } } static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU) && !extended_addresses_enabled(env)) { /* For VMSA (when not using the LPAE long descriptor page table * format) this register includes the ASID, so do a TLB flush. * For PMSA it is purely a process ID and no action is needed. */ tlb_flush(CPU(cpu), 1); } raw_write(env, ri, value); } static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate all (TLBIALL) */ ARMCPU *cpu = arm_env_get_cpu(env); tlb_flush(CPU(cpu), 1); } static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ ARMCPU *cpu = arm_env_get_cpu(env); tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); } static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by ASID (TLBIASID) */ ARMCPU *cpu = arm_env_get_cpu(env); tlb_flush(CPU(cpu), value == 0); } static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ ARMCPU *cpu = arm_env_get_cpu(env); tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); } /* IS variants of TLB operations must affect all cores */ static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *other_cs; CPU_FOREACH(other_cs) { tlb_flush(other_cs, 1); } } static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *other_cs; CPU_FOREACH(other_cs) { tlb_flush(other_cs, value == 0); } } static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *other_cs; CPU_FOREACH(other_cs) { tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); } } static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *other_cs; CPU_FOREACH(other_cs) { tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); } } static const ARMCPRegInfo cp_reginfo[] = { /* Define the secure and non-secure FCSE identifier CP registers * separately because there is no secure bank in V8 (no _EL3). This allows * the secure register to be properly reset and migrated. There is also no * v8 EL1 version of the register so the non-secure instance stands alone. */ { .name = "FCSEIDR(NS)", .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, { .name = "FCSEIDR(S)", .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, /* Define the secure and non-secure context identifier CP registers * separately because there is no secure bank in V8 (no _EL3). This allows * the secure register to be properly reset and migrated. In the * non-secure case, the 32-bit register will have reset and migration * disabled during registration as it is handled by the 64-bit instance. */ { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, REGINFO_SENTINEL }; static const ARMCPRegInfo not_v8_cp_reginfo[] = { /* NB: Some of these registers exist in v8 but with more precise * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). */ /* MMU Domain access control / MPU write buffer control */ { .name = "DACR", .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), offsetoflow32(CPUARMState, cp15.dacr_ns) } }, /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. * For v6 and v5, these mappings are overly broad. */ { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, /* Cache maintenance ops; some of this space may be overridden later. */ { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, REGINFO_SENTINEL }; static const ARMCPRegInfo not_v6_cp_reginfo[] = { /* Not all pre-v6 cores implemented this WFI, so this is slightly * over-broad. */ { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, .access = PL1_W, .type = ARM_CP_WFI }, REGINFO_SENTINEL }; static const ARMCPRegInfo not_v7_cp_reginfo[] = { /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which * is UNPREDICTABLE; we choose to NOP as most implementations do). */ { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, .access = PL1_W, .type = ARM_CP_WFI }, /* L1 cache lockdown. Not architectural in v6 and earlier but in practice * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and * OMAPCP will override this space. */ { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), .resetvalue = 0 }, { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), .resetvalue = 0 }, /* v6 doesn't have the cache ID registers but Linux reads them anyway */ { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, .resetvalue = 0 }, /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; * implementing it as RAZ means the "debug architecture version" bits * will read as a reserved value, which should cause Linux to not try * to use the debug hardware. */ { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, /* MMU TLB control. Note that the wildcarding means we cover not just * the unified TLB ops but also the dside/iside/inner-shareable variants. */ { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, .type = ARM_CP_NO_RAW }, { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, .type = ARM_CP_NO_RAW }, { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, .type = ARM_CP_NO_RAW }, { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, .type = ARM_CP_NO_RAW }, { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, REGINFO_SENTINEL }; static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { uint32_t mask = 0; /* In ARMv8 most bits of CPACR_EL1 are RES0. */ if (!arm_feature(env, ARM_FEATURE_V8)) { /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. */ if (arm_feature(env, ARM_FEATURE_VFP)) { /* VFP coprocessor: cp10 & cp11 [23:20] */ mask |= (1 << 31) | (1 << 30) | (0xf << 20); if (!arm_feature(env, ARM_FEATURE_NEON)) { /* ASEDIS [31] bit is RAO/WI */ value |= (1 << 31); } /* VFPv3 and upwards with NEON implement 32 double precision * registers (D0-D31). */ if (!arm_feature(env, ARM_FEATURE_NEON) || !arm_feature(env, ARM_FEATURE_VFP3)) { /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ value |= (1 << 30); } } value &= mask; } env->cp15.cpacr_el1 = value; } static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri) { if (arm_feature(env, ARM_FEATURE_V8)) { /* Check if CPACR accesses are to be trapped to EL2 */ if (arm_current_el(env) == 1 && (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { return CP_ACCESS_TRAP_EL2; /* Check if CPACR accesses are to be trapped to EL3 */ } else if (arm_current_el(env) < 3 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { return CP_ACCESS_TRAP_EL3; } } return CP_ACCESS_OK; } static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri) { /* Check if CPTR accesses are set to trap to EL3 */ if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; } static const ARMCPRegInfo v6_cp_reginfo[] = { /* prefetch by MVA in v6, NOP in v7 */ { .name = "MVA_prefetch", .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, .access = PL0_W, .type = ARM_CP_NOP }, { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, .access = PL0_W, .type = ARM_CP_NOP }, { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, .access = PL0_W, .type = ARM_CP_NOP }, { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), offsetof(CPUARMState, cp15.ifar_ns) }, .resetvalue = 0, }, /* Watchpoint Fault Address Register : should actually only be present * for 1136, 1176, 11MPCore. */ { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), .resetvalue = 0, .writefn = cpacr_write }, REGINFO_SENTINEL }; static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri) { /* Performance monitor registers user accessibility is controlled * by PMUSERENR. */ if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } #ifndef CONFIG_USER_ONLY static inline bool arm_ccnt_enabled(CPUARMState *env) { /* This does not support checking PMCCFILTR_EL0 register */ if (!(env->cp15.c9_pmcr & PMCRE)) { return false; } return true; } void pmccntr_sync(CPUARMState *env) { uint64_t temp_ticks; temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), get_ticks_per_sec(), 1000000); if (env->cp15.c9_pmcr & PMCRD) { /* Increment once every 64 processor clock cycles */ temp_ticks /= 64; } if (arm_ccnt_enabled(env)) { env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; } } static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { pmccntr_sync(env); if (value & PMCRC) { /* The counter has been reset */ env->cp15.c15_ccnt = 0; } /* only the DP, X, D and E bits are writable */ env->cp15.c9_pmcr &= ~0x39; env->cp15.c9_pmcr |= (value & 0x39); pmccntr_sync(env); } static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) { uint64_t total_ticks; if (!arm_ccnt_enabled(env)) { /* Counter is disabled, do not change value */ return env->cp15.c15_ccnt; } total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), get_ticks_per_sec(), 1000000); if (env->cp15.c9_pmcr & PMCRD) { /* Increment once every 64 processor clock cycles */ total_ticks /= 64; } return total_ticks - env->cp15.c15_ccnt; } static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { uint64_t total_ticks; if (!arm_ccnt_enabled(env)) { /* Counter is disabled, set the absolute value */ env->cp15.c15_ccnt = value; return; } total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), get_ticks_per_sec(), 1000000); if (env->cp15.c9_pmcr & PMCRD) { /* Increment once every 64 processor clock cycles */ total_ticks /= 64; } env->cp15.c15_ccnt = total_ticks - value; } static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { uint64_t cur_val = pmccntr_read(env, NULL); pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); } #else /* CONFIG_USER_ONLY */ void pmccntr_sync(CPUARMState *env) { } #endif static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { pmccntr_sync(env); env->cp15.pmccfiltr_el0 = value & 0x7E000000; pmccntr_sync(env); } static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= (1 << 31); env->cp15.c9_pmcnten |= value; } static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= (1 << 31); env->cp15.c9_pmcnten &= ~value; } static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c9_pmovsr &= ~value; } static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c9_pmxevtyper = value & 0xff; } static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c9_pmuserenr = value & 1; } static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* We have no event counters so only the C bit can be changed */ value &= (1 << 31); env->cp15.c9_pminten |= value; } static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= (1 << 31); env->cp15.c9_pminten &= ~value; } static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Note that even though the AArch64 view of this register has bits * [10:0] all RES0 we can only mask the bottom 5, to comply with the * architectural requirements for bits which are RES0 only in some * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) */ raw_write(env, ri, value & ~0x1FULL); } static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* We only mask off bits that are RES0 both for AArch64 and AArch32. * For bits that vary between AArch32/64, code needs to check the * current execution mode before directly using the feature bit. */ uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; if (!arm_feature(env, ARM_FEATURE_EL2)) { valid_mask &= ~SCR_HCE; /* On ARMv7, SMD (or SCD as it is called in v7) is only * supported if EL2 exists. The bit is UNK/SBZP when * EL2 is unavailable. In QEMU ARMv7, we force it to always zero * when EL2 is unavailable. * On ARMv8, this bit is always available. */ if (arm_feature(env, ARM_FEATURE_V7) && !arm_feature(env, ARM_FEATURE_V8)) { valid_mask &= ~SCR_SMD; } } /* Clear all-context RES0 bits. */ value &= valid_mask; raw_write(env, ri, value); } static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = arm_env_get_cpu(env); /* Acquire the CSSELR index from the bank corresponding to the CCSIDR * bank */ uint32_t index = A32_BANKED_REG_GET(env, csselr, ri->secure & ARM_CP_SECSTATE_S); return cpu->ccsidr[index]; } static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { raw_write(env, ri, value & 0xf); } static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) { CPUState *cs = ENV_GET_CPU(env); uint64_t ret = 0; if (cs->interrupt_request & CPU_INTERRUPT_HARD) { ret |= CPSR_I; } if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { ret |= CPSR_F; } /* External aborts are not possible in QEMU so A bit is always clear */ return ret; } static const ARMCPRegInfo v7_cp_reginfo[] = { /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, .access = PL1_W, .type = ARM_CP_NOP }, /* Performance monitors are implementation defined in v7, * but with an ARM recommended set of registers, which we * follow (although we don't actually implement any counters) * * Performance registers fall into three categories: * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) * For the cases controlled by PMUSERENR we must set .access to PL0_RW * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. */ { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, .access = PL0_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), .writefn = pmcntenset_write, .accessfn = pmreg_access, .raw_writefn = raw_write }, { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, .access = PL0_RW, .accessfn = pmreg_access, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, .writefn = pmcntenset_write, .raw_writefn = raw_write }, { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, .access = PL0_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), .accessfn = pmreg_access, .writefn = pmcntenclr_write, .type = ARM_CP_ALIAS }, { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .writefn = pmcntenclr_write }, { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), .accessfn = pmreg_access, .writefn = pmovsr_write, .raw_writefn = raw_write }, /* Unimplemented so WI. */ { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. * We choose to RAZ/WI. */ { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = pmreg_access }, #ifndef CONFIG_USER_ONLY { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, .readfn = pmccntr_read, .writefn = pmccntr_write32, .accessfn = pmreg_access }, { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_IO, .readfn = pmccntr_read, .writefn = pmccntr_write, }, #endif { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, .writefn = pmccfiltr_write, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), .resetvalue = 0, }, { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), .accessfn = pmreg_access, .writefn = pmxevtyper_write, .raw_writefn = raw_write }, /* Unimplemented, RAZ/WI. */ { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = pmreg_access }, { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, .access = PL0_R | PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), .resetvalue = 0, .writefn = pmuserenr_write, .raw_writefn = raw_write }, { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), .resetvalue = 0, .writefn = pmintenset_write, .raw_writefn = raw_write }, { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), .resetvalue = 0, .writefn = pmintenclr_write, }, { .name = "VBAR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .writefn = vbar_write, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), offsetof(CPUARMState, cp15.vbar_ns) }, .resetvalue = 0 }, { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), offsetof(CPUARMState, cp15.csselr_ns) } }, /* Auxiliary ID register: this actually has an IMPDEF value but for now * just RAZ for all cores: */ { .name = "AIDR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, /* Auxiliary fault status registers: these also are IMPDEF, and we * choose to RAZ/WI for all cores. */ { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, /* MAIR can just read-as-written because we don't implement caches * and so don't need to care about memory attributes. */ { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), .resetvalue = 0 }, /* For non-long-descriptor page tables these are PRRR and NMRR; * regardless they still act as reads-as-written for QEMU. */ /* MAIR0/1 are defined separately from their 64-bit counterpart which * allows them to assign the correct fieldoffset based on the endianness * handled in the field definitions. */ { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), offsetof(CPUARMState, cp15.mair0_ns) }, .resetfn = arm_cp_reset_ignore }, { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), offsetof(CPUARMState, cp15.mair1_ns) }, .resetfn = arm_cp_reset_ignore }, { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, /* 32 bit ITLB invalidates */ { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, /* 32 bit DTLB invalidates */ { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, /* 32 bit TLB invalidates */ { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, REGINFO_SENTINEL }; static const ARMCPRegInfo v7mp_cp_reginfo[] = { /* 32 bit TLB invalidates, Inner Shareable */ { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_is_write }, { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_is_write }, REGINFO_SENTINEL }; static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= 1; env->teecr = value; } static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri) { if (arm_current_el(env) == 0 && (env->teecr & 1)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } static const ARMCPRegInfo t2ee_cp_reginfo[] = { { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), .resetvalue = 0, .writefn = teecr_write }, { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), .accessfn = teehbr_access, .resetvalue = 0 }, REGINFO_SENTINEL }; static const ARMCPRegInfo v6k_cp_reginfo[] = { { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL0_RW, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, .resetfn = arm_cp_reset_ignore }, { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, .access = PL0_R|PL1_W, .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), .resetvalue = 0}, { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, .access = PL0_R|PL1_W, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, .resetfn = arm_cp_reset_ignore }, { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, .access = PL1_RW, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, .resetvalue = 0 }, REGINFO_SENTINEL }; #ifndef CONFIG_USER_ONLY static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri) { /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx) { /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx) { /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if * EL0[PV]TEN is zero. */ if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } static CPAccessResult gt_pct_access(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_counter_access(env, GTIMER_PHYS); } static CPAccessResult gt_vct_access(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_counter_access(env, GTIMER_VIRT); } static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_timer_access(env, GTIMER_PHYS); } static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_timer_access(env, GTIMER_VIRT); } static uint64_t gt_get_countervalue(CPUARMState *env) { return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; } static void gt_recalc_timer(ARMCPU *cpu, int timeridx) { ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; if (gt->ctl & 1) { /* Timer enabled: calculate and set current ISTATUS, irq, and * reset timer to when ISTATUS next has to change */ uint64_t count = gt_get_countervalue(&cpu->env); /* Note that this must be unsigned 64 bit arithmetic: */ int istatus = count >= gt->cval; uint64_t nexttick; gt->ctl = deposit32(gt->ctl, 2, 1, istatus); qemu_set_irq(cpu->gt_timer_outputs[timeridx], (istatus && !