qemu-e2k/hw/arm/musca.c
Peter Maydell 761c532ab1 target/arm: Make boards pass base address to armv7m_load_kernel()
Currently armv7m_load_kernel() takes the size of the block of memory
where it should load the initial guest image, but assumes that it
should always load it at address 0.  This happens to be true of all
our M-profile boards at the moment, but it isn't guaranteed to always
be so: M-profile CPUs can be configured (via init-svtor and
init-nsvtor, which match equivalent hardware configuration signals)
to have the initial vector table at any address, not just zero.  (For
instance the Teeny board has the boot ROM at address 0x0200_0000.)

Add a base address argument to armv7m_load_kernel(), so that
callers now pass in both base address and size. All the current
callers pass 0, so this is not a behaviour change.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20220823160417.3858216-3-peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2022-09-14 11:19:40 +01:00

679 lines
24 KiB
C

/*
* Arm Musca-B1 test chip board emulation
*
* Copyright (c) 2019 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/*
* The Musca boards are a reference implementation of a system using
* the SSE-200 subsystem for embedded:
* https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board
* https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board
* We model the A and B1 variants of this board, as described in the TRMs:
* https://developer.arm.com/documentation/101107/latest/
* https://developer.arm.com/documentation/101312/latest/
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "exec/address-spaces.h"
#include "sysemu/sysemu.h"
#include "hw/arm/boot.h"
#include "hw/arm/armsse.h"
#include "hw/boards.h"
#include "hw/char/pl011.h"
#include "hw/core/split-irq.h"
#include "hw/misc/tz-mpc.h"
#include "hw/misc/tz-ppc.h"
#include "hw/misc/unimp.h"
#include "hw/rtc/pl031.h"
#include "hw/qdev-clock.h"
#include "qom/object.h"
#define MUSCA_NUMIRQ_MAX 96
#define MUSCA_PPC_MAX 3
#define MUSCA_MPC_MAX 5
typedef struct MPCInfo MPCInfo;
typedef enum MuscaType {
MUSCA_A,
MUSCA_B1,
} MuscaType;
struct MuscaMachineClass {
MachineClass parent;
MuscaType type;
uint32_t init_svtor;
int sram_addr_width;
int num_irqs;
const MPCInfo *mpc_info;
int num_mpcs;
};
struct MuscaMachineState {
MachineState parent;
ARMSSE sse;
/* RAM and flash */
MemoryRegion ram[MUSCA_MPC_MAX];
SplitIRQ cpu_irq_splitter[MUSCA_NUMIRQ_MAX];
SplitIRQ sec_resp_splitter;
TZPPC ppc[MUSCA_PPC_MAX];
MemoryRegion container;
UnimplementedDeviceState eflash[2];
UnimplementedDeviceState qspi;
TZMPC mpc[MUSCA_MPC_MAX];
UnimplementedDeviceState mhu[2];
UnimplementedDeviceState pwm[3];
UnimplementedDeviceState i2s;
PL011State uart[2];
UnimplementedDeviceState i2c[2];
UnimplementedDeviceState spi;
UnimplementedDeviceState scc;
UnimplementedDeviceState timer;
PL031State rtc;
UnimplementedDeviceState pvt;
UnimplementedDeviceState sdio;
UnimplementedDeviceState gpio;
UnimplementedDeviceState cryptoisland;
Clock *sysclk;
Clock *s32kclk;
};
#define TYPE_MUSCA_MACHINE "musca"
#define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a")
#define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1")
OBJECT_DECLARE_TYPE(MuscaMachineState, MuscaMachineClass, MUSCA_MACHINE)
/*
* Main SYSCLK frequency in Hz
* TODO this should really be different for the two cores, but we
* don't model that in our SSE-200 model yet.
*/
#define SYSCLK_FRQ 40000000
/* Slow 32Khz S32KCLK frequency in Hz */
#define S32KCLK_FRQ (32 * 1000)
static qemu_irq get_sse_irq_in(MuscaMachineState *mms, int irqno)
{
/* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
assert(irqno < MUSCA_NUMIRQ_MAX);
return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
}
/*
* Most of the devices in the Musca board sit behind Peripheral Protection
* Controllers. These data structures define the layout of which devices
* sit behind which PPCs.
