/* * sPAPR CPU core device, acts as container of CPU thread devices. * * Copyright (C) 2016 Bharata B Rao * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "hw/cpu/core.h" #include "hw/ppc/spapr_cpu_core.h" #include "target/ppc/cpu.h" #include "hw/ppc/spapr.h" #include "hw/boards.h" #include "qapi/error.h" #include "sysemu/cpus.h" #include "target/ppc/kvm_ppc.h" #include "hw/ppc/ppc.h" #include "target/ppc/mmu-hash64.h" #include "sysemu/numa.h" static void spapr_cpu_reset(void *opaque) { sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); PowerPCCPU *cpu = opaque; CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; cpu_reset(cs); /* All CPUs start halted. CPU0 is unhalted from the machine level * reset code and the rest are explicitly started up by the guest * using an RTAS call */ cs->halted = 1; env->spr[SPR_HIOR] = 0; ppc_hash64_set_external_hpt(cpu, spapr->htab, spapr->htab_shift, &error_fatal); } static void spapr_cpu_destroy(PowerPCCPU *cpu) { sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); xics_cpu_destroy(spapr->xics, cpu); qemu_unregister_reset(spapr_cpu_reset, cpu); } void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu, Error **errp) { CPUPPCState *env = &cpu->env; CPUState *cs = CPU(cpu); int i; /* Set time-base frequency to 512 MHz */ cpu_ppc_tb_init(env, SPAPR_TIMEBASE_FREQ); /* Enable PAPR mode in TCG or KVM */ cpu_ppc_set_papr(cpu); if (cpu->max_compat) { Error *local_err = NULL; ppc_set_compat(cpu, cpu->max_compat, &local_err); if (local_err) { error_propagate(errp, local_err); return; } } /* Set NUMA node for the added CPUs */ i = numa_get_node_for_cpu(cs->cpu_index); if (i < nb_numa_nodes) { cs->numa_node = i; } xics_cpu_setup(spapr->xics, cpu); qemu_register_reset(spapr_cpu_reset, cpu); spapr_cpu_reset(cpu); } /* * Return the sPAPR CPU core type for @model which essentially is the CPU * model specified with -cpu cmdline option. */ char *spapr_get_cpu_core_type(const char *model) { char *core_type; gchar **model_pieces = g_strsplit(model, ",", 2); core_type = g_strdup_printf("%s-%s", model_pieces[0], TYPE_SPAPR_CPU_CORE); /* Check whether it exists or whether we have to look up an alias name */ if (!object_class_by_name(core_type)) { const char *realmodel; g_free(core_type); core_type = NULL; realmodel = ppc_cpu_lookup_alias(model_pieces[0]); if (realmodel) { core_type = spapr_get_cpu_core_type(realmodel); } } g_strfreev(model_pieces); return core_type; } static void spapr_core_release(DeviceState *dev, void *opaque) { sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(dev)); const char *typename = object_class_get_name(scc->cpu_class); size_t size = object_type_get_instance_size(typename); sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); CPUCore *cc = CPU_CORE(dev); int i; for (i = 0; i < cc->nr_threads; i++) { void *obj = sc->threads + i * size; DeviceState *dev = DEVICE(obj); CPUState *cs = CPU(dev); PowerPCCPU *cpu = POWERPC_CPU(cs); spapr_cpu_destroy(cpu); cpu_remove_sync(cs); object_unparent(obj); } spapr->cores[cc->core_id / smp_threads] = NULL; g_free(sc->threads); object_unparent(OBJECT(dev)); } void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { CPUCore *cc = CPU_CORE(dev); int smt = kvmppc_smt_threads(); int index = cc->core_id / smp_threads; sPAPRDRConnector *drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt); sPAPRDRConnectorClass *drck; Error *local_err = NULL; if (index == 0) { error_setg(errp, "Boot CPU core may not be unplugged"); return; } g_assert(drc); drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); drck->detach(drc, dev, spapr_core_release, NULL, &local_err); if (local_err) { error_propagate(errp, local_err); return; } spapr_hotplug_req_remove_by_index(drc); } void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); CPUCore *cc = CPU_CORE(dev); CPUState *cs = CPU(core->threads); sPAPRDRConnector *drc; sPAPRDRConnectorClass *drck; Error *local_err = NULL; void *fdt = NULL; int fdt_offset = 0; int index = cc->core_id / smp_threads; int smt = kvmppc_smt_threads(); drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt); spapr->cores[index] = OBJECT(dev); g_assert(drc); /* * Setup CPU DT entries only for hotplugged CPUs. For boot time or * coldplugged CPUs DT entries are setup in spapr_build_fdt(). */ if (dev->hotplugged) { fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); } drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err); if (local_err) { g_free(fdt); spapr->cores[index] = NULL; error_propagate(errp, local_err); return; } if (dev->hotplugged) { /* * Send hotplug notification interrupt to the guest only in case * of hotplugged CPUs. */ spapr_hotplug_req_add_by_index(drc); } else { /* * Set the right DRC states for cold plugged CPU. */ drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE); drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED); } } void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { MachineState *machine = MACHINE(OBJECT(hotplug_dev)); MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); int spapr_max_cores = max_cpus / smp_threads; int index; Error *local_err = NULL; CPUCore *cc = CPU_CORE(dev); char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model); const char *type = object_get_typename(OBJECT(dev)); if (!mc->query_hotpluggable_cpus) { error_setg(&local_err, "CPU hotplug not supported for this machine"); goto out; } if (strcmp(base_core_type, type)) { error_setg(&local_err, "CPU core type should be %s", base_core_type); goto out; } if (cc->nr_threads != smp_threads) { error_setg(&local_err, "threads must be %d", smp_threads); goto out; } if (cc->core_id % smp_threads) { error_setg(&local_err, "invalid core id %d", cc->core_id); goto out; } index = cc->core_id / smp_threads; if (index < 0 || index >= spapr_max_cores) { error_setg(&local_err, "core id %d out of range", cc->core_id); goto out; } if (spapr->cores[index]) { error_setg(&local_err, "core %d already populated", cc->core_id); goto out; } out: g_free(base_core_type); error_propagate(errp, local_err); } static void spapr_cpu_core_realize_child(Object *child, Error **errp) { Error *local_err = NULL; sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); CPUState *cs = CPU(child); PowerPCCPU *cpu = POWERPC_CPU(cs); object_property_set_bool(child, true, "realized", &local_err); if (local_err) { error_propagate(errp, local_err); return; } spapr_cpu_init(spapr, cpu, &local_err); if (local_err) { error_propagate(errp, local_err); return; } } static void spapr_cpu_core_realize(DeviceState *dev, Error **errp) { sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(dev)); CPUCore *cc = CPU_CORE(OBJECT(dev)); const char *typename = object_class_get_name(scc->cpu_class); size_t size = object_type_get_instance_size(typename); Error *local_err = NULL; void *obj; int i, j; sc->threads = g_malloc0(size * cc->nr_threads); for (i = 0; i < cc->nr_threads; i++) { char id[32]; CPUState *cs; obj = sc->threads + i * size; object_initialize(obj, size, typename); cs = CPU(obj); cs->cpu_index = cc->core_id + i; snprintf(id, sizeof(id), "thread[%d]", i); object_property_add_child(OBJECT(sc), id, obj, &local_err); if (local_err) { goto err; } object_unref(obj); } for (j = 0; j < cc->nr_threads; j++) { obj = sc->threads + j * size; spapr_cpu_core_realize_child(obj, &local_err); if (local_err) { goto err; } } return; err: while (--i >= 0) { obj = sc->threads + i * size; object_unparent(obj); } g_free(sc->threads); error_propagate(errp, local_err); } static const char *spapr_core_models[] = { /* 970 */ "970_v2.2", /* 970MP variants */ "970MP_v1.0", "970mp_v1.0", "970MP_v1.1", "970mp_v1.1", /* POWER5+ */ "POWER5+_v2.1", /* POWER7 */ "POWER7_v2.3", /* POWER7+ */ "POWER7+_v2.1", /* POWER8 */ "POWER8_v2.0", /* POWER8E */ "POWER8E_v2.1", /* POWER8NVL */ "POWER8NVL_v1.0", }; void spapr_cpu_core_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_CLASS(oc); dc->realize = spapr_cpu_core_realize; scc->cpu_class = cpu_class_by_name(TYPE_POWERPC_CPU, data); g_assert(scc->cpu_class); } static const TypeInfo spapr_cpu_core_type_info = { .name = TYPE_SPAPR_CPU_CORE, .parent = TYPE_CPU_CORE, .abstract = true, .instance_size = sizeof(sPAPRCPUCore), .class_size = sizeof(sPAPRCPUCoreClass), }; static void spapr_cpu_core_register_types(void) { int i; type_register_static(&spapr_cpu_core_type_info); for (i = 0; i < ARRAY_SIZE(spapr_core_models); i++) { TypeInfo type_info = { .parent = TYPE_SPAPR_CPU_CORE, .instance_size = sizeof(sPAPRCPUCore), .class_init = spapr_cpu_core_class_init, .class_data = (void *) spapr_core_models[i], }; type_info.name = g_strdup_printf("%s-" TYPE_SPAPR_CPU_CORE, spapr_core_models[i]); type_register(&type_info); g_free((void *)type_info.name); } } type_init(spapr_cpu_core_register_types)