(gt->ctl & 2))); if (istatus) { /* Next transition is when count rolls back over to zero */ nexttick = UINT64_MAX; } else { /* Next transition is when we hit cval */ nexttick = gt->cval; } /* Note that the desired next expiry time might be beyond the * signed-64-bit range of a QEMUTimer -- in this case we just * set the timer for as far in the future as possible. When the * timer expires we will reset the timer for any remaining period. */ if (nexttick > INT64_MAX / GTIMER_SCALE) { nexttick = INT64_MAX / GTIMER_SCALE; } timer_mod(cpu->gt_timer[timeridx], nexttick); } else { /* Timer disabled: ISTATUS and timer output always clear */ gt->ctl &= ~4; qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); timer_del(cpu->gt_timer[timeridx]); } } static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = arm_env_get_cpu(env); int timeridx = ri->opc1 & 1; timer_del(cpu->gt_timer[timeridx]); } static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_get_countervalue(env); } static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { int timeridx = ri->opc1 & 1; env->cp15.c14_timer[timeridx].cval = value; gt_recalc_timer(arm_env_get_cpu(env), timeridx); } static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) { int timeridx = ri->crm & 1; return (uint32_t)(env->cp15.c14_timer[timeridx].cval - gt_get_countervalue(env)); } static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { int timeridx = ri->crm & 1; env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) + sextract64(value, 0, 32); gt_recalc_timer(arm_env_get_cpu(env), timeridx); } static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); int timeridx = ri->crm & 1; uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); if ((oldval ^ value) & 1) { /* Enable toggled */ gt_recalc_timer(cpu, timeridx); } else if ((oldval ^ value) & 2) { /* IMASK toggled: don't need to recalculate, * just set the interrupt line based on ISTATUS */ qemu_set_irq(cpu->gt_timer_outputs[timeridx], (oldval & 4) && !(value & 2)); } } void arm_gt_ptimer_cb(void *opaque) { ARMCPU *cpu = opaque; gt_recalc_timer(cpu, GTIMER_PHYS); } void arm_gt_vtimer_cb(void *opaque) { ARMCPU *cpu = opaque; gt_recalc_timer(cpu, GTIMER_VIRT); } static const ARMCPRegInfo generic_timer_cp_reginfo[] = { /* Note that CNTFRQ is purely reads-as-written for the benefit * of software; writing it doesn't actually change the timer frequency. * Our reset value matches the fixed frequency we implement the timer at. */ { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, .type = ARM_CP_ALIAS, .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), .resetfn = arm_cp_reset_ignore, }, { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, }, /* overall control: mostly access permissions */ { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), .resetvalue = 0, }, /* per-timer control */ { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, .accessfn = gt_ptimer_access, .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), .resetfn = arm_cp_reset_ignore, .writefn = gt_ctl_write, .raw_writefn = raw_write, }, { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, .type = ARM_CP_IO, .access = PL1_RW | PL0_R, .accessfn = gt_ptimer_access, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), .resetvalue = 0, .writefn = gt_ctl_write, .raw_writefn = raw_write, }, { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, .accessfn = gt_vtimer_access, .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), .resetfn = arm_cp_reset_ignore, .writefn = gt_ctl_write, .raw_writefn = raw_write, }, { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, .type = ARM_CP_IO, .access = PL1_RW | PL0_R, .accessfn = gt_vtimer_access, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), .resetvalue = 0, .writefn = gt_ctl_write, .raw_writefn = raw_write, }, /* TimerValue views: a 32 bit downcounting view of the underlying state */ { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, .accessfn = gt_ptimer_access, .readfn = gt_tval_read, .writefn = gt_tval_write, }, { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, .accessfn = gt_ptimer_access, .readfn = gt_tval_read, .writefn = gt_tval_write, }, { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, .accessfn = gt_vtimer_access, .readfn = gt_tval_read, .writefn = gt_tval_write, }, { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, .accessfn = gt_vtimer_access, .readfn = gt_tval_read, .writefn = gt_tval_write, }, /* The counter itself */ { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, .accessfn = gt_pct_access, .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, }, { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, .accessfn = gt_pct_access, .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, }, { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, .accessfn = gt_vct_access, .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, }, { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, .accessfn = gt_vct_access, .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, }, /* Comparison value, indicating when the timer goes off */ { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, .access = PL1_RW | PL0_R, .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore, .writefn = gt_cval_write, .raw_writefn = raw_write, }, { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, .access = PL1_RW | PL0_R, .type = ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), .resetvalue = 0, .accessfn = gt_ptimer_access, .writefn = gt_cval_write, .raw_writefn = raw_write, }, { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, .access = PL1_RW | PL0_R, .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore, .writefn = gt_cval_write, .raw_writefn = raw_write, }, { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, .access = PL1_RW | PL0_R, .type = ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), .resetvalue = 0, .accessfn = gt_vtimer_access, .writefn = gt_cval_write, .raw_writefn = raw_write, }, REGINFO_SENTINEL }; #else /* In user-mode none of the generic timer registers are accessible, * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, * so instead just don't register any of them. */ static const ARMCPRegInfo generic_timer_cp_reginfo[] = { REGINFO_SENTINEL }; #endif static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (arm_feature(env, ARM_FEATURE_LPAE)) { raw_write(env, ri, value); } else if (arm_feature(env, ARM_FEATURE_V7)) { raw_write(env, ri, value & 0xfffff6ff); } else { raw_write(env, ri, value & 0xfffff1ff); } } #ifndef CONFIG_USER_ONLY /* get_phys_addr() isn't present for user-mode-only targets */ static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri) { if (ri->opc2 & 4) { /* Other states are only available with TrustZone; in * a non-TZ implementation these registers don't exist * at all, which is an Uncategorized trap. This underdecoding * is safe because the reginfo is NO_RAW. */ return CP_ACCESS_TRAP_UNCATEGORIZED; } return CP_ACCESS_OK; } static uint64_t do_ats_write(CPUARMState *env, uint64_t value, int access_type, ARMMMUIdx mmu_idx) { hwaddr phys_addr; target_ulong page_size; int prot; int ret; uint64_t par64; MemTxAttrs attrs = {}; ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, &prot, &page_size); if (extended_addresses_enabled(env)) { /* ret is a DFSR/IFSR value for the long descriptor * translation table format, but with WnR always clear. * Convert it to a 64-bit PAR. */ par64 = (1 << 11); /* LPAE bit always set */ if (ret == 0) { par64 |= phys_addr & ~0xfffULL; if (!attrs.secure) { par64 |= (1 << 9); /* NS */ } /* We don't set the ATTR or SH fields in the PAR. */ } else { par64 |= 1; /* F */ par64 |= (ret & 0x3f) << 1; /* FS */ /* Note that S2WLK and FSTAGE are always zero, because we don't * implement virtualization and therefore there can't be a stage 2 * fault. */ } } else { /* ret is a DFSR/IFSR value for the short descriptor * translation table format (with WnR always clear). * Convert it to a 32-bit PAR. */ if (ret == 0) { /* We do not set any attribute bits in the PAR */ if (page_size == (1 << 24) && arm_feature(env, ARM_FEATURE_V7)) { par64 = (phys_addr & 0xff000000) | (1 << 1); } else { par64 = phys_addr & 0xfffff000; } if (!attrs.secure) { par64 |= (1 << 9); /* NS */ } } else { par64 = ((ret & (1 << 10)) >> 5) | ((ret & (1 << 12)) >> 6) | ((ret & 0xf) << 1) | 1; } } return par64; } static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { int access_type = ri->opc2 & 1; uint64_t par64; ARMMMUIdx mmu_idx; int el = arm_current_el(env); bool secure = arm_is_secure_below_el3(env); switch (ri->opc2 & 6) { case 0: /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ switch (el) { case 3: mmu_idx = ARMMMUIdx_S1E3; break; case 2: mmu_idx = ARMMMUIdx_S1NSE1; break; case 1: mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; break; default: g_assert_not_reached(); } break; case 2: /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ switch (el) { case 3: mmu_idx = ARMMMUIdx_S1SE0; break; case 2: mmu_idx = ARMMMUIdx_S1NSE0; break; case 1: mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; break; default: g_assert_not_reached(); } break; case 4: /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ mmu_idx = ARMMMUIdx_S12NSE1; break; case 6: /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ mmu_idx = ARMMMUIdx_S12NSE0; break; default: g_assert_not_reached(); } par64 = do_ats_write(env, value, access_type, mmu_idx); A32_BANKED_CURRENT_REG_SET(env, par, par64); } static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { int access_type = ri->opc2 & 1; ARMMMUIdx mmu_idx; int secure = arm_is_secure_below_el3(env); switch (ri->opc2 & 6) { case 0: switch (ri->opc1) { case 0: /* AT S1E1R, AT S1E1W */ mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; break; case 4: /* AT S1E2R, AT S1E2W */ mmu_idx = ARMMMUIdx_S1E2; break; case 6: /* AT S1E3R, AT S1E3W */ mmu_idx = ARMMMUIdx_S1E3; break; default: g_assert_not_reached(); } break; case 2: /* AT S1E0R, AT S1E0W */ mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; break; case 4: /* AT S12E1R, AT S12E1W */ mmu_idx = ARMMMUIdx_S12NSE1; break; case 6: /* AT S12E0R, AT S12E0W */ mmu_idx = ARMMMUIdx_S12NSE0; break; default: g_assert_not_reached(); } env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); } #endif static const ARMCPRegInfo vapa_cp_reginfo[] = { { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), offsetoflow32(CPUARMState, cp15.par_ns) }, .writefn = par_write }, #ifndef CONFIG_USER_ONLY { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .accessfn = ats_access, .writefn = ats_write, .type = ARM_CP_NO_RAW }, #endif REGINFO_SENTINEL }; /* Return basic MPU access permission bits. */ static uint32_t simple_mpu_ap_bits(uint32_t val) { uint32_t ret; uint32_t mask; int i; ret = 0; mask = 3; for (i = 0; i < 16; i += 2) { ret |= (val >> i) & mask; mask <<= 2; } return ret; } /* Pad basic MPU access permission bits to extended format. */ static uint32_t extended_mpu_ap_bits(uint32_t val) { uint32_t ret; uint32_t mask; int i; ret = 0; mask = 3; for (i = 0; i < 16; i += 2) { ret |= (val & mask) << i; mask <<= 2; } return ret; } static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); } static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) { return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); } static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); } static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) { return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); } static const ARMCPRegInfo pmsav5_cp_reginfo[] = { { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), .resetvalue = 0, .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), .resetvalue = 0, .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), .resetvalue = 0, }, { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), .resetvalue = 0, }, { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, /* Protection region base and size registers */ { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, REGINFO_SENTINEL }; static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { TCR *tcr = raw_ptr(env, ri); int maskshift = extract32(value, 0, 3); if (!arm_feature(env, ARM_FEATURE_V8)) { if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when * using Long-desciptor translation table format */ value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); } else if (arm_feature(env, ARM_FEATURE_EL3)) { /* In an implementation that includes the Security Extensions * TTBCR has additional fields PD0 [4] and PD1 [5] for * Short-descriptor translation table format. */ value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; } else { value &= TTBCR_N; } } /* Update the masks corresponding to the the TCR bank being written * Note that we always calculate mask and base_mask, but * they are only used for short-descriptor tables (ie if EAE is 0); * for long-descriptor tables the TCR fields are used differently * and the mask and base_mask values are meaningless. */ tcr->raw_tcr = value; tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); } static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); if (arm_feature(env, ARM_FEATURE_LPAE)) { /* With LPAE the TTBCR could result in a change of ASID * via the TTBCR.A1 bit, so do a TLB flush. */ tlb_flush(CPU(cpu), 1); } vmsa_ttbcr_raw_write(env, ri, value); } static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) { TCR *tcr = raw_ptr(env, ri); /* Reset both the TCR as well as the masks corresponding to the bank of * the TCR being reset. */ tcr->raw_tcr = 0; tcr->mask = 0; tcr->base_mask = 0xffffc000u; } static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); TCR *tcr = raw_ptr(env, ri); /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ tlb_flush(CPU(cpu), 1); tcr->raw_tcr = value; } static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* 64 bit accesses to the TTBRs can change the ASID and so we * must flush the TLB. */ if (cpreg_field_is_64bit(ri)) { ARMCPU *cpu = arm_env_get_cpu(env); tlb_flush(CPU(cpu), 1); } raw_write(env, ri, value); } static const ARMCPRegInfo vmsa_cp_reginfo[] = { { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_ALIAS, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), offsetoflow32(CPUARMState, cp15.dfsr_ns) }, .resetfn = arm_cp_reset_ignore, }, { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .resetvalue = 0, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), offsetof(CPUARMState, cp15.ttbr0_ns) } }, { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), offsetof(CPUARMState, cp15.ttbr1_ns) } }, { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .writefn = vmsa_tcr_el1_write, .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), .resetvalue = 0, }, { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), offsetof(CPUARMState, cp15.dfar_ns) } }, REGINFO_SENTINEL }; static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c15_ticonfig = value & 0xe7; /* The OS_TYPE bit in this register changes the reported CPUID! */ env->cp15.c0_cpuid = (value & (1 << 5)) ? ARM_CPUID_TI915T : ARM_CPUID_TI925T; } static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c15_threadid = value & 0xffff; } static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Wait-for-interrupt (deprecated) */ cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); } static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* On OMAP there are registers indicating the max/min index of dcache lines * containing a dirty line; cache flush operations have to reset these. */ env->cp15.c15_i_max = 0x000; env->cp15.c15_i_min = 0xff0; } static const ARMCPRegInfo omap_cp_reginfo[] = { { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, .writefn = omap_ticonfig_write }, { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0xff0, .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, .writefn = omap_threadid_write }, { .name = "TI925T_STATUS", .cp = 15, .crn = 15, .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NO_RAW, .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, /* TODO: Peripheral port remap register: * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), * when MMU is off. */ { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, .writefn = omap_cachemaint_write }, { .name = "C9", .cp = 15, .crn = 9, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, REGINFO_SENTINEL }; static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c15_cpar = value & 0x3fff; } static const ARMCPRegInfo xscale_cp_reginfo[] = { { .name = "XSCALE_CPAR", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, .writefn = xscale_cpar_write, }, { .name = "XSCALE_AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), .resetvalue = 0, }, /* XScale specific cache-lockdown: since we have no cache we NOP these * and hope the guest does not really rely on cache behaviour. */ { .name = "XSCALE_LOCK_ICACHE_LINE", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "XSCALE_UNLOCK_ICACHE", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "XSCALE_DCACHE_LOCK", .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "XSCALE_UNLOCK_DCACHE", .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NOP }, REGINFO_SENTINEL }; static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { /* RAZ/WI the whole crn=15 space, when we don't have a more specific * implementation of this implementation-defined space. * Ideally this should eventually disappear in favour of actually * implementing the correct behaviour for all cores. */ { .name = "C15_IMPDEF", .cp = 15, .crn = 15, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, .resetvalue = 0 }, REGINFO_SENTINEL }; static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { /* Cache status: RAZ because we have no cache so it's always clean */ { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, .resetvalue = 0 }, REGINFO_SENTINEL }; static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { /* We never have a a block transfer operation in progress */ { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, .resetvalue = 0 }, /* The cache ops themselves: these all NOP for QEMU */ { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, REGINFO_SENTINEL }; static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { /* The cache test-and-clean instructions always return (1 << 30) * to indicate that there are no dirty cache lines. */ { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, .resetvalue = (1 << 30) }, { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, .resetvalue = (1 << 30) }, REGINFO_SENTINEL }; static const ARMCPRegInfo strongarm_cp_reginfo[] = { /* Ignore ReadBuffer accesses */ { .name = "C9_READBUFFER", .cp = 15, .crn = 9, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, REGINFO_SENTINEL }; static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) { CPUState *cs = CPU(arm_env_get_cpu(env)); uint32_t mpidr = cs->cpu_index; /* We don't support setting cluster ID ([8..11]) (known as Aff1 * in later ARM ARM versions), or any of the higher affinity level fields, * so these bits always RAZ. */ if (arm_feature(env, ARM_FEATURE_V7MP)) { mpidr |= (1U << 31); /* Cores which are uniprocessor (non-coherent) * but still implement the MP extensions set * bit 30. (For instance, A9UP.) However we do * not currently model any of those cores. */ } return mpidr; } static const ARMCPRegInfo mpidr_cp_reginfo[] = { { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, REGINFO_SENTINEL }; static const ARMCPRegInfo lpae_cp_reginfo[] = { /* NOP AMAIR0/1 */ { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), offsetof(CPUARMState, cp15.par_ns)} }, { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), offsetof(CPUARMState, cp15.ttbr0_ns) }, .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), offsetof(CPUARMState, cp15.ttbr1_ns) }, .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, REGINFO_SENTINEL }; static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) { return vfp_get_fpcr(env); } static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { vfp_set_fpcr(env, value); } static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) { return vfp_get_fpsr(env); } static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { vfp_set_fpsr(env, value); } static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri) { if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->daif = value & PSTATE_DAIF; } static CPAccessResult aa64_cacheop_access(CPUARMState *env, const ARMCPRegInfo *ri) { /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless * SCTLR_EL1.UCI is set. */ if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions * Page D4-1736 (DDI0487A.b) */ static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by VA (AArch64 version) */ ARMCPU *cpu = arm_env_get_cpu(env); uint64_t pageaddr = sextract64(value << 12, 0, 56); tlb_flush_page(CPU(cpu), pageaddr); } static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by VA, all ASIDs (AArch64 version) */ ARMCPU *cpu = arm_env_get_cpu(env); uint64_t pageaddr = sextract64(value << 12, 0, 56); tlb_flush_page(CPU(cpu), pageaddr); } static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by ASID (AArch64 version) */ ARMCPU *cpu = arm_env_get_cpu(env); int asid = extract64(value, 48, 16); tlb_flush(CPU(cpu), asid == 0); } static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *other_cs; uint64_t pageaddr = sextract64(value << 12, 0, 56); CPU_FOREACH(other_cs) { tlb_flush_page(other_cs, pageaddr); } } static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *other_cs; uint64_t pageaddr = sextract64(value << 12, 0, 56); CPU_FOREACH(other_cs) { tlb_flush_page(other_cs, pageaddr); } } static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *other_cs; int asid = extract64(value, 48, 16); CPU_FOREACH(other_cs) { tlb_flush(other_cs, asid == 0); } } static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri) { /* We don't implement EL2, so the only control on DC ZVA is the * bit in the SCTLR which can prohibit access for EL0. */ if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = arm_env_get_cpu(env); int dzp_bit = 1 << 4; /* DZP indicates whether DC ZVA access is allowed */ if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) { dzp_bit = 0; } return cpu->dcz_blocksize | dzp_bit; } static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) { if (!