* The devfn for each port is a function which creates, configures
* and initializes the device, returning the MemoryRegion which
* needs to be plugged into the downstream end of the PPC port.
*/
typedef MemoryRegion *MakeDevFn(MuscaMachineState *mms, void *opaque,
const char *name, hwaddr size);
typedef struct PPCPortInfo {
const char *name;
MakeDevFn *devfn;
void *opaque;
hwaddr addr;
hwaddr size;
} PPCPortInfo;
typedef struct PPCInfo {
const char *name;
PPCPortInfo ports[TZ_NUM_PORTS];
} PPCInfo;
static MemoryRegion *make_unimp_dev(MuscaMachineState *mms,
void *opaque, const char *name, hwaddr size)
{
/*
* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
* and return a pointer to its MemoryRegion.
*/
UnimplementedDeviceState *uds = opaque;
object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
qdev_prop_set_string(DEVICE(uds), "name", name);
qdev_prop_set_uint64(DEVICE(uds), "size", size);
sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
}
typedef enum MPCInfoType {
MPC_RAM,
MPC_ROM,
MPC_CRYPTOISLAND,
} MPCInfoType;
struct MPCInfo {
const char *name;
hwaddr addr;
hwaddr size;
MPCInfoType type;
};
/* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */
static const MPCInfo a_mpc_info[] = { {
.name = "qspi",
.type = MPC_ROM,
.addr = 0x00200000,
.size = 0x00800000,
}, {
.name = "sram",
.type = MPC_RAM,
.addr = 0x00000000,
.size = 0x00200000,
}
};
static const MPCInfo b1_mpc_info[] = { {
.name = "qspi",
.type = MPC_ROM,
.addr = 0x00000000,
.size = 0x02000000,
}, {
.name = "sram",
.type = MPC_RAM,
.addr = 0x0a400000,
.size = 0x00080000,
}, {
.name = "eflash0",
.type = MPC_ROM,
.addr = 0x0a000000,
.size = 0x00200000,
}, {
.name = "eflash1",
.type = MPC_ROM,
.addr = 0x0a200000,
.size = 0x00200000,
}, {
.name = "cryptoisland",
.type = MPC_CRYPTOISLAND,
.addr = 0x0a000000,
.size = 0x00200000,
}
};
static MemoryRegion *make_mpc(MuscaMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
/*
* Create an MPC and the RAM or flash behind it.
* MPC 0: eFlash 0
* MPC 1: eFlash 1
* MPC 2: SRAM
* MPC 3: QSPI flash
* MPC 4: CryptoIsland
* For now we implement the flash regions as ROM (ie not programmable)
* (with their control interface memory regions being unimplemented
* stubs behind the PPCs).
* The whole CryptoIsland region behind its MPC is an unimplemented stub.