(env->pstate & PSTATE_SP)) { /* Access to SP_EL0 is undefined if it's being used as * the stack pointer. */ return CP_ACCESS_TRAP_UNCATEGORIZED; } return CP_ACCESS_OK; } static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) { return env->pstate & PSTATE_SP; } static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) { update_spsel(env, val); } static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); if (raw_read(env, ri) == value) { /* Skip the TLB flush if nothing actually changed; Linux likes * to do a lot of pointless SCTLR writes. */ return; } raw_write(env, ri, value); /* ??? Lots of these bits are not implemented. */ /* This may enable/disable the MMU, so do a TLB flush. */ tlb_flush(CPU(cpu), 1); } static const ARMCPRegInfo v8_cp_reginfo[] = { /* Minimal set of EL0-visible registers. This will need to be expanded * significantly for system emulation of AArch64 CPUs. */ { .name = "NZCV", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, .access = PL0_RW, .type = ARM_CP_NZCV }, { .name = "DAIF", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, .type = ARM_CP_NO_RAW, .access = PL0_RW, .accessfn = aa64_daif_access, .fieldoffset = offsetof(CPUARMState, daif), .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, { .name = "FPCR", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, { .name = "FPSR", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, .access = PL0_R, .type = ARM_CP_NO_RAW, .readfn = aa64_dczid_read }, { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, .access = PL0_W, .type = ARM_CP_DC_ZVA, #ifndef CONFIG_USER_ONLY /* Avoid overhead of an access check that always passes in user-mode */ .accessfn = aa64_zva_access, #endif }, { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, .access = PL1_R, .type = ARM_CP_CURRENTEL }, /* Cache ops: all NOPs since we don't emulate caches */ { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, .access = PL0_W, .type = ARM_CP_NOP, .accessfn = aa64_cacheop_access }, { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, .access = PL0_W, .type = ARM_CP_NOP, .accessfn = aa64_cacheop_access }, { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, .access = PL0_W, .type = ARM_CP_NOP, .accessfn = aa64_cacheop_access }, { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, .access = PL0_W, .type = ARM_CP_NOP, .accessfn = aa64_cacheop_access }, { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NOP }, /* TLBI operations */ { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbiall_write }, { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbiall_write }, { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbiall_is_write }, { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_va_is_write }, { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_asid_is_write }, { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vaa_is_write }, { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_va_is_write }, { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vaa_is_write }, { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbiall_write }, { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_va_write }, { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_asid_write }, { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vaa_write }, { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_va_write }, { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vaa_write }, #ifndef CONFIG_USER_ONLY /* 64 bit address translation operations */ { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, #endif /* TLB invalidate last level of translation table walk */ { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_is_write }, { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, /* 32 bit cache operations */ { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, .type = ARM_CP_NOP, .access = PL1_W }, /* MMU Domain access control / MPU write buffer control */ { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), offsetoflow32(CPUARMState, cp15.dacr_ns) } }, { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) }, /* We rely on the access checks not allowing the guest to write to the * state field when SPSel indicates that it's being used as the stack * pointer. */ { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, .access = PL1_RW, .accessfn = sp_el0_access, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, { .name = "SPSel", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, REGINFO_SENTINEL }; /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, .access = PL2_RW, .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, .type = ARM_CP_NO_RAW, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, .access = PL2_RW, .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); uint64_t valid_mask = HCR_MASK; if (arm_feature(env, ARM_FEATURE_EL3)) { valid_mask &= ~HCR_HCD; } else { valid_mask &= ~HCR_TSC; } /* Clear RES0 bits. */ value &= valid_mask; /* These bits change the MMU setup: * HCR_VM enables stage 2 translation * HCR_PTW forbids certain page-table setups * HCR_DC Disables stage1 and enables stage2 translation */ if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { tlb_flush(CPU(cpu), 1); } raw_write(env, ri, value); } static const ARMCPRegInfo el2_cp_reginfo[] = { { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), .writefn = hcr_write }, { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, .access = PL2_RW, .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, .access = PL2_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) }, { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, .access = PL2_RW, .writefn = vbar_write, .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), .resetvalue = 0 }, { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, .access = PL3_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), .resetvalue = 0 }, { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, .access = PL2_RW, .writefn = vmsa_tcr_el1_write, .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, .access = PL2_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, .access = PL2_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiall_write }, { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbi_aa64_vaa_write }, { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbi_aa64_vaa_write }, REGINFO_SENTINEL }; static const ARMCPRegInfo el3_cp_reginfo[] = { { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), .resetvalue = 0, .writefn = scr_write }, { .name = "SCR", .type = ARM_CP_ALIAS, .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), .resetfn = arm_cp_reset_ignore, .writefn = scr_write }, { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, .access = PL3_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.sder) }, { .name = "SDER", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, .access = PL3_RW, .resetvalue = 0, .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */ { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, .access = PL3_W | PL1_R, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.nsacr) }, { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write, .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) }, { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, .access = PL3_RW, .writefn = vmsa_tcr_el1_write, .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) }, { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, .access = PL3_RW, .writefn = vbar_write, .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), .resetvalue = 0 }, { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, REGINFO_SENTINEL }; static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) { /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, * but the AArch32 CTR has its own reginfo struct) */ if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } static const ARMCPRegInfo debug_cp_reginfo[] = { /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; * unlike DBGDRAR it is never accessible from EL0. * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 * accessor. */ { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), .resetvalue = 0 }, /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. * We don't implement the configurable EL0 access. */ { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, .type = ARM_CP_ALIAS, .access = PL1_R, .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), .resetfn = arm_cp_reset_ignore }, /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */ { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, .access = PL1_W, .type = ARM_CP_NOP }, /* Dummy OSDLR_EL1: 32-bit Linux will read this */ { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, .access = PL1_RW, .type = ARM_CP_NOP }, /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't * implement vector catch debug events yet. */ { .name = "DBGVCR", .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, REGINFO_SENTINEL }; static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { /* 64 bit access versions of the (dummy) debug registers */ { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, REGINFO_SENTINEL }; void hw_watchpoint_update(ARMCPU *cpu, int n) { CPUARMState *env = &cpu->env; vaddr len = 0; vaddr wvr = env->cp15.dbgwvr[n]; uint64_t wcr = env->cp15.dbgwcr[n]; int mask; int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; if (env->cpu_watchpoint[n]) { cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); env->cpu_watchpoint[n] = NULL; } if (!extract64(wcr, 0, 1)) { /* E bit clear : watchpoint disabled */ return; } switch (extract64(wcr, 3, 2)) { case 0: /* LSC 00 is reserved and must behave as if the wp is disabled */ return; case 1: flags |= BP_MEM_READ; break; case 2: flags |= BP_MEM_WRITE; break; case 3: flags |= BP_MEM_ACCESS; break; } /* Attempts to use both MASK and BAS fields simultaneously are * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, * thus generating a watchpoint for every byte in the masked region. */ mask = extract64(wcr, 24, 4); if (mask == 1 || mask == 2) { /* Reserved values of MASK; we must act as if the mask value was * some non-reserved value, or as if the watchpoint were disabled. * We choose the latter. */ return; } else if (mask) { /* Watchpoint covers an aligned area up to 2GB in size */ len = 1ULL << mask; /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE * whether the watchpoint fires when the unmasked bits match; we opt * to generate the exceptions. */ wvr &= ~(len - 1); } else { /* Watchpoint covers bytes defined by the byte address select bits */ int bas = extract64(wcr, 5, 8); int basstart; if (bas == 0) { /* This must act as if the watchpoint is disabled */ return; } if (extract64(wvr, 2, 1)) { /* Deprecated case of an only 4-aligned address. BAS[7:4] are * ignored, and BAS[3:0] define which bytes to watch. */ bas &= 0xf; } /* The BAS bits are supposed to be programmed to indicate a contiguous * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether * we fire for each byte in the word/doubleword addressed by the WVR. * We choose to ignore any non-zero bits after the first range of 1s. */ basstart = ctz32(bas); len = cto32(bas >> basstart); wvr += basstart; } cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, &env->cpu_watchpoint[n]); } void hw_watchpoint_update_all(ARMCPU *cpu) { int i; CPUARMState *env = &cpu->env; /* Completely clear out existing QEMU watchpoints and our array, to * avoid possible stale entries following migration load. */ cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { hw_watchpoint_update(cpu, i); } } static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); int i = ri->crm; /* Bits [63:49] are hardwired to the value of bit [48]; that is, the * register reads and behaves as if values written are sign extended. * Bits [1:0] are RES0. */ value = sextract64(value, 0, 49) & ~3ULL; raw_write(env, ri, value); hw_watchpoint_update(cpu, i); } static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); int i = ri->crm; raw_write(env, ri, value); hw_watchpoint_update(cpu, i); } void hw_breakpoint_update(ARMCPU *cpu, int n) { CPUARMState *env = &cpu->env; uint64_t bvr = env->cp15.dbgbvr[n]; uint64_t bcr = env->cp15.dbgbcr[n]; vaddr addr; int bt; int flags = BP_CPU; if (env->cpu_breakpoint[n]) { cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); env->cpu_breakpoint[n] = NULL; } if (!extract64(bcr, 0, 1)) { /* E bit clear : watchpoint disabled */ return; } bt = extract64(bcr, 20, 4); switch (bt) { case 4: /* unlinked address mismatch (reserved if AArch64) */ case 5: /* linked address mismatch (reserved if AArch64) */ qemu_log_mask(LOG_UNIMP, "arm: address mismatch breakpoint types not implemented"); return; case 0: /* unlinked address match */ case 1: /* linked address match */ { /* Bits [63:49] are hardwired to the value of bit [48]; that is, * we behave as if the register was sign extended. Bits [1:0] are * RES0. The BAS field is used to allow setting breakpoints on 16 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether * a bp will fire if the addresses covered by the bp and the addresses * covered by the insn overlap but the insn doesn't start at the * start of the bp address range. We choose to require the insn and * the bp to have the same address. The constraints on writing to * BAS enforced in dbgbcr_write mean we have only four cases: * 0b0000 => no breakpoint * 0b0011 => breakpoint on addr * 0b1100 => breakpoint on addr + 2 * 0b1111 => breakpoint on addr * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). */ int bas = extract64(bcr, 5, 4); addr = sextract64(bvr, 0, 49) & ~3ULL; if (bas == 0) { return; } if (bas == 0xc) { addr += 2; } break; } case 2: /* unlinked context ID match */ case 8: /* unlinked VMID match (reserved if no EL2) */ case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ qemu_log_mask(LOG_UNIMP, "arm: unlinked context breakpoint types not implemented"); return; case 9: /* linked VMID match (reserved if no EL2) */ case 11: /* linked context ID and VMID match (reserved if no EL2) */ case 3: /* linked context ID match */ default: /* We must generate no events for Linked context matches (unless * they are linked to by some other bp/wp, which is handled in * updates for the linking bp/wp). We choose to also generate no events * for reserved values. */ return; } cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); } void hw_breakpoint_update_all(ARMCPU *cpu) { int i; CPUARMState *env = &cpu->env; /* Completely clear out existing QEMU breakpoints and our array, to * avoid possible stale entries following migration load. */ cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { hw_breakpoint_update(cpu, i); } } static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); int i = ri->crm; raw_write(env, ri, value); hw_breakpoint_update(cpu, i); } static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); int i = ri->crm; /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only * copy of BAS[0]. */ value = deposit64(value, 6, 1, extract64(value, 5, 1)); value = deposit64(value, 8, 1, extract64(value, 7, 1)); raw_write(env, ri, value); hw_breakpoint_update(cpu, i); } static void define_debug_regs(ARMCPU *cpu) { /* Define v7 and v8 architectural debug registers. * These are just dummy implementations for now. */ int i; int wrps, brps, ctx_cmps; ARMCPRegInfo dbgdidr = { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, }; /* Note that all these register fields hold "number of Xs minus 1". */ brps = extract32(cpu->dbgdidr, 24, 4); wrps = extract32(cpu->dbgdidr, 28, 4); ctx_cmps = extract32(cpu->dbgdidr, 20, 4); assert(ctx_cmps <= brps); /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties * of the debug registers such as number of breakpoints; * check that if they both exist then they agree. */ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); } define_one_arm_cp_reg(cpu, &dbgdidr); define_arm_cp_regs(cpu, debug_cp_reginfo); if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); } for (i = 0; i < brps + 1; i++) { ARMCPRegInfo dbgregs[] = { { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), .writefn = dbgbvr_write, .raw_writefn = raw_write }, { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), .writefn = dbgbcr_write, .raw_writefn = raw_write }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, dbgregs); } for (i = 0; i < wrps + 1; i++) { ARMCPRegInfo dbgregs[] = { { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), .writefn = dbgwvr_write, .raw_writefn = raw_write }, { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), .writefn = dbgwcr_write, .raw_writefn = raw_write }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, dbgregs); } } void register_cp_regs_for_features(ARMCPU *cpu) { /* Register all the coprocessor registers based on feature bits */ CPUARMState *env = &cpu->env; if (arm_feature(env, ARM_FEATURE_M)) { /* M profile has no coprocessor registers */ return; } define_arm_cp_regs(cpu, cp_reginfo); if (!arm_feature(env, ARM_FEATURE_V8)) { /* Must go early as it is full of wildcards that may be * overridden by later definitions. */ define_arm_cp_regs(cpu, not_v8_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V6)) { /* The ID registers all have impdef reset values */ ARMCPRegInfo v6_idregs[] = { { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_pfr0 }, { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_pfr1 }, { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_dfr0 }, { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_afr0 }, { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_mmfr0 }, { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_mmfr1 }, { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_mmfr2 }, { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_mmfr3 }, { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_isar0 }, { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_isar1 }, { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_isar2 }, { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_isar3 }, { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_isar4 }, { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_isar5 }, /* 6..7 are as yet unallocated and must RAZ */ { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, v6_idregs); define_arm_cp_regs(cpu, v6_cp_reginfo); } else { define_arm_cp_regs(cpu, not_v6_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V6K)) { define_arm_cp_regs(cpu, v6k_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V7MP)) { define_arm_cp_regs(cpu, v7mp_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V7)) { /* v7 performance monitor control register: same implementor * field as main ID register, and we implement only the cycle * count register. */ #ifndef CONFIG_USER_ONLY ARMCPRegInfo pmcr = { .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), .accessfn = pmreg_access, .writefn = pmcr_write, .raw_writefn = raw_write, }; ARMCPRegInfo pmcr64 = { .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), .resetvalue = cpu->midr & 0xff000000, .writefn = pmcr_write, .raw_writefn = raw_write, }; define_one_arm_cp_reg(cpu, &pmcr); define_one_arm_cp_reg(cpu, &pmcr64); #endif ARMCPRegInfo clidr = { .name = "CLIDR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr }; define_one_arm_cp_reg(cpu, &clidr); define_arm_cp_regs(cpu, v7_cp_reginfo); define_debug_regs(cpu); } else { define_arm_cp_regs(cpu, not_v7_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V8)) { /* AArch64 ID registers, which all have impdef reset values */ ARMCPRegInfo v8_idregs[] = { { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_aa64pfr0 }, { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_aa64pfr1}, { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, /* We mask out the PMUVer field, because we don't currently * implement the PMU. Not advertising it prevents the guest * from trying to use it and getting UNDEFs on registers we * don't implement. */ .resetvalue = cpu->id_aa64dfr0 & ~0xf00 }, { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_aa64dfr1 }, { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_aa64afr0 }, { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_aa64afr1 }, { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_aa64isar0 }, { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_aa64isar1 }, { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_aa64mmfr0 }, { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_aa64mmfr1 }, { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->mvfr0 }, { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->mvfr1 }, { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->mvfr2 }, REGINFO_SENTINEL }; /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ if (!arm_feature(env, ARM_FEATURE_EL3) && !arm_feature(env, ARM_FEATURE_EL2)) { ARMCPRegInfo rvbar = { .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar }; define_one_arm_cp_reg(cpu, &rvbar); } define_arm_cp_regs(cpu, v8_idregs); define_arm_cp_regs(cpu, v8_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_EL2)) { define_arm_cp_regs(cpu, el2_cp_reginfo); /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ if (!arm_feature(env, ARM_FEATURE_EL3)) { ARMCPRegInfo rvbar = { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar }; define_one_arm_cp_reg(cpu, &rvbar); } } else { /* If EL2 is missing but higher ELs are enabled, we need to * register the no_el2 reginfos. */ if (arm_feature(env, ARM_FEATURE_EL3)) { define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); } } if (arm_feature(env, ARM_FEATURE_EL3)) { define_arm_cp_regs(cpu, el3_cp_reginfo); ARMCPRegInfo rvbar = { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }; define_one_arm_cp_reg(cpu, &rvbar); } if (arm_feature(env, ARM_FEATURE_MPU)) { /* These are the MPU registers prior to PMSAv6. Any new * PMSA core later than the ARM946 will require that we * implement the PMSAv6 or PMSAv7 registers, which are * completely different. */ assert(!arm_feature(env, ARM_FEATURE_V6)); define_arm_cp_regs(cpu, pmsav5_cp_reginfo); } else { define_arm_cp_regs(cpu, vmsa_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { define_arm_cp_regs(cpu, t2ee_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { define_arm_cp_regs(cpu, generic_timer_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_VAPA)) { define_arm_cp_regs(cpu, vapa_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_OMAPCP)) { define_arm_cp_regs(cpu, omap_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_STRONGARM)) { define_arm_cp_regs(cpu, strongarm_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_XSCALE)) { define_arm_cp_regs(cpu, xscale_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_LPAE)) { define_arm_cp_regs(cpu, lpae_cp_reginfo); } /* Slightly awkwardly, the OMAP and StrongARM cores need all of * cp15 crn=0 to be writes-ignored, whereas for other cores they should * be read-only (ie write causes UNDEF exception). */ { ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { /* Pre-v8 MIDR space. * Note that the MIDR isn't a simple constant register because * of the TI925 behaviour where writes to another register can * cause the MIDR value to change. * * Unimplemented registers in the c15 0 0 0 space default to * MIDR. Define MIDR first as this entire space, then CTR, TCMTR * and friends override accordingly. */ { .name = "MIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .resetvalue = cpu->midr, .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), .type = ARM_CP_OVERRIDE }, /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; ARMCPRegInfo id_v8_midr_cp_reginfo[] = { /* v8 MIDR -- the wildcard isn't necessary, and nor is the * variable-MIDR TI925 behaviour. Instead we have a single * (strictly speaking IMPDEF) alias of the MIDR, REVIDR. */ { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr }, { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr }, REGINFO_SENTINEL }; ARMCPRegInfo id_cp_reginfo[] = { /* These are common to v8 and pre-v8 */ { .name = "CTR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, .access = PL0_R, .accessfn = ctr_el0_access, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ { .name = "TCMTR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "TLBTR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; ARMCPRegInfo crn0_wi_reginfo = { .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_OVERRIDE }; if (arm_feature(env, ARM_FEATURE_OMAPCP) || arm_feature(env, ARM_FEATURE_STRONGARM)) { ARMCPRegInfo *r; /* Register the blanket "writes ignored" value first to cover the * whole space. Then update the specific ID registers to allow write * access, so that they ignore writes rather than causing them to * UNDEF. */ define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); for (r = id_pre_v8_midr_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { r->access = PL1_RW; } for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { r->access = PL1_RW; } } if (arm_feature(env, ARM_FEATURE_V8)) { define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); } else { define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); } define_arm_cp_regs(cpu, id_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_MPIDR)) { define_arm_cp_regs(cpu, mpidr_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_AUXCR)) { ARMCPRegInfo auxcr = { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }; define_one_arm_cp_reg(cpu, &auxcr); } if (arm_feature(env, ARM_FEATURE_CBAR)) { if (arm_feature(env, ARM_FEATURE_AARCH64)) { /* 32 bit view is [31:18] 0...0 [43:32]. */ uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | extract64(cpu->reset_cbar, 32, 12); ARMCPRegInfo cbar_reginfo[] = { { .name = "CBAR", .type = ARM_CP_CONST, .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, .access = PL1_R, .resetvalue = cpu->reset_cbar }, { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, .type = ARM_CP_CONST, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, .access = PL1_R, .resetvalue = cbar32 }, REGINFO_SENTINEL }; /* We don't implement a r/w 64 bit CBAR currently */ assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); define_arm_cp_regs(cpu, cbar_reginfo); } else { ARMCPRegInfo cbar = { .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address) }; if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { cbar.access = PL1_R; cbar.fieldoffset = 0; cbar.type = ARM_CP_CONST; } define_one_arm_cp_reg(cpu, &cbar); } } /* Generic registers whose values depend on the implementation */ { ARMCPRegInfo sctlr = { .name = "SCTLR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, .access = PL1_RW, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), offsetof(CPUARMState, cp15.sctlr_ns) }, .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, .raw_writefn = raw_write, }; if (arm_feature(env, ARM_FEATURE_XSCALE)) { /* Normally we would always end the TB on an SCTLR write, but Linux * arch/arm/mach-pxa/sleep.S expects two instructions following * an MMU enable to execute from cache. Imitate this behaviour. */ sctlr.type |= ARM_CP_SUPPRESS_TB_END; } define_one_arm_cp_reg(cpu, &sctlr); } } ARMCPU *cpu_arm_init(const char *cpu_model) { return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); } void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) { CPUState *cs = CPU(cpu); CPUARMState *env = &cpu->env; if (arm_feature(env, ARM_FEATURE_AARCH64)) { gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, aarch64_fpu_gdb_set_reg, 34, "aarch64-fpu.xml", 0); } else if (arm_feature(env, ARM_FEATURE_NEON)) { gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 51, "arm-neon.xml", 0); } else if (arm_feature(env, ARM_FEATURE_VFP3)) { gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 35, "arm-vfp3.xml", 0); } else if (arm_feature(env, ARM_FEATURE_VFP)) { gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 19, "arm-vfp.xml", 0); } } /* Sort alphabetically by type name, except for "any". */ static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) { ObjectClass *class_a = (ObjectClass *)a; ObjectClass *class_b = (ObjectClass *)b; const char *name_a, *name_b; name_a = object_class_get_name(class_a); name_b = object_class_get_name(class_b); if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { return 1; } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { return -1; } else { return strcmp(name_a, name_b); } } static void arm_cpu_list_entry(gpointer data, gpointer user_data) { ObjectClass *oc = data; CPUListState *s = user_data; const char *typename; char *name; typename = object_class_get_name(oc); name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); (*s->cpu_fprintf)(s->file, " %s\n", name); g_free(name); } void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) { CPUListState s = { .file = f, .cpu_fprintf = cpu_fprintf, }; GSList *list; list = object_class_get_list(TYPE_ARM_CPU, false); list = g_slist_sort(list, arm_cpu_list_compare); (*cpu_fprintf)(f, "Available CPUs:\n"); g_slist_foreach(list, arm_cpu_list_entry, &s); g_slist_free(list); #ifdef CONFIG_KVM /* The 'host' CPU type is dynamically registered only if KVM is * enabled, so we have to special-case it here: */ (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); #endif } static void arm_cpu_add_definition(gpointer data, gpointer user_data) { ObjectClass *oc = data; CpuDefinitionInfoList **cpu_list = user_data; CpuDefinitionInfoList *entry; CpuDefinitionInfo *info; const char *typename; typename = object_class_get_name(oc); info = g_malloc0(sizeof(*info)); info->name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); entry = g_malloc0(sizeof(*entry)); entry->value = info; entry->next = *cpu_list; *cpu_list = entry; } CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) { CpuDefinitionInfoList *cpu_list = NULL; GSList *list; list = object_class_get_list(TYPE_ARM_CPU, false); g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); g_slist_free(list); return cpu_list; } static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, void *opaque, int state, int secstate, int crm, int opc1, int opc2) { /* Private utility function for define_one_arm_cp_reg_with_opaque(): * add a single reginfo struct to the hash table. */ uint32_t *key = g_new(uint32_t, 1); ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; /* Reset the secure state to the specific incoming state. This is * necessary as the register may have been defined with both states. */ r2->secure = secstate; if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { /* Register is banked (using both entries in array). * Overwriting fieldoffset as the array is only used to define * banked registers but later only fieldoffset is used. */ r2->fieldoffset = r->bank_fieldoffsets[ns]; } if (state == ARM_CP_STATE_AA32) { if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { /* If the register is banked then we don't need to migrate or * reset the 32-bit instance in certain cases: * * 1) If the register has both 32-bit and 64-bit instances then we * can count on the 64-bit instance taking care of the * non-secure bank. * 2) If ARMv8 is enabled then we can count on a 64-bit version * taking care of the secure bank. This requires that separate * 32 and 64-bit definitions are provided. */ if ((r->state == ARM_CP_STATE_BOTH && ns) || (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { r2->type |= ARM_CP_ALIAS; r2->resetfn = arm_cp_reset_ignore; } } else if ((secstate != r->secure) && !ns) { /* The register is not banked so we only want to allow migration of * the non-secure instance. */ r2->type |= ARM_CP_ALIAS; r2->resetfn = arm_cp_reset_ignore; } if (r->state == ARM_CP_STATE_BOTH) { /* We assume it is a cp15 register if the .cp field is left unset. */ if (r2->cp == 0) { r2->cp = 15; } #ifdef HOST_WORDS_BIGENDIAN if (r2->fieldoffset) { r2->fieldoffset += sizeof(uint32_t); } #endif } } if (state == ARM_CP_STATE_AA64) { /* To allow abbreviation of ARMCPRegInfo * definitions, we treat cp == 0 as equivalent to * the value for "standard guest-visible sysreg". * STATE_BOTH definitions are also always "standard * sysreg" in their AArch64 view (the .cp value may * be non-zero for the benefit of the AArch32 view). */ if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { r2->cp = CP_REG_ARM64_SYSREG_CP; } *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, r2->opc0, opc1, opc2); } else { *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); } if (opaque) { r2->opaque = opaque; } /* reginfo passed to helpers is correct for the actual access, * and is never ARM_CP_STATE_BOTH: */ r2->state = state; /* Make sure reginfo passed to helpers for wildcarded regs * has the correct crm/opc1/opc2 for this reg, not CP_ANY: */ r2->crm = crm; r2->opc1 = opc1; r2->opc2 = opc2; /* By convention, for wildcarded registers only the first * entry is used for migration; the others are marked as * ALIAS so we don't try to transfer the register * multiple times. Special registers (ie NOP/WFI) are * never migratable and not even raw-accessible. */ if ((r->type & ARM_CP_SPECIAL)) { r2->type |= ARM_CP_NO_RAW; } if (((r->crm == CP_ANY) && crm != 0) || ((r->opc1 == CP_ANY) && opc1 != 0) || ((r->opc2 == CP_ANY) && opc2 != 0)) { r2->type |= ARM_CP_ALIAS; } /* Check that raw accesses are either forbidden or handled. Note that * we can't assert this earlier because the setup of fieldoffset for * banked registers has to be done first. */ if (!(r2->type & ARM_CP_NO_RAW)) { assert(!raw_accessors_invalid(r2)); } /* Overriding of an existing definition must be explicitly * requested. */ if (!(r->type & ARM_CP_OVERRIDE)) { ARMCPRegInfo *oldreg; oldreg = g_hash_table_lookup(cpu->cp_regs, key); if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { fprintf(stderr, "Register redefined: cp=%d %d bit " "crn=%d crm=%d opc1=%d opc2=%d, " "was %s, now %s\n", r2->cp, 32 + 32 * is64, r2->crn, r2->crm, r2->opc1, r2->opc2, oldreg->name, r2->name); g_assert_not_reached(); } } g_hash_table_insert(cpu->cp_regs, key, r2); } void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *r, void *opaque) { /* Define implementations of coprocessor registers. * We store these in a hashtable because typically * there are less than 150 registers in a space which * is 16*16*16*8*8 = 262144 in size. * Wildcarding is supported for the crm, opc1 and opc2 fields. * If a register is defined twice then the second definition is * used, so this can be used to define some generic registers and * then override them with implementation specific variations. * At least one of the original and the second definition should * include ARM_CP_OVERRIDE in its type bits -- this is just a guard * against accidental use. * * The state field defines whether the register is to be * visible in the AArch32 or AArch64 execution state. If the * state is set to ARM_CP_STATE_BOTH then we synthesise a * reginfo structure for the AArch32 view, which sees the lower * 32 bits of the 64 bit register. * * Only registers visible in AArch64 may set r->opc0; opc0 cannot * be wildcarded. AArch64 registers are always considered to be 64 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of * the register, if any. */ int crm, opc1, opc2, state; int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; /* 64 bit registers have only CRm and Opc1 fields */ assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); /* op0 only exists in the AArch64 encodings */ assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 * encodes a minimum access level for the register. We roll this * runtime check into our general permission check code, so check * here that the reginfo's specified permissions are strict enough * to encompass the generic architectural permission check. */ if (r->state != ARM_CP_STATE_AA32) { int mask = 0; switch (r->opc1) { case 0: case 1: case 2: /* min_EL EL1 */ mask = PL1_RW; break; case 3: /* min_EL EL0 */ mask = PL0_RW; break; case 4: /* min_EL EL2 */ mask = PL2_RW; break; case 5: /* unallocated encoding, so not possible */ assert(false); break; case 6: /* min_EL EL3 */ mask = PL3_RW; break; case 7: /* min_EL EL1, secure mode only (we don't check the latter) */ mask = PL1_RW; break; default: /* broken reginfo with out-of-range opc1 */ assert(false); break; } /* assert our permissions are not too lax (stricter is fine) */ assert((r->access & ~mask) == 0); } /* Check that the register definition has enough info to handle * reads and writes if they are permitted. */ if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { if (r->access & PL3_R) { assert((r->fieldoffset || (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || r->readfn); } if (r->access & PL3_W) { assert((r->fieldoffset || (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || r->writefn); } } /* Bad type field probably means missing sentinel at end of reg list */ assert(cptype_valid(r->type)); for (crm = crmmin; crm <= crmmax; crm++) { for (opc1 = opc1min; opc1 <= opc1max; opc1++) { for (opc2 = opc2min; opc2 <= opc2max; opc2++) { for (state = ARM_CP_STATE_AA32; state <= ARM_CP_STATE_AA64; state++) { if (r->state != state && r->state != ARM_CP_STATE_BOTH) { continue; } if (state == ARM_CP_STATE_AA32) { /* Under AArch32 CP registers can be common * (same for secure and non-secure world) or banked. */ switch (r->secure) { case ARM_CP_SECSTATE_S: case ARM_CP_SECSTATE_NS: add_cpreg_to_hashtable(cpu, r, opaque, state, r->secure, crm, opc1, opc2); break; default: add_cpreg_to_hashtable(cpu, r, opaque, state, ARM_CP_SECSTATE_S, crm, opc1, opc2); add_cpreg_to_hashtable(cpu, r, opaque, state, ARM_CP_SECSTATE_NS, crm, opc1, opc2); break; } } else { /* AArch64 registers get mapped to non-secure instance * of AArch32 */ add_cpreg_to_hashtable(cpu, r, opaque, state, ARM_CP_SECSTATE_NS, crm, opc1, opc2); } } } } } } void define_arm_cp_regs_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *regs, void *opaque) { /* Define a whole list of registers */ const ARMCPRegInfo *r; for (r = regs; r->type != ARM_CP_SENTINEL; r++) { define_one_arm_cp_reg_with_opaque(cpu, r, opaque); } } const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) { return g_hash_table_lookup(cpregs, &encoded_cp); } void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Helper coprocessor write function for write-ignore registers */ } uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) { /* Helper coprocessor write function for read-as-zero registers */ return 0; } void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) { /* Helper coprocessor reset function for do-nothing-on-reset registers */ } static int bad_mode_switch(CPUARMState *env, int mode) { /* Return true if it is not valid for us to switch to * this CPU mode (ie all the UNPREDICTABLE cases in * the ARM ARM CPSRWriteByInstr pseudocode). */ switch (mode) { case ARM_CPU_MODE_USR: case ARM_CPU_MODE_SYS: case ARM_CPU_MODE_SVC: case ARM_CPU_MODE_ABT: case ARM_CPU_MODE_UND: case ARM_CPU_MODE_IRQ: case ARM_CPU_MODE_FIQ: return 0; case ARM_CPU_MODE_MON: return !arm_is_secure(env); default: return 1; } } uint32_t cpsr_read(CPUARMState *env) { int ZF; ZF = (env->ZF == 0); return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | ((env->condexec_bits & 0xfc) << 8) | (env->GE << 16) | (env->daif & CPSR_AIF); } void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) { uint32_t changed_daif; if (mask & CPSR_NZCV) { env->ZF = (~val) & CPSR_Z; env->NF = val; env->CF = (val >> 29) & 1; env->VF = (val << 3) & 0x80000000; } if (mask & CPSR_Q) env->QF = ((val & CPSR_Q) != 0); if (mask & CPSR_T) env->thumb = ((val & CPSR_T) != 0); if (mask & CPSR_IT_0_1) { env->condexec_bits &= ~3; env->condexec_bits |= (val >> 25) & 3; } if (mask & CPSR_IT_2_7) { env->condexec_bits &= 3; env->condexec_bits |= (val >> 8) & 0xfc; } if (mask & CPSR_GE) { env->GE = (val >> 16) & 0xf; } /* In a V7 implementation that includes the security extensions but does * not include Virtualization Extensions the SCR.FW and SCR.AW bits control * whether non-secure software is allowed to change the CPSR_F and CPSR_A * bits respectively. * * In a V8 implementation, it is permitted for privileged software to * change the CPSR A/F bits regardless of the SCR.AW/FW bits. */ if (!arm_feature(env, ARM_FEATURE_V8) && arm_feature(env, ARM_FEATURE_EL3) && !arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure(env)) { changed_daif = (env->daif ^ val) & mask; if (changed_daif & CPSR_A) { /* Check to see if we are allowed to change the masking of async * abort exceptions from a non-secure state. */ if (!