*/
MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
TZMPC *mpc = opaque;
int i = mpc - &mms->mpc[0];
MemoryRegion *downstream;
MemoryRegion *upstream;
UnimplementedDeviceState *uds;
char *mpcname;
const MPCInfo *mpcinfo = mmc->mpc_info;
mpcname = g_strdup_printf("%s-mpc", mpcinfo[i].name);
switch (mpcinfo[i].type) {
case MPC_ROM:
downstream = &mms->ram[i];
memory_region_init_rom(downstream, NULL, mpcinfo[i].name,
mpcinfo[i].size, &error_fatal);
break;
case MPC_RAM:
downstream = &mms->ram[i];
memory_region_init_ram(downstream, NULL, mpcinfo[i].name,
mpcinfo[i].size, &error_fatal);
break;
case MPC_CRYPTOISLAND:
/* We don't implement the CryptoIsland yet */
uds = &mms->cryptoisland;
object_initialize_child(OBJECT(mms), name, uds,
TYPE_UNIMPLEMENTED_DEVICE);
qdev_prop_set_string(DEVICE(uds), "name", mpcinfo[i].name);
qdev_prop_set_uint64(DEVICE(uds), "size", mpcinfo[i].size);
sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
break;
default:
g_assert_not_reached();
}
object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
object_property_set_link(OBJECT(mpc), "downstream", OBJECT(downstream),
&error_fatal);
sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
/* Map the upstream end of the MPC into system memory */
upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
memory_region_add_subregion(get_system_memory(), mpcinfo[i].addr, upstream);
/* and connect its interrupt to the SSE-200 */
qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
qdev_get_gpio_in_named(DEVICE(&mms->sse),
"mpcexp_status", i));
g_free(mpcname);
/* Return the register interface MR for our caller to map behind the PPC */
return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
}
static MemoryRegion *make_rtc(MuscaMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
PL031State *rtc = opaque;
object_initialize_child(OBJECT(mms), name, rtc, TYPE_PL031);
sysbus_realize(SYS_BUS_DEVICE(rtc), &error_fatal);
sysbus_connect_irq(SYS_BUS_DEVICE(rtc), 0, get_sse_irq_in(mms, 39));
return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc), 0);
}
static MemoryRegion *make_uart(MuscaMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
PL011State *uart = opaque;
int i = uart - &mms->uart[0];
int irqbase = 7 + i * 6;
SysBusDevice *s;
object_initialize_child(OBJECT(mms), name, uart, TYPE_PL011);
qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
s = SYS_BUS_DEVICE(uart);
sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqbase + 5)); /* combined */
sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqbase + 0)); /* RX */
sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqbase + 1)); /* TX */
sysbus_connect_irq(s, 3, get_sse_irq_in(mms, irqbase + 2)); /* RT */
sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqbase + 3)); /* MS */
sysbus_connect_irq(s, 5, get_sse_irq_in(mms, irqbase + 4)); /* E */
return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
}
static MemoryRegion *make_musca_a_devs(MuscaMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
/*
* Create the container MemoryRegion for all the devices that live
* behind the Musca-A PPC's single port. These devices don't have a PPC
* port each, but we use the PPCPortInfo struct as a convenient way
* to describe them. Note that addresses here are relative to the base
* address of the PPC port region: 0x40100000, and devices appear both
* at the 0x4... NS region and the 0x5... S region.
*/
int i;
MemoryRegion *container = &mms->container;
const PPCPortInfo devices[] = {
{ "uart0", make_uart, &mms->uart[0], 0x1000, 0x1000 },
{ "uart1", make_uart, &mms->uart[1], 0x2000, 0x1000 },
{ "spi", make_unimp_dev, &mms->spi, 0x3000, 0x1000 },
{ "i2c0", make_unimp_dev, &mms->i2c[0], 0x4000, 0x1000 },
{ "i2c1", make_unimp_dev, &mms->i2c[1], 0x5000, 0x1000 },
{ "i2s", make_unimp_dev, &mms->i2s, 0x6000, 0x1000 },
{ "pwm0", make_unimp_dev, &mms->pwm[0], 0x7000, 0x1000 },
{ "rtc", make_rtc, &mms->rtc, 0x8000, 0x1000 },
{ "qspi", make_unimp_dev, &mms->qspi, 0xa000, 0x1000 },
{ "timer", make_unimp_dev, &mms->timer, 0xb000, 0x1000 },
{ "scc", make_unimp_dev, &mms->scc, 0xc000, 0x1000 },