(env->cp15.scr_el3 & SCR_AW)) { qemu_log_mask(LOG_GUEST_ERROR, "Ignoring attempt to switch CPSR_A flag from " "non-secure world with SCR.AW bit clear\n"); mask &= ~CPSR_A; } } if (changed_daif & CPSR_F) { /* Check to see if we are allowed to change the masking of FIQ * exceptions from a non-secure state. */ if (!(env->cp15.scr_el3 & SCR_FW)) { qemu_log_mask(LOG_GUEST_ERROR, "Ignoring attempt to switch CPSR_F flag from " "non-secure world with SCR.FW bit clear\n"); mask &= ~CPSR_F; } /* Check whether non-maskable FIQ (NMFI) support is enabled. * If this bit is set software is not allowed to mask * FIQs, but is allowed to set CPSR_F to 0. */ if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && (val & CPSR_F)) { qemu_log_mask(LOG_GUEST_ERROR, "Ignoring attempt to enable CPSR_F flag " "(non-maskable FIQ [NMFI] support enabled)\n"); mask &= ~CPSR_F; } } } env->daif &= ~(CPSR_AIF & mask); env->daif |= val & CPSR_AIF & mask; if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { if (bad_mode_switch(env, val & CPSR_M)) { /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. * We choose to ignore the attempt and leave the CPSR M field * untouched. */ mask &= ~CPSR_M; } else { switch_mode(env, val & CPSR_M); } } mask &= ~CACHED_CPSR_BITS; env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); } /* Sign/zero extend */ uint32_t HELPER(sxtb16)(uint32_t x) { uint32_t res; res = (uint16_t)(int8_t)x; res |= (uint32_t)(int8_t)(x >> 16) << 16; return res; } uint32_t HELPER(uxtb16)(uint32_t x) { uint32_t res; res = (uint16_t)(uint8_t)x; res |= (uint32_t)(uint8_t)(x >> 16) << 16; return res; } uint32_t HELPER(clz)(uint32_t x) { return clz32(x); } int32_t HELPER(sdiv)(int32_t num, int32_t den) { if (den == 0) return 0; if (num == INT_MIN && den == -1) return INT_MIN; return num / den; } uint32_t HELPER(udiv)(uint32_t num, uint32_t den) { if (den == 0) return 0; return num / den; } uint32_t HELPER(rbit)(uint32_t x) { x = ((x & 0xff000000) >> 24) | ((x & 0x00ff0000) >> 8) | ((x & 0x0000ff00) << 8) | ((x & 0x000000ff) << 24); x = ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4); x = ((x & 0x88888888) >> 3) | ((x & 0x44444444) >> 1) | ((x & 0x22222222) << 1) | ((x & 0x11111111) << 3); return x; } #if defined(CONFIG_USER_ONLY) /* These should probably raise undefined insn exceptions. */ void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) { ARMCPU *cpu = arm_env_get_cpu(env); cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); } uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) { ARMCPU *cpu = arm_env_get_cpu(env); cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); return 0; } void switch_mode(CPUARMState *env, int mode) { ARMCPU *cpu = arm_env_get_cpu(env); if (mode != ARM_CPU_MODE_USR) { cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); } } void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) { ARMCPU *cpu = arm_env_get_cpu(env); cpu_abort(CPU(cpu), "banked r13 write\n"); } uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) { ARMCPU *cpu = arm_env_get_cpu(env); cpu_abort(CPU(cpu), "banked r13 read\n"); return 0; } uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, uint32_t cur_el, bool secure) { return 1; } void aarch64_sync_64_to_32(CPUARMState *env) { g_assert_not_reached(); } #else /* Map CPU modes onto saved register banks. */ int bank_number(int mode) { switch (mode) { case ARM_CPU_MODE_USR: case ARM_CPU_MODE_SYS: return 0; case ARM_CPU_MODE_SVC: return 1; case ARM_CPU_MODE_ABT: return 2; case ARM_CPU_MODE_UND: return 3; case ARM_CPU_MODE_IRQ: return 4; case ARM_CPU_MODE_FIQ: return 5; case ARM_CPU_MODE_HYP: return 6; case ARM_CPU_MODE_MON: return 7; } hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); } void switch_mode(CPUARMState *env, int mode) { int old_mode; int i; old_mode = env->uncached_cpsr & CPSR_M; if (mode == old_mode) return; if (old_mode == ARM_CPU_MODE_FIQ) { memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); } else if (mode == ARM_CPU_MODE_FIQ) { memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); } i = bank_number(old_mode); env->banked_r13[i] = env->regs[13]; env->banked_r14[i] = env->regs[14]; env->banked_spsr[i] = env->spsr; i = bank_number(mode); env->regs[13] = env->banked_r13[i]; env->regs[14] = env->banked_r14[i]; env->spsr = env->banked_spsr[i]; } /* Physical Interrupt Target EL Lookup Table * * [ From ARM ARM section G1.13.4 (Table G1-15) ] * * The below multi-dimensional table is used for looking up the target * exception level given numerous condition criteria. Specifically, the * target EL is based on SCR and HCR routing controls as well as the * currently executing EL and secure state. * * Dimensions: * target_el_table[2][2][2][2][2][4] * | | | | | +--- Current EL * | | | | +------ Non-secure(0)/Secure(1) * | | | +--------- HCR mask override * | | +------------ SCR exec state control * | +--------------- SCR mask override * +------------------ 32-bit(0)/64-bit(1) EL3 * * The table values are as such: * 0-3 = EL0-EL3 * -1 = Cannot occur * * The ARM ARM target EL table includes entries indicating that an "exception * is not taken". The two cases where this is applicable are: * 1) An exception is taken from EL3 but the SCR does not have the exception * routed to EL3. * 2) An exception is taken from EL2 but the HCR does not have the exception * routed to EL2. * In these two cases, the below table contain a target of EL1. This value is * returned as it is expected that the consumer of the table data will check * for "target EL >= current EL" to ensure the exception is not taken. * * SCR HCR * 64 EA AMO From * BIT IRQ IMO Non-secure Secure * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 */ const int8_t target_el_table[2][2][2][2][2][4] = { {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, }; /* * Determine the target EL for physical exceptions */ uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, uint32_t cur_el, bool secure) { CPUARMState *env = cs->env_ptr; int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); int scr; int hcr; int target_el; int is64 = arm_el_is_aa64(env, 3); switch (excp_idx) { case EXCP_IRQ: scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); break; case EXCP_FIQ: scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); break; default: scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); break; }; /* If HCR.TGE is set then HCR is treated as being 1 */ hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); /* Perform a table-lookup for the target EL given the current state */ target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; assert(target_el > 0); return target_el; } static void v7m_push(CPUARMState *env, uint32_t val) { CPUState *cs = CPU(arm_env_get_cpu(env)); env->regs[13] -= 4; stl_phys(cs->as, env->regs[13], val); } static uint32_t v7m_pop(CPUARMState *env) { CPUState *cs = CPU(arm_env_get_cpu(env)); uint32_t val; val = ldl_phys(cs->as, env->regs[13]); env->regs[13] += 4; return val; } /* Switch to V7M main or process stack pointer. */ static void switch_v7m_sp(CPUARMState *env, int process) { uint32_t tmp; if (env->v7m.current_sp != process) { tmp = env->v7m.other_sp; env->v7m.other_sp = env->regs[13]; env->regs[13] = tmp; env->v7m.current_sp = process; } } static void do_v7m_exception_exit(CPUARMState *env) { uint32_t type; uint32_t xpsr; type = env->regs[15]; if (env->v7m.exception != 0) armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); /* Switch to the target stack. */ switch_v7m_sp(env, (type & 4) != 0); /* Pop registers. */ env->regs[0] = v7m_pop(env); env->regs[1] = v7m_pop(env); env->regs[2] = v7m_pop(env); env->regs[3] = v7m_pop(env); env->regs[12] = v7m_pop(env); env->regs[14] = v7m_pop(env); env->regs[15] = v7m_pop(env); if (env->regs[15] & 1) { qemu_log_mask(LOG_GUEST_ERROR, "M profile return from interrupt with misaligned " "PC is UNPREDICTABLE\n"); /* Actual hardware seems to ignore the lsbit, and there are several * RTOSes out there which incorrectly assume the r15 in the stack * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value. */ env->regs[15] &= ~1U; } xpsr = v7m_pop(env); xpsr_write(env, xpsr, 0xfffffdff); /* Undo stack alignment. */ if (xpsr & 0x200) env->regs[13] |= 4; /* ??? The exception return type specifies Thread/Handler mode. However this is also implied by the xPSR value. Not sure what to do if there is a mismatch. */ /* ??? Likewise for mismatches between the CONTROL register and the stack pointer. */ } void arm_v7m_cpu_do_interrupt(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; uint32_t xpsr = xpsr_read(env); uint32_t lr; uint32_t addr; arm_log_exception(cs->exception_index); lr = 0xfffffff1; if (env->v7m.current_sp) lr |= 4; if (env->v7m.exception == 0) lr |= 8; /* For exceptions we just mark as pending on the NVIC, and let that handle it. */ /* TODO: Need to escalate if the current priority is higher than the one we're raising. */ switch (cs->exception_index) { case EXCP_UDEF: armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); return; case EXCP_SWI: /* The PC already points to the next instruction. */ armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); return; case EXCP_PREFETCH_ABORT: case EXCP_DATA_ABORT: /* TODO: if we implemented the MPU registers, this is where we * should set the MMFAR, etc from exception.fsr and exception.vaddress. */ armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); return; case EXCP_BKPT: if (semihosting_enabled) { int nr; nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; if (nr == 0xab) { env->regs[15] += 2; env->regs[0] = do_arm_semihosting(env); qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); return; } } armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); return; case EXCP_IRQ: env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); break; case EXCP_EXCEPTION_EXIT: do_v7m_exception_exit(env); return; default: cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); return; /* Never happens. Keep compiler happy. */ } /* Align stack pointer. */ /* ??? Should only do this if Configuration Control Register STACKALIGN bit is set. */ if (env->regs[13] & 4) { env->regs[13] -= 4; xpsr |= 0x200; } /* Switch to the handler mode. */ v7m_push(env, xpsr); v7m_push(env, env->regs[15]); v7m_push(env, env->regs[14]); v7m_push(env, env->regs[12]); v7m_push(env, env->regs[3]); v7m_push(env, env->regs[2]); v7m_push(env, env->regs[1]); v7m_push(env, env->regs[0]); switch_v7m_sp(env, 0); /* Clear IT bits */ env->condexec_bits = 0; env->regs[14] = lr; addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); env->regs[15] = addr & 0xfffffffe; env->thumb = addr & 1; } /* Function used to synchronize QEMU's AArch64 register set with AArch32 * register set. This is necessary when switching between AArch32 and AArch64 * execution state. */ void aarch64_sync_32_to_64(CPUARMState *env) { int i; uint32_t mode = env->uncached_cpsr & CPSR_M; /* We can blanket copy R[0:7] to X[0:7] */ for (i = 0; i < 8; i++) { env->xregs[i] = env->regs[i]; } /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. * Otherwise, they come from the banked user regs. */ if (mode == ARM_CPU_MODE_FIQ) { for (i = 8; i < 13; i++) { env->xregs[i] = env->usr_regs[i - 8]; } } else { for (i = 8; i < 13; i++) { env->xregs[i] = env->regs[i]; } } /* Registers x13-x23 are the various mode SP and FP registers. Registers * r13 and r14 are only copied if we are in that mode, otherwise we copy * from the mode banked register. */ if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { env->xregs[13] = env->regs[13]; env->xregs[14] = env->regs[14]; } else { env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; /* HYP is an exception in that it is copied from r14 */ if (mode == ARM_CPU_MODE_HYP) { env->xregs[14] = env->regs[14]; } else { env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; } } if (mode == ARM_CPU_MODE_HYP) { env->xregs[15] = env->regs[13]; } else { env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; } if (mode == ARM_CPU_MODE_IRQ) { env->xregs[16] = env->regs[13]; env->xregs[17] = env->regs[14]; } else { env->xregs[16] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; env->xregs[17] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; } if (mode == ARM_CPU_MODE_SVC) { env->xregs[18] = env->regs[13]; env->xregs[19] = env->regs[14]; } else { env->xregs[18] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; env->xregs[19] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; } if (mode == ARM_CPU_MODE_ABT) { env->xregs[20] = env->regs[13]; env->xregs[21] = env->regs[14]; } else { env->xregs[20] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; env->xregs[21] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; } if (mode == ARM_CPU_MODE_UND) { env->xregs[22] = env->regs[13]; env->xregs[23] = env->regs[14]; } else { env->xregs[22] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; env->xregs[23] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; } /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ * mode, then we can copy from r8-r14. Otherwise, we copy from the * FIQ bank for r8-r14. */ if (mode == ARM_CPU_MODE_FIQ) { for (i = 24; i < 31; i++) { env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ } } else { for (i = 24; i < 29; i++) { env->xregs[i] = env->fiq_regs[i - 24]; } env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; } env->pc = env->regs[15]; } /* Function used to synchronize QEMU's AArch32 register set with AArch64 * register set. This is necessary when switching between AArch32 and AArch64 * execution state. */ void aarch64_sync_64_to_32(CPUARMState *env) { int i; uint32_t mode = env->uncached_cpsr & CPSR_M; /* We can blanket copy X[0:7] to R[0:7] */ for (i = 0; i < 8; i++) { env->regs[i] = env->xregs[i]; } /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. * Otherwise, we copy x8-x12 into the banked user regs. */ if (mode == ARM_CPU_MODE_FIQ) { for (i = 8; i < 13; i++) { env->usr_regs[i - 8] = env->xregs[i]; } } else { for (i = 8; i < 13; i++) { env->regs[i] = env->xregs[i]; } } /* Registers r13 & r14 depend on the current mode. * If we are in a given mode, we copy the corresponding x registers to r13 * and r14. Otherwise, we copy the x register to the banked r13 and r14 * for the mode. */ if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { env->regs[13] = env->xregs[13]; env->regs[14] = env->xregs[14]; } else { env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; /* HYP is an exception in that it does not have its own banked r14 but * shares the USR r14 */ if (mode == ARM_CPU_MODE_HYP) { env->regs[14] = env->xregs[14]; } else { env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; } } if (mode == ARM_CPU_MODE_HYP) { env->regs[13] = env->xregs[15]; } else { env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; } if (mode == ARM_CPU_MODE_IRQ) { env->regs[13] = env->xregs[16]; env->regs[14] = env->xregs[17]; } else { env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; } if (mode == ARM_CPU_MODE_SVC) { env->regs[13] = env->xregs[18]; env->regs[14] = env->xregs[19]; } else { env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; } if (mode == ARM_CPU_MODE_ABT) { env->regs[13] = env->xregs[20]; env->regs[14] = env->xregs[21]; } else { env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; } if (mode == ARM_CPU_MODE_UND) { env->regs[13] = env->xregs[22]; env->regs[14] = env->xregs[23]; } else { env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; } /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ * mode, then we can copy to r8-r14. Otherwise, we copy to the * FIQ bank for r8-r14. */ if (mode == ARM_CPU_MODE_FIQ) { for (i = 24; i < 31; i++) { env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ } } else { for (i = 24; i < 29; i++) { env->fiq_regs[i - 24] = env->xregs[i]; } env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; } env->regs[15] = env->pc; } /* Handle a CPU exception. */ void arm_cpu_do_interrupt(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; uint32_t addr; uint32_t mask; int new_mode; uint32_t offset; uint32_t moe; assert(!IS_M(env)); arm_log_exception(cs->exception_index); if (arm_is_psci_call(cpu, cs->exception_index)) { arm_handle_psci_call(cpu); qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); return; } /* If this is a debug exception we must update the DBGDSCR.MOE bits */ switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { case EC_BREAKPOINT: case EC_BREAKPOINT_SAME_EL: moe = 1; break; case EC_WATCHPOINT: case EC_WATCHPOINT_SAME_EL: moe = 10; break; case EC_AA32_BKPT: moe = 3; break; case EC_VECTORCATCH: moe = 5; break; default: moe = 0; break; } if (moe) { env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); } /* TODO: Vectored interrupt controller. */ switch (cs->exception_index) { case EXCP_UDEF: new_mode = ARM_CPU_MODE_UND; addr = 0x04; mask = CPSR_I; if (env->thumb) offset = 2; else offset = 4; break; case EXCP_SWI: if (semihosting_enabled) { /* Check for semihosting interrupt. */ if (env->thumb) { mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) & 0xff; } else { mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) & 0xffffff; } /* Only intercept calls from privileged modes, to provide some semblance of security. */ if (((mask == 0x123456 && !env->thumb) || (mask == 0xab && env->thumb)) && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { env->regs[0] = do_arm_semihosting(env); qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); return; } } new_mode = ARM_CPU_MODE_SVC; addr = 0x08; mask = CPSR_I; /* The PC already points to the next instruction. */ offset = 0; break; case EXCP_BKPT: /* See if this is a semihosting syscall. */ if (env->thumb && semihosting_enabled) { mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; if (mask == 0xab && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { env->regs[15] += 2; env->regs[0] = do_arm_semihosting(env); qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); return; } } env->exception.fsr = 2; /* Fall through to prefetch abort. */ case EXCP_PREFETCH_ABORT: A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", env->exception.fsr, (uint32_t)env->exception.vaddress); new_mode = ARM_CPU_MODE_ABT; addr = 0x0c; mask = CPSR_A | CPSR_I; offset = 4; break; case EXCP_DATA_ABORT: A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", env->exception.fsr, (uint32_t)env->exception.vaddress); new_mode = ARM_CPU_MODE_ABT; addr = 0x10; mask = CPSR_A | CPSR_I; offset = 8; break; case EXCP_IRQ: new_mode = ARM_CPU_MODE_IRQ; addr = 0x18; /* Disable IRQ and imprecise data aborts. */ mask = CPSR_A | CPSR_I; offset = 4; if (env->cp15.scr_el3 & SCR_IRQ) { /* IRQ routed to monitor mode */ new_mode = ARM_CPU_MODE_MON; mask |= CPSR_F; } break; case EXCP_FIQ: new_mode = ARM_CPU_MODE_FIQ; addr = 0x1c; /* Disable FIQ, IRQ and imprecise data aborts. */ mask = CPSR_A | CPSR_I | CPSR_F; if (env->cp15.scr_el3 & SCR_FIQ) { /* FIQ routed to monitor mode */ new_mode = ARM_CPU_MODE_MON; } offset = 4; break; case EXCP_SMC: new_mode = ARM_CPU_MODE_MON; addr = 0x08; mask = CPSR_A | CPSR_I | CPSR_F; offset = 0; break; default: cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); return; /* Never happens. Keep compiler happy. */ } if (new_mode == ARM_CPU_MODE_MON) { addr += env->cp15.mvbar; } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { /* High vectors. When enabled, base address cannot be remapped. */ addr += 0xffff0000; } else { /* ARM v7 architectures provide a vector base address register to remap * the interrupt vector table. * This register is only followed in non-monitor mode, and is banked. * Note: only bits 31:5 are valid. */ addr += A32_BANKED_CURRENT_REG_GET(env, vbar); } if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { env->cp15.scr_el3 &= ~SCR_NS; } switch_mode (env, new_mode); /* For exceptions taken to AArch32 we must clear the SS bit in both * PSTATE and in the old-state value we save to SPSR_, so zero it now. */ env->uncached_cpsr &= ~PSTATE_SS; env->spsr = cpsr_read(env); /* Clear IT bits. */ env->condexec_bits = 0; /* Switch to the new mode, and to the correct instruction set. */ env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; env->daif |= mask; /* this is a lie, as the was no c1_sys on V4T/V5, but who cares * and we should just guard the thumb mode on V4 */ if (arm_feature(env, ARM_FEATURE_V4T)) { env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; } env->regs[14] = env->regs[15] + offset; env->regs[15] = addr; cs->interrupt_request |= CPU_INTERRUPT_EXITTB; } /* Return the exception level which controls this address translation regime */ static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_S2NS: case ARMMMUIdx_S1E2: return 2; case ARMMMUIdx_S1E3: return 3; case ARMMMUIdx_S1SE0: return arm_el_is_aa64(env, 3) ? 1 : 3; case ARMMMUIdx_S1SE1: case ARMMMUIdx_S1NSE0: case ARMMMUIdx_S1NSE1: return 1; default: g_assert_not_reached(); } } /* Return true if this address translation regime is secure */ static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_S12NSE0: case ARMMMUIdx_S12NSE1: case ARMMMUIdx_S1NSE0: case ARMMMUIdx_S1NSE1: case ARMMMUIdx_S1E2: case ARMMMUIdx_S2NS: return false; case ARMMMUIdx_S1E3: case ARMMMUIdx_S1SE0: case ARMMMUIdx_S1SE1: return true; default: g_assert_not_reached(); } } /* Return the SCTLR value which controls this address translation regime */ static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) { return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; } /* Return true if the specified stage of address translation is disabled */ static inline bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx) { if (mmu_idx == ARMMMUIdx_S2NS) { return (env->cp15.hcr_el2 & HCR_VM) == 0; } return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; } /* Return the TCR controlling this translation regime */ static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) { if (mmu_idx == ARMMMUIdx_S2NS) { /* TODO: return VTCR_EL2 */ g_assert_not_reached(); } return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; } /* Return the TTBR associated with this translation regime */ static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) { if (mmu_idx == ARMMMUIdx_S2NS) { /* TODO: return VTTBR_EL2 */ g_assert_not_reached(); } if (ttbrn == 0) { return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; } else { return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; } } /* Return true if the translation regime is using LPAE format page tables */ static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) { int el = regime_el(env, mmu_idx); if (el == 2 || arm_el_is_aa64(env, el)) { return true; } if (arm_feature(env, ARM_FEATURE_LPAE) && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { return true; } return false; } static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_S1SE0: case ARMMMUIdx_S1NSE0: return true; default: return false; case ARMMMUIdx_S12NSE0: case ARMMMUIdx_S12NSE1: g_assert_not_reached(); } } /* Translate section/page access permissions to page * R/W protection flags * * @env: CPUARMState * @mmu_idx: MMU index indicating required translation regime * @ap: The 3-bit access permissions (AP[2:0]) * @domain_prot: The 2-bit domain access permissions */ static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap, int domain_prot) { bool is_user = regime_is_user(env, mmu_idx); if (domain_prot == 3) { return PAGE_READ | PAGE_WRITE; } switch (ap) { case 0: if (arm_feature(env, ARM_FEATURE_V7)) { return 0; } switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { case SCTLR_S: return is_user ? 0 : PAGE_READ; case SCTLR_R: return PAGE_READ; default: return 0; } case 1: return is_user ? 0 : PAGE_READ | PAGE_WRITE; case 2: if (is_user) { return PAGE_READ; } else { return PAGE_READ | PAGE_WRITE; } case 3: return PAGE_READ | PAGE_WRITE; case 4: /* Reserved. */ return 0; case 5: return is_user ? 0 : PAGE_READ; case 6: return PAGE_READ; case 7: if (!arm_feature(env, ARM_FEATURE_V6K)) { return 0; } return PAGE_READ; default: g_assert_not_reached(); } } /* Translate section/page access permissions to page * R/W protection flags. * * @ap: The 2-bit simple AP (AP[2:1]) * @is_user: TRUE if accessing from PL0 */ static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) { switch (ap) { case 0: return is_user ? 0 : PAGE_READ | PAGE_WRITE; case 1: return PAGE_READ | PAGE_WRITE; case 2: return is_user ? 0 : PAGE_READ; case 3: return PAGE_READ; default: g_assert_not_reached(); } } static inline int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) { return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); } /* Translate section/page access permissions to protection flags * * @env: CPUARMState * @mmu_idx: MMU index indicating required translation regime * @is_aa64: TRUE if AArch64 * @ap: The 2-bit simple AP (AP[2:1]) * @ns: NS (non-secure) bit * @xn: XN (execute-never) bit * @pxn: PXN (privileged execute-never) bit */ static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, int ap, int ns, int xn, int pxn) { bool is_user = regime_is_user(env, mmu_idx); int prot_rw, user_rw; bool have_wxn; int wxn = 0; assert(mmu_idx != ARMMMUIdx_S2NS); user_rw = simple_ap_to_rw_prot_is_user(ap, true); if (is_user) { prot_rw = user_rw; } else { prot_rw = simple_ap_to_rw_prot_is_user(ap, false); } if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { return prot_rw; } /* TODO have_wxn should be replaced with * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE * compatible processors have EL2, which is required for [U]WXN. */ have_wxn = arm_feature(env, ARM_FEATURE_LPAE); if (have_wxn) { wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; } if (is_aa64) { switch (regime_el(env, mmu_idx)) { case 1: if (!is_user) { xn = pxn || (user_rw & PAGE_WRITE); } break; case 2: case 3: break; } } else if (arm_feature(env, ARM_FEATURE_V7)) { switch (regime_el(env, mmu_idx)) { case 1: case 3: if (is_user) { xn = xn || !(user_rw & PAGE_READ); } else { int uwxn = 0; if (have_wxn) { uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; } xn = xn || !(prot_rw & PAGE_READ) || pxn || (uwxn && (user_rw & PAGE_WRITE)); } break; case 2: break; } } else { xn = wxn = 0; } if (xn || (wxn && (prot_rw & PAGE_WRITE))) { return prot_rw; } return prot_rw | PAGE_EXEC; } static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, uint32_t *table, uint32_t address) { /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ TCR *tcr = regime_tcr(env, mmu_idx); if (address & tcr->mask) { if (tcr->raw_tcr & TTBCR_PD1) { /* Translation table walk disabled for TTBR1 */ return false; } *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; } else { if (tcr->raw_tcr & TTBCR_PD0) { /* Translation table walk disabled for TTBR0 */ return false; } *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; } *table |= (address >> 18) & 0x3ffc; return true; } /* All loads done in the course of a page table walk go through here. * TODO: rather than ignoring errors from physical memory reads (which * are external aborts in ARM terminology) we should propagate this * error out so that we can turn it into a Data Abort if this walk * was being done for a CPU load/store or an address translation instruction * (but not if it was for a debug access). */ static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure) { MemTxAttrs attrs = {}; attrs.secure = is_secure; return address_space_ldl(cs->as, addr, attrs, NULL); } static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure) { MemTxAttrs attrs = {}; attrs.secure = is_secure; return address_space_ldq(cs->as, addr, attrs, NULL); } static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, int *prot, target_ulong *page_size) { CPUState *cs = CPU(arm_env_get_cpu(env)); int code; uint32_t table; uint32_t desc; int type; int ap; int domain = 0; int domain_prot; hwaddr phys_addr; uint32_t dacr; /* Pagetable walk. */ /* Lookup l1 descriptor. */ if (!get_level1_table_address(env, mmu_idx, &table, address)) { /* Section translation fault if page walk is disabled by PD0 or PD1 */ code = 5; goto do_fault; } desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); type = (desc & 3); domain = (desc >> 5) & 0x0f; if (regime_el(env, mmu_idx) == 1) { dacr = env->cp15.dacr_ns; } else { dacr = env->cp15.dacr_s; } domain_prot = (dacr >> (domain * 2)) & 3; if (type == 0) { /* Section translation fault. */ code = 5; goto do_fault; } if (domain_prot == 0 || domain_prot == 2) { if (type == 2) code = 9; /* Section domain fault. */ else code = 11; /* Page domain fault. */ goto do_fault; } if (type == 2) { /* 1Mb section. */ phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); ap = (desc >> 10) & 3; code = 13; *page_size = 1024 * 1024; } else { /* Lookup l2 entry. */ if (type == 1) { /* Coarse pagetable. */ table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); } else { /* Fine pagetable. */ table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); } desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); switch (desc & 3) { case 0: /* Page translation fault. */ code = 7; goto do_fault; case 1: /* 64k page. */ phys_addr = (desc & 0xffff0000) | (address & 0xffff); ap = (desc >> (4 + ((address >> 13) & 6))) & 3; *page_size = 0x10000; break; case 2: /* 4k page. */ phys_addr = (desc & 0xfffff000) | (address & 0xfff); ap = (desc >> (4 + ((address >> 9) & 6))) & 3; *page_size = 0x1000; break; case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ if (type == 1) { /* ARMv6/XScale extended small page format */ if (arm_feature(env, ARM_FEATURE_XSCALE) || arm_feature(env, ARM_FEATURE_V6)) { phys_addr = (desc & 0xfffff000) | (address & 0xfff); *page_size = 0x1000; } else { /* UNPREDICTABLE in ARMv5; we choose to take a * page translation fault. */ code = 7; goto do_fault; } } else { phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); *page_size = 0x400; } ap = (desc >> 4) & 3; break; default: /* Never happens, but compiler isn't smart enough to tell. */ abort(); } code = 15; } *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); *prot |= *prot ? PAGE_EXEC : 0; if (!(*prot & (1 << access_type))) { /* Access permission fault. */ goto do_fault; } *phys_ptr = phys_addr; return 0; do_fault: return code | (domain << 4); } static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, target_ulong *page_size) { CPUState *cs = CPU(arm_env_get_cpu(env)); int code; uint32_t table; uint32_t desc; uint32_t xn; uint32_t pxn = 0; int type; int ap; int domain = 0; int domain_prot; hwaddr phys_addr; uint32_t dacr; bool ns; /* Pagetable walk. */ /* Lookup l1 descriptor. */ if (!get_level1_table_address(env, mmu_idx, &table, address)) { /* Section translation fault if page walk is disabled by PD0 or PD1 */ code = 5; goto do_fault; } desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); type = (desc & 3); if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { /* Section translation fault, or attempt to use the encoding * which is Reserved on implementations without PXN. */ code = 5; goto do_fault; } if ((type == 1) || !(desc & (1 << 18))) { /* Page or Section. */ domain = (desc >> 5) & 0x0f; } if (regime_el(env, mmu_idx) == 1) { dacr = env->cp15.dacr_ns; } else { dacr = env->cp15.dacr_s; } domain_prot = (dacr >> (domain * 2)) & 3; if (domain_prot == 0 || domain_prot == 2) { if (type != 1) { code = 9; /* Section domain fault. */ } else { code = 11; /* Page domain fault. */ } goto do_fault; } if (type != 1) { if (desc & (1 << 18)) { /* Supersection. */ phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); *page_size = 0x1000000; } else { /* Section. */ phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); *page_size = 0x100000; } ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); xn = desc & (1 << 4); pxn = desc & 1; code = 13; ns = extract32(desc, 19, 1); } else { if (arm_feature(env, ARM_FEATURE_PXN)) { pxn = (desc >> 2) & 1; } ns = extract32(desc, 3, 1); /* Lookup l2 entry. */ table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); switch (desc & 3) { case 0: /* Page translation fault. */ code = 7; goto do_fault; case 1: /* 64k page. */ phys_addr = (desc & 0xffff0000) | (address & 0xffff); xn = desc & (1 << 15); *page_size = 0x10000; break; case 2: case 3: /* 4k page. */ phys_addr = (desc & 0xfffff000) | (address & 0xfff); xn = desc & 1; *page_size = 0x1000; break; default: /* Never happens, but compiler isn't smart enough to tell. */ abort(); } code = 15; } if (domain_prot == 3) { *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; } else { if (pxn && !regime_is_user(env, mmu_idx)) { xn = 1; } if (xn && access_type == 2) goto do_fault; if (arm_feature(env, ARM_FEATURE_V6K) && (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { /* The simplified model uses AP[0] as an access control bit. */ if ((ap & 1) == 0) { /* Access flag fault. */ code = (code == 15) ? 6 : 3; goto do_fault; } *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); } else { *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); } if (*prot && !xn) { *prot |= PAGE_EXEC; } if (!(*prot & (1 << access_type))) { /* Access permission fault. */ goto do_fault; } } if (ns) { /* The NS bit will (as required by the architecture) have no effect if * the CPU doesn't support TZ or this is a non-secure translation * regime, because the attribute will already be non-secure. */ attrs->secure = false; } *phys_ptr = phys_addr; return 0; do_fault: return code | (domain << 4); } /* Fault type for long-descriptor MMU fault reporting; this corresponds * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. */ typedef enum { translation_fault = 1, access_fault = 2, permission_fault = 3, } MMUFaultType; static int get_phys_addr_lpae(CPUARMState *env, target_ulong address, int access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, target_ulong *page_size_ptr) { CPUState *cs = CPU(arm_env_get_cpu(env)); /* Read an LPAE long-descriptor translation table. */ MMUFaultType fault_type = translation_fault; uint32_t level = 1; uint32_t epd; int32_t tsz; uint32_t tg; uint64_t ttbr; int ttbr_select; hwaddr descaddr, descmask; uint32_t tableattrs; target_ulong page_size; uint32_t attrs; int32_t granule_sz = 9; int32_t va_size = 32; int32_t tbi = 0; TCR *tcr = regime_tcr(env, mmu_idx); int ap, ns, xn, pxn; uint32_t el = regime_el(env, mmu_idx); bool ttbr1_valid = true; /* TODO: * This code does not handle the different format TCR for VTCR_EL2. * This code also does not support shareability levels. * Attribute and permission bit handling should also be checked when adding * support for those page table walks. */ if (arm_el_is_aa64(env, el)) { va_size = 64; if (el > 1) { tbi = extract64(tcr->raw_tcr, 20, 1); } else { if (extract64(address, 55, 1)) { tbi = extract64(tcr->raw_tcr, 38, 1); } else { tbi = extract64(tcr->raw_tcr, 37, 1); } } tbi *= 8; /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it * invalid. */ if (el > 1) { ttbr1_valid = false; } } /* Determine whether this address is in the region controlled by * TTBR0 or TTBR1 (or if it is in neither region and should fault). * This is a Non-secure PL0/1 stage 1 translation, so controlled by * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: */ uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6); if (va_size == 64) { t0sz = MIN(t0sz, 39); t0sz = MAX(t0sz, 16); } uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6); if (va_size == 64) { t1sz = MIN(t1sz, 39); t1sz = MAX(t1sz, 16); } if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) { /* there is a ttbr0 region and we are in it (high bits all zero) */ ttbr_select = 0; } else if (ttbr1_valid && t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) { /* there is a ttbr1 region and we are in it (high bits all one) */ ttbr_select = 1; } else if (!t0sz) { /* ttbr0 region is "everything not in the ttbr1 region" */ ttbr_select = 0; } else if (!t1sz && ttbr1_valid) { /* ttbr1 region is "everything not in the ttbr0 region" */ ttbr_select = 1; } else { /* in the gap between the two regions, this is a Translation fault */ fault_type = translation_fault; goto do_fault; } /* Note that QEMU ignores shareability and cacheability attributes, * so we don't need to do anything with the SH, ORGN, IRGN fields * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently * implement any ASID-like capability so we can ignore it (instead * we will always flush the TLB any time the ASID is changed). */ if (ttbr_select == 0) { ttbr = regime_ttbr(env, mmu_idx, 0); epd = extract32(tcr->raw_tcr, 7, 1); tsz = t0sz; tg = extract32(tcr->raw_tcr, 14, 2); if (tg == 1) { /* 64KB pages */ granule_sz = 13; } if (tg == 2) { /* 16KB pages */ granule_sz = 11; } } else { /* We should only be here if TTBR1 is valid */ assert(ttbr1_valid); ttbr = regime_ttbr(env, mmu_idx, 1); epd = extract32(tcr->raw_tcr, 23, 1); tsz = t1sz; tg = extract32(tcr->raw_tcr, 30, 2); if (tg == 3) { /* 64KB pages */ granule_sz = 13; } if (tg == 1) { /* 16KB pages */ granule_sz = 11; } } /* Here we should have set up all the parameters for the translation: * va_size, ttbr, epd, tsz, granule_sz, tbi */ if (epd) { /* Translation table walk disabled => Translation fault on TLB miss * Note: This is always 0 on 64-bit EL2 and EL3. */ goto do_fault; } /* The starting level depends on the virtual address size (which can be * up to 48 bits) and the translation granule size. It indicates the number * of strides (granule_sz bits at a time) needed to consume the bits * of the input address. In the pseudocode this is: * level = 4 - RoundUp((inputsize - grainsize) / stride) * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is * our 'granule_sz + 3' and 'stride' is our 'granule_sz'. * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz * = 4 - (va_size - tsz - 4) / granule_sz; */ level = 4 - (va_size - tsz - 4) / granule_sz; /* Clear the vaddr bits which aren't part of the within-region address, * so that we don't have to special case things when calculating the * first descriptor address. */ if (tsz) { address &= (1ULL << (va_size - tsz)) - 1; } descmask = (1ULL << (granule_sz + 3)) - 1; /* Now we can extract the actual base address from the TTBR */ descaddr = extract64(ttbr, 0, 48); descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1); /* Secure accesses start with the page table in secure memory and * can be downgraded to non-secure at any step. Non-secure accesses * remain non-secure. We implement this by just ORing in the NSTable/NS * bits at each step. */ tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); for (;;) { uint64_t descriptor; bool nstable; descaddr |= (address >> (granule_sz * (4 - level))) & descmask; descaddr &= ~7ULL; nstable = extract32(tableattrs, 4, 1); descriptor = arm_ldq_ptw(cs, descaddr, !nstable); if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) { /* Invalid, or the Reserved level 3 encoding */ goto do_fault; } descaddr = descriptor & 0xfffffff000ULL; if ((descriptor & 2) && (level < 3)) { /* Table entry. The top five bits are attributes which may * propagate down through lower levels of the table (and * which are all arranged so that 0 means "no effect", so * we can gather them up by ORing in the bits at each level). */ tableattrs |= extract64(descriptor, 59, 5); level++; continue; } /* Block entry at level 1 or 2, or page entry at level 3. * These are basically the same thing, although the number * of bits we pull in from the vaddr varies. */ page_size = (1ULL << ((granule_sz * (4 - level)) + 3)); descaddr |= (address & (page_size - 1)); /* Extract attributes from the descriptor and merge with table attrs */ attrs = extract64(descriptor, 2, 10) | (extract64(descriptor, 52, 12) << 10); attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 * means "force PL1 access only", which means forcing AP[1] to 0. */ if (extract32(tableattrs, 2, 1)) { attrs &= ~(1 << 4); } attrs |= nstable << 3; /* NS */ break; } /* Here descaddr is the final physical address, and attributes * are all in attrs. */ fault_type = access_fault; if ((attrs & (1 << 8)) == 0) { /* Access flag */ goto do_fault; } ap = extract32(attrs, 4, 2); ns = extract32(attrs, 3, 1); xn = extract32(attrs, 12, 1); pxn = extract32(attrs, 11, 1); *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn); fault_type = permission_fault; if (!