{ "pwm1", make_unimp_dev, &mms->pwm[1], 0xe000, 0x1000 },
{ "pwm2", make_unimp_dev, &mms->pwm[2], 0xf000, 0x1000 },
{ "gpio", make_unimp_dev, &mms->gpio, 0x10000, 0x1000 },
{ "mpc0", make_mpc, &mms->mpc[0], 0x12000, 0x1000 },
{ "mpc1", make_mpc, &mms->mpc[1], 0x13000, 0x1000 },
};
memory_region_init(container, OBJECT(mms), "musca-device-container", size);
for (i = 0; i < ARRAY_SIZE(devices); i++) {
const PPCPortInfo *pinfo = &devices[i];
MemoryRegion *mr;
mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
memory_region_add_subregion(container, pinfo->addr, mr);
}
return &mms->container;
}
static void musca_init(MachineState *machine)
{
MuscaMachineState *mms = MUSCA_MACHINE(machine);
MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
MachineClass *mc = MACHINE_GET_CLASS(machine);
MemoryRegion *system_memory = get_system_memory();
DeviceState *ssedev;
DeviceState *dev_splitter;
const PPCInfo *ppcs;
int num_ppcs;
int i;
assert(mmc->num_irqs <= MUSCA_NUMIRQ_MAX);
assert(mmc->num_mpcs <= MUSCA_MPC_MAX);
if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
error_report("This board can only be used with CPU %s",
mc->default_cpu_type);
exit(1);
}
mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
clock_set_hz(mms->sysclk, SYSCLK_FRQ);
mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
object_initialize_child(OBJECT(machine), "sse-200", &mms->sse,
TYPE_SSE200);
ssedev = DEVICE(&mms->sse);
object_property_set_link(OBJECT(&mms->sse), "memory",
OBJECT(system_memory), &error_fatal);
qdev_prop_set_uint32(ssedev, "EXP_NUMIRQ", mmc->num_irqs);
qdev_prop_set_uint32(ssedev, "init-svtor", mmc->init_svtor);
qdev_prop_set_uint32(ssedev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
qdev_connect_clock_in(ssedev, "MAINCLK", mms->sysclk);
qdev_connect_clock_in(ssedev, "S32KCLK", mms->s32kclk);
/*
* Musca-A takes the default SSE-200 FPU/DSP settings (ie no for
* CPU0 and yes for CPU1); Musca-B1 explicitly enables them for CPU0.
*/
if (mmc->type == MUSCA_B1) {
qdev_prop_set_bit(ssedev, "CPU0_FPU", true);
qdev_prop_set_bit(ssedev, "CPU0_DSP", true);
}
sysbus_realize(SYS_BUS_DEVICE(&mms->sse), &error_fatal);
/*
* We need to create splitters to feed the IRQ inputs
* for each CPU in the SSE-200 from each device in the board.
*/
for (i = 0; i < mmc->num_irqs; i++) {
char *name = g_strdup_printf("musca-irq-splitter%d", i);
SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
object_initialize_child_with_props(OBJECT(machine), name, splitter,
sizeof(*splitter), TYPE_SPLIT_IRQ,
&error_fatal, NULL);
g_free(name);
object_property_set_int(OBJECT(splitter), "num-lines", 2,
&error_fatal);
qdev_realize(DEVICE(splitter), NULL, &error_fatal);
qdev_connect_gpio_out(DEVICE(splitter), 0,
qdev_get_gpio_in_named(ssedev, "EXP_IRQ", i));
qdev_connect_gpio_out(DEVICE(splitter), 1,
qdev_get_gpio_in_named(ssedev,
"EXP_CPU1_IRQ", i));
}
/*
* The sec_resp_cfg output from the SSE-200 must be split into multiple
* lines, one for each of the PPCs we create here.
*/
object_initialize_child_with_props(OBJECT(machine), "sec-resp-splitter",
&mms->sec_resp_splitter,
sizeof(mms->sec_resp_splitter),
TYPE_SPLIT_IRQ, &error_fatal, NULL);
object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
ARRAY_SIZE(mms->ppc), &error_fatal);
qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
dev_splitter = DEVICE(&mms->sec_resp_splitter);
qdev_connect_gpio_out_named(ssedev, "sec_resp_cfg", 0,
qdev_get_gpio_in(dev_splitter, 0));
/*
* Most of the devices in the board are behind Peripheral Protection
* Controllers. The required order for initializing things is:
* + initialize the PPC
* + initialize, configure and realize downstream devices
* + connect downstream device MemoryRegions to the PPC
* + realize the PPC
* + map the PPC's MemoryRegions to the places in the address map
* where the downstream devices should appear
* + wire up the PPC's control lines to the SSE object
*
* The PPC mapping differs for the -A and -B1 variants; the -A version
* is much simpler, using only a single port of a single PPC and putting
* all the devices behind that.