(*prot & (1 << access_type))) { goto do_fault; } if (ns) { /* The NS bit will (as required by the architecture) have no effect if * the CPU doesn't support TZ or this is a non-secure translation * regime, because the attribute will already be non-secure. */ txattrs->secure = false; } *phys_ptr = descaddr; *page_size_ptr = page_size; return 0; do_fault: /* Long-descriptor format IFSR/DFSR value */ return (1 << 9) | (fault_type << 2) | level; } static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, int *prot) { int n; uint32_t mask; uint32_t base; bool is_user = regime_is_user(env, mmu_idx); *phys_ptr = address; for (n = 7; n >= 0; n--) { base = env->cp15.c6_region[n]; if ((base & 1) == 0) { continue; } mask = 1 << ((base >> 1) & 0x1f); /* Keep this shift separate from the above to avoid an (undefined) << 32. */ mask = (mask << 1) - 1; if (((base ^ address) & ~mask) == 0) { break; } } if (n < 0) { return 2; } if (access_type == 2) { mask = env->cp15.pmsav5_insn_ap; } else { mask = env->cp15.pmsav5_data_ap; } mask = (mask >> (n * 4)) & 0xf; switch (mask) { case 0: return 1; case 1: if (is_user) { return 1; } *prot = PAGE_READ | PAGE_WRITE; break; case 2: *prot = PAGE_READ; if (!is_user) { *prot |= PAGE_WRITE; } break; case 3: *prot = PAGE_READ | PAGE_WRITE; break; case 5: if (is_user) { return 1; } *prot = PAGE_READ; break; case 6: *prot = PAGE_READ; break; default: /* Bad permission. */ return 1; } *prot |= PAGE_EXEC; return 0; } /* get_phys_addr - get the physical address for this virtual address * * Find the physical address corresponding to the given virtual address, * by doing a translation table walk on MMU based systems or using the * MPU state on MPU based systems. * * Returns 0 if the translation was successful. Otherwise, phys_ptr, attrs, * prot and page_size may not be filled in, and the return value provides * information on why the translation aborted, in the format of a * DFSR/IFSR fault register, with the following caveats: * * we honour the short vs long DFSR format differences. * * the WnR bit is never set (the caller must do this). * * for MPU based systems we don't bother to return a full FSR format * value. * * @env: CPUARMState * @address: virtual address to get physical address for * @access_type: 0 for read, 1 for write, 2 for execute * @mmu_idx: MMU index indicating required translation regime * @phys_ptr: set to the physical address corresponding to the virtual address * @attrs: set to the memory transaction attributes to use * @prot: set to the permissions for the page containing phys_ptr * @page_size: set to the size of the page containing phys_ptr */ static inline int get_phys_addr(CPUARMState *env, target_ulong address, int access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, target_ulong *page_size) { if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { /* TODO: when we support EL2 we should here call ourselves recursively * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw * functions will also need changing to perform ARMMMUIdx_S2NS loads * rather than direct physical memory loads when appropriate. * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. */ assert(!arm_feature(env, ARM_FEATURE_EL2)); mmu_idx += ARMMMUIdx_S1NSE0; } /* The page table entries may downgrade secure to non-secure, but * cannot upgrade an non-secure translation regime's attributes * to secure. */ attrs->secure = regime_is_secure(env, mmu_idx); attrs->user = regime_is_user(env, mmu_idx); /* Fast Context Switch Extension. This doesn't exist at all in v8. * In v7 and earlier it affects all stage 1 translations. */ if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS && !arm_feature(env, ARM_FEATURE_V8)) { if (regime_el(env, mmu_idx) == 3) { address += env->cp15.fcseidr_s; } else { address += env->cp15.fcseidr_ns; } } if (regime_translation_disabled(env, mmu_idx)) { /* MMU/MPU disabled. */ *phys_ptr = address; *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; *page_size = TARGET_PAGE_SIZE; return 0; } if (arm_feature(env, ARM_FEATURE_MPU)) { *page_size = TARGET_PAGE_SIZE; return get_phys_addr_mpu(env, address, access_type, mmu_idx, phys_ptr, prot); } if (regime_using_lpae_format(env, mmu_idx)) { return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, attrs, prot, page_size); } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, attrs, prot, page_size); } else { return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, prot, page_size); } } /* Walk the page table and (if the mapping exists) add the page * to the TLB. Return 0 on success, or an ARM DFSR/IFSR fault * register format value on failure. */ int arm_tlb_fill(CPUState *cs, vaddr address, int access_type, int mmu_idx) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; hwaddr phys_addr; target_ulong page_size; int prot; int ret; MemTxAttrs attrs = {}; ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr, &attrs, &prot, &page_size); if (ret == 0) { /* Map a single [sub]page. */ phys_addr &= TARGET_PAGE_MASK; address &= TARGET_PAGE_MASK; tlb_set_page_with_attrs(cs, address, phys_addr, attrs, prot, mmu_idx, page_size); return 0; } return ret; } hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; hwaddr phys_addr; target_ulong page_size; int prot; int ret; MemTxAttrs attrs = {}; ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr, &attrs, &prot, &page_size); if (ret != 0) { return -1; } return phys_addr; } void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) { if ((env->uncached_cpsr & CPSR_M) == mode) { env->regs[13] = val; } else { env->banked_r13[bank_number(mode)] = val; } } uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) { if ((env->uncached_cpsr & CPSR_M) == mode) { return env->regs[13]; } else { return env->banked_r13[bank_number(mode)]; } } uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) { ARMCPU *cpu = arm_env_get_cpu(env); switch (reg) { case 0: /* APSR */ return xpsr_read(env) & 0xf8000000; case 1: /* IAPSR */ return xpsr_read(env) & 0xf80001ff; case 2: /* EAPSR */ return xpsr_read(env) & 0xff00fc00; case 3: /* xPSR */ return xpsr_read(env) & 0xff00fdff; case 5: /* IPSR */ return xpsr_read(env) & 0x000001ff; case 6: /* EPSR */ return xpsr_read(env) & 0x0700fc00; case 7: /* IEPSR */ return xpsr_read(env) & 0x0700edff; case 8: /* MSP */ return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; case 9: /* PSP */ return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; case 16: /* PRIMASK */ return (env->daif & PSTATE_I) != 0; case 17: /* BASEPRI */ case 18: /* BASEPRI_MAX */ return env->v7m.basepri; case 19: /* FAULTMASK */ return (env->daif & PSTATE_F) != 0; case 20: /* CONTROL */ return env->v7m.control; default: /* ??? For debugging only. */ cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg); return 0; } } void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) { ARMCPU *cpu = arm_env_get_cpu(env); switch (reg) { case 0: /* APSR */ xpsr_write(env, val, 0xf8000000); break; case 1: /* IAPSR */ xpsr_write(env, val, 0xf8000000); break; case 2: /* EAPSR */ xpsr_write(env, val, 0xfe00fc00); break; case 3: /* xPSR */ xpsr_write(env, val, 0xfe00fc00); break; case 5: /* IPSR */ /* IPSR bits are readonly. */ break; case 6: /* EPSR */ xpsr_write(env, val, 0x0600fc00); break; case 7: /* IEPSR */ xpsr_write(env, val, 0x0600fc00); break; case 8: /* MSP */ if (env->v7m.current_sp) env->v7m.other_sp = val; else env->regs[13] = val; break; case 9: /* PSP */ if (env->v7m.current_sp) env->regs[13] = val; else env->v7m.other_sp = val; break; case 16: /* PRIMASK */ if (val & 1) { env->daif |= PSTATE_I; } else { env->daif &= ~PSTATE_I; } break; case 17: /* BASEPRI */ env->v7m.basepri = val & 0xff; break; case 18: /* BASEPRI_MAX */ val &= 0xff; if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) env->v7m.basepri = val; break; case 19: /* FAULTMASK */ if (val & 1) { env->daif |= PSTATE_F; } else { env->daif &= ~PSTATE_F; } break; case 20: /* CONTROL */ env->v7m.control = val & 3; switch_v7m_sp(env, (val & 2) != 0); break; default: /* ??? For debugging only. */ cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); return; } } #endif void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) { /* Implement DC ZVA, which zeroes a fixed-length block of memory. * Note that we do not implement the (architecturally mandated) * alignment fault for attempts to use this on Device memory * (which matches the usual QEMU behaviour of not implementing either * alignment faults or any memory attribute handling). */ ARMCPU *cpu = arm_env_get_cpu(env); uint64_t blocklen = 4 << cpu->dcz_blocksize; uint64_t vaddr = vaddr_in & ~(blocklen - 1); #ifndef CONFIG_USER_ONLY { /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than * the block size so we might have to do more than one TLB lookup. * We know that in fact for any v8 CPU the page size is at least 4K * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only * 1K as an artefact of legacy v5 subpage support being present in the * same QEMU executable. */ int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); void *hostaddr[maxidx]; int try, i; unsigned mmu_idx = cpu_mmu_index(env); TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); for (try = 0; try < 2; try++) { for (i = 0; i < maxidx; i++) { hostaddr[i] = tlb_vaddr_to_host(env, vaddr + TARGET_PAGE_SIZE * i, 1, mmu_idx); if (!hostaddr[i]) { break; } } if (i == maxidx) { /* If it's all in the TLB it's fair game for just writing to; * we know we don't need to update dirty status, etc. */ for (i = 0; i < maxidx - 1; i++) { memset(hostaddr[i], 0, TARGET_PAGE_SIZE); } memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); return; } /* OK, try a store and see if we can populate the tlb. This * might cause an exception if the memory isn't writable, * in which case we will longjmp out of here. We must for * this purpose use the actual register value passed to us * so that we get the fault address right. */ helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA()); /* Now we can populate the other TLB entries, if any */ for (i = 0; i < maxidx; i++) { uint64_t va = vaddr + TARGET_PAGE_SIZE * i; if (va != (vaddr_in & TARGET_PAGE_MASK)) { helper_ret_stb_mmu(env, va, 0, oi, GETRA()); } } } /* Slow path (probably attempt to do this to an I/O device or * similar, or clearing of a block of code we have translations * cached for). Just do a series of byte writes as the architecture * demands. It's not worth trying to use a cpu_physical_memory_map(), * memset(), unmap() sequence here because: * + we'd need to account for the blocksize being larger than a page * + the direct-RAM access case is almost always going to be dealt * with in the fastpath code above, so there's no speed benefit * + we would have to deal with the map returning NULL because the * bounce buffer was in use */ for (i = 0; i < blocklen; i++) { helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA()); } } #else memset(g2h(vaddr), 0, blocklen); #endif } /* Note that signed overflow is undefined in C. The following routines are careful to use unsigned types where modulo arithmetic is required. Failure to do so _will_ break on newer gcc. */ /* Signed saturating arithmetic. */ /* Perform 16-bit signed saturating addition. */ static inline uint16_t add16_sat(uint16_t a, uint16_t b) { uint16_t res; res = a + b; if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { if (a & 0x8000) res = 0x8000; else res = 0x7fff; } return res; } /* Perform 8-bit signed saturating addition. */ static inline uint8_t add8_sat(uint8_t a, uint8_t b) { uint8_t res; res = a + b; if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { if (a & 0x80) res = 0x80; else res = 0x7f; } return res; } /* Perform 16-bit signed saturating subtraction. */ static inline uint16_t sub16_sat(uint16_t a, uint16_t b) { uint16_t res; res = a - b; if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { if (a & 0x8000) res = 0x8000; else res = 0x7fff; } return res; } /* Perform 8-bit signed saturating subtraction. */ static inline uint8_t sub8_sat(uint8_t a, uint8_t b) { uint8_t res; res = a - b; if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { if (a & 0x80) res = 0x80; else res = 0x7f; } return res; } #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); #define PFX q #include "op_addsub.h" /* Unsigned saturating arithmetic. */ static inline uint16_t add16_usat(uint16_t a, uint16_t b) { uint16_t res; res = a + b; if (res < a) res = 0xffff; return res; } static inline uint16_t sub16_usat(uint16_t a, uint16_t b) { if (a > b) return a - b; else return 0; } static inline uint8_t add8_usat(uint8_t a, uint8_t b) { uint8_t res; res = a + b; if (res < a) res = 0xff; return res; } static inline uint8_t sub8_usat(uint8_t a, uint8_t b) { if (a > b) return a - b; else return 0; } #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); #define PFX uq #include "op_addsub.h" /* Signed modulo arithmetic. */ #define SARITH16(a, b, n, op) do { \ int32_t sum; \ sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ RESULT(sum, n, 16); \ if (sum >= 0) \ ge |= 3 << (n * 2); \ } while(0) #define SARITH8(a, b, n, op) do { \ int32_t sum; \ sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ RESULT(sum, n, 8); \ if (sum >= 0) \ ge |= 1 << n; \ } while(0) #define ADD16(a, b, n) SARITH16(a, b, n, +) #define SUB16(a, b, n) SARITH16(a, b, n, -) #define ADD8(a, b, n) SARITH8(a, b, n, +) #define SUB8(a, b, n) SARITH8(a, b, n, -) #define PFX s #define ARITH_GE #include "op_addsub.h" /* Unsigned modulo arithmetic. */ #define ADD16(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ RESULT(sum, n, 16); \ if ((sum >> 16) == 1) \ ge |= 3 << (n * 2); \ } while(0) #define ADD8(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ RESULT(sum, n, 8); \ if ((sum >> 8) == 1) \ ge |= 1 << n; \ } while(0) #define SUB16(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ RESULT(sum, n, 16); \ if ((sum >> 16) == 0) \ ge |= 3 << (n * 2); \ } while(0) #define SUB8(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ RESULT(sum, n, 8); \ if ((sum >> 8) == 0) \ ge |= 1 << n; \ } while(0) #define PFX u #define ARITH_GE #include "op_addsub.h" /* Halved signed arithmetic. */ #define ADD16(a, b, n) \ RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) #define SUB16(a, b, n) \ RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) #define ADD8(a, b, n) \ RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) #define SUB8(a, b, n) \ RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) #define PFX sh #include "op_addsub.h" /* Halved unsigned arithmetic. */ #define ADD16(a, b, n) \ RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) #define SUB16(a, b, n) \ RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) #define ADD8(a, b, n) \ RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) #define SUB8(a, b, n) \ RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) #define PFX uh #include "op_addsub.h" static inline uint8_t do_usad(uint8_t a, uint8_t b) { if (a > b) return a - b; else return b - a; } /* Unsigned sum of absolute byte differences. */ uint32_t HELPER(usad8)(uint32_t a, uint32_t b) { uint32_t sum; sum = do_usad(a, b); sum += do_usad(a >> 8, b >> 8); sum += do_usad(a >> 16, b >>16); sum += do_usad(a >> 24, b >> 24); return sum; } /* For ARMv6 SEL instruction. */ uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) { uint32_t mask; mask = 0; if (flags & 1) mask |= 0xff; if (flags & 2) mask |= 0xff00; if (flags & 4) mask |= 0xff0000; if (flags & 8) mask |= 0xff000000; return (a & mask) | (b & ~mask); } /* VFP support. We follow the convention used for VFP instructions: Single precision routines have a "s" suffix, double precision a "d" suffix. */ /* Convert host exception flags to vfp form. */ static inline int vfp_exceptbits_from_host(int host_bits) { int target_bits = 0; if (host_bits & float_flag_invalid) target_bits |= 1; if (host_bits & float_flag_divbyzero) target_bits |= 2; if (host_bits & float_flag_overflow) target_bits |= 4; if (host_bits & (float_flag_underflow | float_flag_output_denormal)) target_bits |= 8; if (host_bits & float_flag_inexact) target_bits |= 0x10; if (host_bits & float_flag_input_denormal) target_bits |= 0x80; return target_bits; } uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) { int i; uint32_t fpscr; fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | (env->vfp.vec_len << 16) | (env->vfp.vec_stride << 20); i = get_float_exception_flags(&env->vfp.fp_status); i |= get_float_exception_flags(&env->vfp.standard_fp_status); fpscr |= vfp_exceptbits_from_host(i); return fpscr; } uint32_t vfp_get_fpscr(CPUARMState *env) { return HELPER(vfp_get_fpscr)(env); } /* Convert vfp exception flags to target form. */ static inline int vfp_exceptbits_to_host(int target_bits) { int host_bits = 0; if (target_bits & 1) host_bits |= float_flag_invalid; if (target_bits & 2) host_bits |= float_flag_divbyzero; if (target_bits & 4) host_bits |= float_flag_overflow; if (target_bits & 8) host_bits |= float_flag_underflow; if (target_bits & 0x10) host_bits |= float_flag_inexact; if (target_bits & 0x80) host_bits |= float_flag_input_denormal; return host_bits; } void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) { int i; uint32_t changed; changed = env->vfp.xregs[ARM_VFP_FPSCR]; env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); env->vfp.vec_len = (val >> 16) & 7; env->vfp.vec_stride = (val >> 20) & 3; changed ^= val; if (changed & (3 << 22)) { i = (val >> 22) & 3; switch (i) { case FPROUNDING_TIEEVEN: i = float_round_nearest_even; break; case FPROUNDING_POSINF: i = float_round_up; break; case FPROUNDING_NEGINF: i = float_round_down; break; case FPROUNDING_ZERO: i = float_round_to_zero; break; } set_float_rounding_mode(i, &env->vfp.fp_status); } if (changed & (1 << 24)) { set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); } if (changed & (1 << 25)) set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); i = vfp_exceptbits_to_host(val); set_float_exception_flags(i, &env->vfp.fp_status); set_float_exception_flags(0, &env->vfp.standard_fp_status); } void vfp_set_fpscr(CPUARMState *env, uint32_t val) { HELPER(vfp_set_fpscr)(env, val); } #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) #define VFP_BINOP(name) \ float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ { \ float_status *fpst = fpstp; \ return float32_ ## name(a, b, fpst); \ } \ float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ { \ float_status *fpst = fpstp; \ return float64_ ## name(a, b, fpst); \ } VFP_BINOP(add) VFP_BINOP(sub) VFP_BINOP(mul) VFP_BINOP(div) VFP_BINOP(min) VFP_BINOP(max) VFP_BINOP(minnum) VFP_BINOP(maxnum) #undef VFP_BINOP float32 VFP_HELPER(neg, s)(float32 a) { return float32_chs(a); } float64 VFP_HELPER(neg, d)(float64 a) { return float64_chs(a); } float32 VFP_HELPER(abs, s)(float32 a) { return float32_abs(a); } float64 VFP_HELPER(abs, d)(float64 a) { return float64_abs(a); } float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) { return float32_sqrt(a, &env->vfp.fp_status); } float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) { return float64_sqrt(a, &env->vfp.fp_status); } /* XXX: check quiet/signaling case */ #define DO_VFP_cmp(p, type) \ void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ { \ uint32_t flags; \ switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ case 0: flags = 0x6; break; \ case -1: flags = 0x8; break; \ case 1: flags = 0x2; break; \ default: case 2: flags = 0x3; break; \ } \ env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ } \ void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ { \ uint32_t flags; \ switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ case 0: flags = 0x6; break; \ case -1: flags = 0x8; break; \ case 1: flags = 0x2; break; \ default: case 2: flags = 0x3; break; \ } \ env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ } DO_VFP_cmp(s, float32) DO_VFP_cmp(d, float64) #undef DO_VFP_cmp /* Integer to float and float to integer conversions */ #define CONV_ITOF(name, fsz, sign) \ float##fsz HELPER(name)(uint32_t x, void *fpstp) \ { \ float_status *fpst = fpstp; \ return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ } #define CONV_FTOI(name, fsz, sign, round) \ uint32_t HELPER(name)(float##fsz x, void *fpstp) \ { \ float_status *fpst = fpstp; \ if (float##fsz##_is_any_nan(x)) { \ float_raise(float_flag_invalid, fpst); \ return 0; \ } \ return float##fsz##_to_##sign##int32##round(x, fpst); \ } #define FLOAT_CONVS(name, p, fsz, sign) \ CONV_ITOF(vfp_##name##to##p, fsz, sign) \ CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) FLOAT_CONVS(si, s, 32, ) FLOAT_CONVS(si, d, 64, ) FLOAT_CONVS(ui, s, 32, u) FLOAT_CONVS(ui, d, 64, u) #undef CONV_ITOF #undef CONV_FTOI #undef FLOAT_CONVS /* floating point conversion */ float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) { float64 r = float32_to_float64(x, &env->vfp.fp_status); /* ARM requires that S<->D conversion of any kind of NaN generates * a quiet NaN by forcing the most significant frac bit to 1. */ return float64_maybe_silence_nan(r); } float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) { float32 r = float64_to_float32(x, &env->vfp.fp_status); /* ARM requires that S<->D conversion of any kind of NaN generates * a quiet NaN by forcing the most significant frac bit to 1. */ return float32_maybe_silence_nan(r); } /* VFP3 fixed point conversion. */ #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ void *fpstp) \ { \ float_status *fpst = fpstp; \ float##fsz tmp; \ tmp = itype##_to_##float##fsz(x, fpst); \ return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ } /* Notice that we want only input-denormal exception flags from the * scalbn operation: the other possible flags (overflow+inexact if * we overflow to infinity, output-denormal) aren't correct for the * complete scale-and-convert operation. */ #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ uint32_t shift, \ void *fpstp) \ { \ float_status *fpst = fpstp; \ int old_exc_flags = get_float_exception_flags(fpst); \ float##fsz tmp; \ if (float##fsz##_is_any_nan(x)) { \ float_raise(float_flag_invalid, fpst); \ return 0; \ } \ tmp = float##fsz##_scalbn(x, shift, fpst); \ old_exc_flags |= get_float_exception_flags(fpst) \ & float_flag_input_denormal; \ set_float_exception_flags(old_exc_flags, fpst); \ return float##fsz##_to_##itype##round(tmp, fpst); \ } #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) VFP_CONV_FIX(sh, d, 64, 64, int16) VFP_CONV_FIX(sl, d, 64, 64, int32) VFP_CONV_FIX_A64(sq, d, 64, 64, int64) VFP_CONV_FIX(uh, d, 64, 64, uint16) VFP_CONV_FIX(ul, d, 64, 64, uint32) VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) VFP_CONV_FIX(sh, s, 32, 32, int16) VFP_CONV_FIX(sl, s, 32, 32, int32) VFP_CONV_FIX_A64(sq, s, 32, 64, int64) VFP_CONV_FIX(uh, s, 32, 32, uint16) VFP_CONV_FIX(ul, s, 32, 32, uint32) VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) #undef VFP_CONV_FIX #undef VFP_CONV_FIX_FLOAT #undef VFP_CONV_FLOAT_FIX_ROUND /* Set the current fp rounding mode and return the old one. * The argument is a softfloat float_round_ value. */ uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) { float_status *fp_status = &env->vfp.fp_status; uint32_t prev_rmode = get_float_rounding_mode(fp_status); set_float_rounding_mode(rmode, fp_status); return prev_rmode; } /* Set the current fp rounding mode in the standard fp status and return * the old one. This is for NEON instructions that need to change the * rounding mode but wish to use the standard FPSCR values for everything * else. Always set the rounding mode back to the correct value after * modifying it. * The argument is a softfloat float_round_ value. */ uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) { float_status *fp_status = &env->vfp.standard_fp_status; uint32_t prev_rmode = get_float_rounding_mode(fp_status); set_float_rounding_mode(rmode, fp_status); return prev_rmode; } /* Half precision conversions. */ static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) { int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; float32 r = float16_to_float32(make_float16(a), ieee, s); if (ieee) { return float32_maybe_silence_nan(r); } return r; } static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) { int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; float16 r = float32_to_float16(a, ieee, s); if (ieee) { r = float16_maybe_silence_nan(r); } return float16_val(r); } float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) { return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); } uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) { return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); } float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) { return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); } uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) { return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); } float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) { int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); if (ieee) { return float64_maybe_silence_nan(r); } return r; } uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) { int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); if (ieee) { r = float16_maybe_silence_nan(r); } return float16_val(r); } #define float32_two make_float32(0x40000000) #define float32_three make_float32(0x40400000) #define float32_one_point_five make_float32(0x3fc00000) float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) { float_status *s = &env->vfp.standard_fp_status; if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { if (!(float32_is_zero(a) || float32_is_zero(b))) { float_raise(float_flag_input_denormal, s); } return float32_two; } return float32_sub(float32_two, float32_mul(a, b, s), s); } float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) { float_status *s = &env->vfp.standard_fp_status; float32 product; if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { if (!(float32_is_zero(a) || float32_is_zero(b))) { float_raise(float_flag_input_denormal, s); } return float32_one_point_five; } product = float32_mul(a, b, s); return float32_div(float32_sub(float32_three, product, s), float32_two, s); } /* NEON helpers. */ /* Constants 256 and 512 are used in some helpers; we avoid relying on * int->float conversions at run-time. */ #define float64_256 make_float64(0x4070000000000000LL) #define float64_512 make_float64(0x4080000000000000LL) #define float32_maxnorm make_float32(0x7f7fffff) #define float64_maxnorm make_float64(0x7fefffffffffffffLL) /* Reciprocal functions * * The algorithm that must be used to calculate the estimate * is specified by the ARM ARM, see FPRecipEstimate() */ static float64 recip_estimate(float64 a, float_status *real_fp_status) { /* These calculations mustn't set any fp exception flags, * so we use a local copy of the fp_status. */ float_status dummy_status = *real_fp_status; float_status *s = &dummy_status; /* q = (int)(a * 512.0) */ float64 q = float64_mul(float64_512, a, s); int64_t q_int = float64_to_int64_round_to_zero(q, s); /* r = 1.0 / (((double)q + 0.5) / 512.0) */ q = int64_to_float64(q_int, s); q = float64_add(q, float64_half, s); q = float64_div(q, float64_512, s); q = float64_div(float64_one, q, s); /* s = (int)(256.0 * r + 0.5) */ q = float64_mul(q, float64_256, s); q = float64_add(q, float64_half, s); q_int = float64_to_int64_round_to_zero(q, s); /* return (double)s / 256.0 */ return float64_div(int64_to_float64(q_int, s), float64_256, s); } /* Common wrapper to call recip_estimate */ static float64 call_recip_estimate(float64 num, int off, float_status *fpst) { uint64_t val64 = float64_val(num); uint64_t frac = extract64(val64, 0, 52); int64_t exp = extract64(val64, 52, 11); uint64_t sbit; float64 scaled, estimate; /* Generate the scaled number for the estimate function */ if (exp == 0) { if (extract64(frac, 51, 1) == 0) { exp = -1; frac = extract64(frac, 0, 50) << 2; } else { frac = extract64(frac, 0, 51) << 1; } } /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ scaled = make_float64((0x3feULL << 52) | extract64(frac, 44, 8) << 44); estimate = recip_estimate(scaled, fpst); /* Build new result */ val64 = float64_val(estimate); sbit = 0x8000000000000000ULL & val64; exp = off - exp; frac = extract64(val64, 0, 52); if (exp == 0) { frac = 1ULL << 51 | extract64(frac, 1, 51); } else if (exp == -1) { frac = 1ULL << 50 | extract64(frac, 2, 50); exp = 0; } return make_float64(sbit | (exp << 52) | frac); } static bool round_to_inf(float_status *fpst, bool sign_bit) { switch (fpst->float_rounding_mode) { case float_round_nearest_even: /* Round to Nearest */ return true; case float_round_up: /* Round to +Inf */ return !sign_bit; case float_round_down: /* Round to -Inf */ return sign_bit; case float_round_to_zero: /* Round to Zero */ return false; } g_assert_not_reached(); } float32 HELPER(recpe_f32)(float32 input, void *fpstp) { float_status *fpst = fpstp; float32 f32 = float32_squash_input_denormal(input, fpst); uint32_t f32_val = float32_val(f32); uint32_t f32_sbit = 0x80000000ULL & f32_val; int32_t f32_exp = extract32(f32_val, 23, 8); uint32_t f32_frac = extract32(f32_val, 0, 23); float64 f64, r64; uint64_t r64_val; int64_t r64_exp; uint64_t r64_frac; if (float32_is_any_nan(f32)) { float32 nan = f32; if (float32_is_signaling_nan(f32)) { float_raise(float_flag_invalid, fpst); nan = float32_maybe_silence_nan(f32); } if (fpst->default_nan_mode) { nan = float32_default_nan; } return nan; } else if (float32_is_infinity(f32)) { return float32_set_sign(float32_zero, float32_is_neg(f32)); } else if (float32_is_zero(f32)) { float_raise(float_flag_divbyzero, fpst); return float32_set_sign(float32_infinity, float32_is_neg(f32)); } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { /* Abs(value) < 2.0^-128 */ float_raise(float_flag_overflow | float_flag_inexact, fpst); if (round_to_inf(fpst, f32_sbit)) { return float32_set_sign(float32_infinity, float32_is_neg(f32)); } else { return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); } } else if (f32_exp >= 253 && fpst->flush_to_zero) { float_raise(float_flag_underflow, fpst); return float32_set_sign(float32_zero, float32_is_neg(f32)); } f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); r64 = call_recip_estimate(f64, 253, fpst); r64_val = float64_val(r64); r64_exp = extract64(r64_val, 52, 11); r64_frac = extract64(r64_val, 0, 52); /* result = sign : result_exp<7:0> : fraction<51:29>; */ return make_float32(f32_sbit | (r64_exp & 0xff) << 23 | extract64(r64_frac, 29, 24)); } float64 HELPER(recpe_f64)(float64 input, void *fpstp) { float_status *fpst = fpstp; float64 f64 = float64_squash_input_denormal(input, fpst); uint64_t f64_val = float64_val(f64); uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; int64_t f64_exp = extract64(f64_val, 52, 11); float64 r64; uint64_t r64_val; int64_t r64_exp; uint64_t r64_frac; /* Deal with any special cases */ if (float64_is_any_nan(f64)) { float64 nan = f64; if (float64_is_signaling_nan(f64)) { float_raise(float_flag_invalid, fpst); nan = float64_maybe_silence_nan(f64); } if (fpst->default_nan_mode) { nan = float64_default_nan; } return nan; } else if (float64_is_infinity(f64)) { return float64_set_sign(float64_zero, float64_is_neg(f64)); } else if (float64_is_zero(f64)) { float_raise(float_flag_divbyzero, fpst); return float64_set_sign(float64_infinity, float64_is_neg(f64)); } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { /* Abs(value) < 2.0^-1024 */ float_raise(float_flag_overflow | float_flag_inexact, fpst); if (round_to_inf(fpst, f64_sbit)) { return float64_set_sign(float64_infinity, float64_is_neg(f64)); } else { return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); } } else if (f64_exp >= 2045 && fpst->flush_to_zero) { float_raise(float_flag_underflow, fpst); return float64_set_sign(float64_zero, float64_is_neg(f64)); } r64 = call_recip_estimate(f64, 2045, fpst); r64_val = float64_val(r64); r64_exp = extract64(r64_val, 52, 11); r64_frac = extract64(r64_val, 0, 52); /* result = sign : result_exp<10:0> : fraction<51:0> */ return make_float64(f64_sbit | ((r64_exp & 0x7ff) << 52) | r64_frac); } /* The algorithm that must be used to calculate the estimate * is specified by the ARM ARM. */ static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) { /* These calculations mustn't set any fp exception flags, * so we use a local copy of the fp_status. */ float_status dummy_status = *real_fp_status; float_status *s = &dummy_status; float64 q; int64_t q_int; if (float64_lt(a, float64_half, s)) { /* range 0.25 <= a < 0.5 */ /* a in units of 1/512 rounded down */ /* q0 = (int)(a * 512.0); */ q = float64_mul(float64_512, a, s); q_int = float64_to_int64_round_to_zero(q, s); /* reciprocal root r */ /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ q = int64_to_float64(q_int, s); q = float64_add(q, float64_half, s); q = float64_div(q, float64_512, s); q = float64_sqrt(q, s); q = float64_div(float64_one, q, s); } else { /* range 0.5 <= a < 1.0 */ /* a in units of 1/256 rounded down */ /* q1 = (int)(a * 256.0); */ q = float64_mul(float64_256, a, s); int64_t q_int = float64_to_int64_round_to_zero(q, s); /* reciprocal root r */ /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ q = int64_to_float64(q_int, s); q = float64_add(q, float64_half, s); q = float64_div(q, float64_256, s); q = float64_sqrt(q, s); q = float64_div(float64_one, q, s); } /* r in units of 1/256 rounded to nearest */ /* s = (int)(256.0 * r + 0.5); */ q = float64_mul(q, float64_256,s ); q = float64_add(q, float64_half, s); q_int = float64_to_int64_round_to_zero(q, s); /* return (double)s / 256.0;*/ return float64_div(int64_to_float64(q_int, s), float64_256, s); } float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) { float_status *s = fpstp; float32 f32 = float32_squash_input_denormal(input, s); uint32_t val = float32_val(f32); uint32_t f32_sbit = 0x80000000 & val; int32_t f32_exp = extract32(val, 23, 8); uint32_t f32_frac = extract32(val, 0, 23); uint64_t f64_frac; uint64_t val64; int result_exp; float64 f64; if (float32_is_any_nan(f32)) { float32 nan = f32; if (float32_is_signaling_nan(f32)) { float_raise(float_flag_invalid, s); nan = float32_maybe_silence_nan(f32); } if (s->default_nan_mode) { nan = float32_default_nan; } return nan; } else if (float32_is_zero(f32)) { float_raise(float_flag_divbyzero, s); return float32_set_sign(float32_infinity, float32_is_neg(f32)); } else if (float32_is_neg(f32)) { float_raise(float_flag_invalid, s); return float32_default_nan; } else if (float32_is_infinity(f32)) { return float32_zero; } /* Scale and normalize to a double-precision value between 0.25 and 1.0, * preserving the parity of the exponent. */ f64_frac = ((uint64_t) f32_frac) << 29; if (f32_exp == 0) { while (extract64(f64_frac, 51, 1) == 0) { f64_frac = f64_frac << 1; f32_exp = f32_exp-1; } f64_frac = extract64(f64_frac, 0, 51) << 1; } if (extract64(f32_exp, 0, 1) == 0) { f64 = make_float64(((uint64_t) f32_sbit) << 32 | (0x3feULL << 52) | f64_frac); } else { f64 = make_float64(((uint64_t) f32_sbit) << 32 | (0x3fdULL << 52) | f64_frac); } result_exp = (380 - f32_exp) / 2; f64 = recip_sqrt_estimate(f64, s); val64 = float64_val(f64); val = ((result_exp & 0xff) << 23) | ((val64 >> 29) & 0x7fffff); return make_float32(val); } float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) { float_status *s = fpstp; float64 f64 = float64_squash_input_denormal(input, s); uint64_t val = float64_val(f64); uint64_t f64_sbit = 0x8000000000000000ULL & val; int64_t f64_exp = extract64(val, 52, 11); uint64_t f64_frac = extract64(val, 0, 52); int64_t result_exp; uint64_t result_frac; if (float64_is_any_nan(f64)) { float64 nan = f64; if (float64_is_signaling_nan(f64)) { float_raise(float_flag_invalid, s); nan = float64_maybe_silence_nan(f64); } if (s->default_nan_mode) { nan = float64_default_nan; } return nan; } else if (float64_is_zero(f64)) { float_raise(float_flag_divbyzero, s); return float64_set_sign(float64_infinity, float64_is_neg(f64)); } else if (float64_is_neg(f64)) { float_raise(float_flag_invalid, s); return float64_default_nan; } else if (float64_is_infinity(f64)) { return float64_zero; } /* Scale and normalize to a double-precision value between 0.25 and 1.0, * preserving the parity of the exponent. */ if (f64_exp == 0) { while (extract64(f64_frac, 51, 1) == 0) { f64_frac = f64_frac << 1; f64_exp = f64_exp - 1; } f64_frac = extract64(f64_frac, 0, 51) << 1; } if (extract64(f64_exp, 0, 1) == 0) { f64 = make_float64(f64_sbit | (0x3feULL << 52) | f64_frac); } else { f64 = make_float64(f64_sbit | (0x3fdULL << 52) | f64_frac); } result_exp = (3068 - f64_exp) / 2; f64 = recip_sqrt_estimate(f64, s); result_frac = extract64(float64_val(f64), 0, 52); return make_float64(f64_sbit | ((result_exp & 0x7ff) << 52) | result_frac); } uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) { float_status *s = fpstp; float64 f64; if ((a & 0x80000000) == 0) { return 0xffffffff; } f64 = make_float64((0x3feULL << 52) | ((int64_t)(a & 0x7fffffff) << 21)); f64 = recip_estimate(f64, s); return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); } uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) { float_status *fpst = fpstp; float64 f64; if ((a & 0xc0000000) == 0) { return 0xffffffff; } if (a & 0x80000000) { f64 = make_float64((0x3feULL << 52) | ((uint64_t)(a & 0x7fffffff) << 21)); } else { /* bits 31-30 == '01' */ f64 = make_float64((0x3fdULL << 52) | ((uint64_t)(a & 0x3fffffff) << 22)); } f64 = recip_sqrt_estimate(f64, fpst); return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); } /* VFPv4 fused multiply-accumulate */ float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) { float_status *fpst = fpstp; return float32_muladd(a, b, c, 0, fpst); } float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) { float_status *fpst = fpstp; return float64_muladd(a, b, c, 0, fpst); } /* ARMv8 round to integral */ float32 HELPER(rints_exact)(float32 x, void *fp_status) { return float32_round_to_int(x, fp_status); } float64 HELPER(rintd_exact)(float64 x, void *fp_status) { return float64_round_to_int(x, fp_status); } float32 HELPER(rints)(float32 x, void *fp_status) { int old_flags = get_float_exception_flags(fp_status), new_flags; float32 ret; ret = float32_round_to_int(x, fp_status); /* Suppress any inexact exceptions the conversion produced */ if (!(old_flags & float_flag_inexact)) { new_flags = get_float_exception_flags(fp_status); set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); } return ret; } float64 HELPER(rintd)(float64 x, void *fp_status) { int old_flags = get_float_exception_flags(fp_status), new_flags; float64 ret; ret = float64_round_to_int(x, fp_status); new_flags = get_float_exception_flags(fp_status); /* Suppress any inexact exceptions the conversion produced */ if (!(old_flags & float_flag_inexact)) { new_flags = get_float_exception_flags(fp_status); set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); } return ret; } /* Convert ARM rounding mode to softfloat */ int arm_rmode_to_sf(int rmode) { switch (rmode) { case FPROUNDING_TIEAWAY: rmode = float_round_ties_away; break; case FPROUNDING_ODD: /* FIXME: add support for TIEAWAY and ODD */ qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", rmode); case FPROUNDING_TIEEVEN: default: rmode = float_round_nearest_even; break; case FPROUNDING_POSINF: rmode = float_round_up; break; case FPROUNDING_NEGINF: rmode = float_round_down; break; case FPROUNDING_ZERO: rmode = float_round_to_zero; break; } return rmode; } /* CRC helpers. * The upper bytes of val (above the number specified by 'bytes') must have * been zeroed out by the caller. */ uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) { uint8_t buf[4]; stl_le_p(buf, val); /* zlib crc32 converts the accumulator and output to one's complement. */ return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; } uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) { uint8_t buf[4]; stl_le_p(buf, val); /* Linux crc32c converts the output to one's complement. */ return crc32c(acc, buf, bytes) ^ 0xffffffff; }