*/
const PPCInfo a_ppcs[] = { {
.name = "ahb_ppcexp0",
.ports = {
{ "musca-devices", make_musca_a_devs, 0, 0x40100000, 0x100000 },
},
},
};
/*
* Devices listed with an 0x4.. address appear in both the NS 0x4.. region
* and the 0x5.. S region. Devices listed with an 0x5.. address appear
* only in the S region.
*/
const PPCInfo b1_ppcs[] = { {
.name = "apb_ppcexp0",
.ports = {
{ "eflash0", make_unimp_dev, &mms->eflash[0],
0x52400000, 0x1000 },
{ "eflash1", make_unimp_dev, &mms->eflash[1],
0x52500000, 0x1000 },
{ "qspi", make_unimp_dev, &mms->qspi, 0x42800000, 0x100000 },
{ "mpc0", make_mpc, &mms->mpc[0], 0x52000000, 0x1000 },
{ "mpc1", make_mpc, &mms->mpc[1], 0x52100000, 0x1000 },
{ "mpc2", make_mpc, &mms->mpc[2], 0x52200000, 0x1000 },
{ "mpc3", make_mpc, &mms->mpc[3], 0x52300000, 0x1000 },
{ "mhu0", make_unimp_dev, &mms->mhu[0], 0x42600000, 0x100000 },
{ "mhu1", make_unimp_dev, &mms->mhu[1], 0x42700000, 0x100000 },
{ }, /* port 9: unused */
{ }, /* port 10: unused */
{ }, /* port 11: unused */
{ }, /* port 12: unused */
{ }, /* port 13: unused */
{ "mpc4", make_mpc, &mms->mpc[4], 0x52e00000, 0x1000 },
},
}, {
.name = "apb_ppcexp1",
.ports = {
{ "pwm0", make_unimp_dev, &mms->pwm[0], 0x40101000, 0x1000 },
{ "pwm1", make_unimp_dev, &mms->pwm[1], 0x40102000, 0x1000 },
{ "pwm2", make_unimp_dev, &mms->pwm[2], 0x40103000, 0x1000 },
{ "i2s", make_unimp_dev, &mms->i2s, 0x40104000, 0x1000 },
{ "uart0", make_uart, &mms->uart[0], 0x40105000, 0x1000 },
{ "uart1", make_uart, &mms->uart[1], 0x40106000, 0x1000 },
{ "i2c0", make_unimp_dev, &mms->i2c[0], 0x40108000, 0x1000 },
{ "i2c1", make_unimp_dev, &mms->i2c[1], 0x40109000, 0x1000 },
{ "spi", make_unimp_dev, &mms->spi, 0x4010a000, 0x1000 },
{ "scc", make_unimp_dev, &mms->scc, 0x5010b000, 0x1000 },
{ "timer", make_unimp_dev, &mms->timer, 0x4010c000, 0x1000 },
{ "rtc", make_rtc, &mms->rtc, 0x4010d000, 0x1000 },
{ "pvt", make_unimp_dev, &mms->pvt, 0x4010e000, 0x1000 },
{ "sdio", make_unimp_dev, &mms->sdio, 0x4010f000, 0x1000 },
},
}, {
.name = "ahb_ppcexp0",
.ports = {
{ }, /* port 0: unused */
{ "gpio", make_unimp_dev, &mms->gpio, 0x41000000, 0x1000 },
},
},
};
switch (mmc->type) {
case MUSCA_A:
ppcs = a_ppcs;
num_ppcs = ARRAY_SIZE(a_ppcs);
break;
case MUSCA_B1:
ppcs = b1_ppcs;
num_ppcs = ARRAY_SIZE(b1_ppcs);
break;
default:
g_assert_not_reached();
}
assert(num_ppcs <= MUSCA_PPC_MAX);
for (i = 0; i < num_ppcs; i++) {
const PPCInfo *ppcinfo = &ppcs[i];
TZPPC *ppc = &mms->ppc[i];
DeviceState *ppcdev;
int port;
char *gpioname;
object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
TYPE_TZ_PPC);
ppcdev = DEVICE(ppc);
for (port = 0; port < TZ_NUM_PORTS; port++) {
const PPCPortInfo *pinfo = &ppcinfo->ports[port];
MemoryRegion *mr;
char *portname;
if (!pinfo->devfn) {
continue;
}
mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
portname = g_strdup_printf("port[%d]", port);
object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
&error_fatal);
g_free(portname);
}
sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
for (port = 0; port < TZ_NUM_PORTS; port++) {
const PPCPortInfo *pinfo = &ppcinfo->ports[port];
if (!pinfo->devfn) {
continue;
}
sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
qdev_connect_gpio_out_named(ssedev, gpioname, port,
qdev_get_gpio_in_named(ppcdev,
"cfg_nonsec",
port));
g_free(gpioname);
gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
qdev_connect_gpio_out_named(ssedev, gpioname, port,
qdev_get_gpio_in_named(ppcdev,
"cfg_ap", port));
g_free(gpioname);
}
gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
qdev_connect_gpio_out_named(ssedev, gpioname, 0,
qdev_get_gpio_in_named(ppcdev,
"irq_enable", 0));
g_free(gpioname);
gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
qdev_connect_gpio_out_named(ssedev, gpioname, 0,
qdev_get_gpio_in_named(ppcdev,
"irq_clear", 0));
g_free(gpioname);
gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
qdev_connect_gpio_out_named(ppcdev, "irq", 0,
qdev_get_gpio_in_named(ssedev,
gpioname, 0));
g_free(gpioname);
qdev_connect_gpio_out(dev_splitter, i,
qdev_get_gpio_in_named(ppcdev,
"cfg_sec_resp", 0));
}
armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
0, 0x2000000);
}
static void musca_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->default_cpus = 2;
mc->min_cpus = mc->default_cpus;
mc->max_cpus = mc->default_cpus;
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
mc->init = musca_init;
}
static void musca_a_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
mc->desc = "ARM Musca-A board (dual Cortex-M33)";
mmc->type = MUSCA_A;
mmc->init_svtor = 0x10200000;
mmc->sram_addr_width = 15;
mmc->num_irqs = 64;
mmc->mpc_info = a_mpc_info;
mmc->num_mpcs = ARRAY_SIZE(a_mpc_info);
}
static void musca_b1_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
mc->desc = "ARM Musca-B1 board (dual Cortex-M33)";
mmc->type = MUSCA_B1;
/*
* This matches the DAPlink firmware which boots from QSPI. There
* is also a firmware blob which boots from the eFlash, which
* uses init_svtor = 0x1A000000. QEMU doesn't currently support that,
* though we could in theory expose a machine property on the command
* line to allow the user to request eFlash boot.
*/
mmc->init_svtor = 0x10000000;
mmc->sram_addr_width = 17;
mmc->num_irqs = 96;
mmc->mpc_info = b1_mpc_info;
mmc->num_mpcs = ARRAY_SIZE(b1_mpc_info);
}
static const TypeInfo musca_info = {
.name = TYPE_MUSCA_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(MuscaMachineState),
.class_size = sizeof(MuscaMachineClass),
.class_init = musca_class_init,
};
static const TypeInfo musca_a_info = {
.name = TYPE_MUSCA_A_MACHINE,
.parent = TYPE_MUSCA_MACHINE,
.class_init = musca_a_class_init,
};
static const TypeInfo musca_b1_info = {
.name = TYPE_MUSCA_B1_MACHINE,
.parent = TYPE_MUSCA_MACHINE,
.class_init = musca_b1_class_init,
};
static void musca_machine_init(void)
{
type_register_static(&musca_info);
type_register_static(&musca_a_info);
type_register_static(&musca_b1_info);
}
type_init(musca_machine_init);