qemu-e2k/tcg/s390x/tcg-target.c.inc
Richard Henderson 00406e6d3f tcg/s390x: Use atom_and_align_for_opc
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2023-05-16 16:30:29 -07:00

3402 lines
101 KiB
C++

/*
* Tiny Code Generator for QEMU
*
* Copyright (c) 2009 Ulrich Hecht <uli@suse.de>
* Copyright (c) 2009 Alexander Graf <agraf@suse.de>
* Copyright (c) 2010 Richard Henderson <rth@twiddle.net>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* We only support generating code for 64-bit mode. */
#if TCG_TARGET_REG_BITS != 64
#error "unsupported code generation mode"
#endif
#include "../tcg-ldst.c.inc"
#include "../tcg-pool.c.inc"
#include "elf.h"
#define TCG_CT_CONST_S16 (1 << 8)
#define TCG_CT_CONST_S32 (1 << 9)
#define TCG_CT_CONST_S33 (1 << 10)
#define TCG_CT_CONST_ZERO (1 << 11)
#define TCG_CT_CONST_P32 (1 << 12)
#define TCG_CT_CONST_INV (1 << 13)
#define TCG_CT_CONST_INVRISBG (1 << 14)
#define ALL_GENERAL_REGS MAKE_64BIT_MASK(0, 16)
#define ALL_VECTOR_REGS MAKE_64BIT_MASK(32, 32)
/* Several places within the instruction set 0 means "no register"
rather than TCG_REG_R0. */
#define TCG_REG_NONE 0
/* A scratch register that may be be used throughout the backend. */
#define TCG_TMP0 TCG_REG_R1
#ifndef CONFIG_SOFTMMU
#define TCG_GUEST_BASE_REG TCG_REG_R13
#endif
/* All of the following instructions are prefixed with their instruction
format, and are defined as 8- or 16-bit quantities, even when the two
halves of the 16-bit quantity may appear 32 bits apart in the insn.
This makes it easy to copy the values from the tables in Appendix B. */
typedef enum S390Opcode {
RIL_AFI = 0xc209,
RIL_AGFI = 0xc208,
RIL_ALFI = 0xc20b,
RIL_ALGFI = 0xc20a,
RIL_BRASL = 0xc005,
RIL_BRCL = 0xc004,
RIL_CFI = 0xc20d,
RIL_CGFI = 0xc20c,
RIL_CLFI = 0xc20f,
RIL_CLGFI = 0xc20e,
RIL_CLRL = 0xc60f,
RIL_CLGRL = 0xc60a,
RIL_CRL = 0xc60d,
RIL_CGRL = 0xc608,
RIL_IIHF = 0xc008,
RIL_IILF = 0xc009,
RIL_LARL = 0xc000,
RIL_LGFI = 0xc001,
RIL_LGRL = 0xc408,
RIL_LLIHF = 0xc00e,
RIL_LLILF = 0xc00f,
RIL_LRL = 0xc40d,
RIL_MSFI = 0xc201,
RIL_MSGFI = 0xc200,
RIL_NIHF = 0xc00a,
RIL_NILF = 0xc00b,
RIL_OIHF = 0xc00c,
RIL_OILF = 0xc00d,
RIL_SLFI = 0xc205,
RIL_SLGFI = 0xc204,
RIL_XIHF = 0xc006,
RIL_XILF = 0xc007,
RI_AGHI = 0xa70b,
RI_AHI = 0xa70a,
RI_BRC = 0xa704,
RI_CHI = 0xa70e,
RI_CGHI = 0xa70f,
RI_IIHH = 0xa500,
RI_IIHL = 0xa501,
RI_IILH = 0xa502,
RI_IILL = 0xa503,
RI_LGHI = 0xa709,
RI_LLIHH = 0xa50c,
RI_LLIHL = 0xa50d,
RI_LLILH = 0xa50e,
RI_LLILL = 0xa50f,
RI_MGHI = 0xa70d,
RI_MHI = 0xa70c,
RI_NIHH = 0xa504,
RI_NIHL = 0xa505,
RI_NILH = 0xa506,
RI_NILL = 0xa507,
RI_OIHH = 0xa508,
RI_OIHL = 0xa509,
RI_OILH = 0xa50a,
RI_OILL = 0xa50b,
RI_TMLL = 0xa701,
RIEb_CGRJ = 0xec64,
RIEb_CLGRJ = 0xec65,
RIEb_CLRJ = 0xec77,
RIEb_CRJ = 0xec76,
RIEc_CGIJ = 0xec7c,
RIEc_CIJ = 0xec7e,
RIEc_CLGIJ = 0xec7d,
RIEc_CLIJ = 0xec7f,
RIEf_RISBG = 0xec55,
RIEg_LOCGHI = 0xec46,
RRE_AGR = 0xb908,
RRE_ALGR = 0xb90a,
RRE_ALCR = 0xb998,
RRE_ALCGR = 0xb988,
RRE_ALGFR = 0xb91a,
RRE_CGR = 0xb920,
RRE_CLGR = 0xb921,
RRE_DLGR = 0xb987,
RRE_DLR = 0xb997,
RRE_DSGFR = 0xb91d,
RRE_DSGR = 0xb90d,
RRE_FLOGR = 0xb983,
RRE_LGBR = 0xb906,
RRE_LCGR = 0xb903,
RRE_LGFR = 0xb914,
RRE_LGHR = 0xb907,
RRE_LGR = 0xb904,
RRE_LLGCR = 0xb984,
RRE_LLGFR = 0xb916,
RRE_LLGHR = 0xb985,
RRE_LRVR = 0xb91f,
RRE_LRVGR = 0xb90f,
RRE_LTGR = 0xb902,
RRE_MLGR = 0xb986,
RRE_MSGR = 0xb90c,
RRE_MSR = 0xb252,
RRE_NGR = 0xb980,
RRE_OGR = 0xb981,
RRE_SGR = 0xb909,
RRE_SLGR = 0xb90b,
RRE_SLBR = 0xb999,
RRE_SLBGR = 0xb989,
RRE_XGR = 0xb982,
RRFa_MGRK = 0xb9ec,
RRFa_MSRKC = 0xb9fd,
RRFa_MSGRKC = 0xb9ed,
RRFa_NCRK = 0xb9f5,
RRFa_NCGRK = 0xb9e5,
RRFa_NNRK = 0xb974,
RRFa_NNGRK = 0xb964,
RRFa_NORK = 0xb976,
RRFa_NOGRK = 0xb966,
RRFa_NRK = 0xb9f4,
RRFa_NGRK = 0xb9e4,
RRFa_NXRK = 0xb977,
RRFa_NXGRK = 0xb967,
RRFa_OCRK = 0xb975,
RRFa_OCGRK = 0xb965,
RRFa_ORK = 0xb9f6,
RRFa_OGRK = 0xb9e6,
RRFa_SRK = 0xb9f9,
RRFa_SGRK = 0xb9e9,
RRFa_SLRK = 0xb9fb,
RRFa_SLGRK = 0xb9eb,
RRFa_XRK = 0xb9f7,
RRFa_XGRK = 0xb9e7,
RRFam_SELGR = 0xb9e3,
RRFc_LOCR = 0xb9f2,
RRFc_LOCGR = 0xb9e2,
RRFc_POPCNT = 0xb9e1,
RR_AR = 0x1a,
RR_ALR = 0x1e,
RR_BASR = 0x0d,
RR_BCR = 0x07,
RR_CLR = 0x15,
RR_CR = 0x19,
RR_DR = 0x1d,
RR_LCR = 0x13,
RR_LR = 0x18,
RR_LTR = 0x12,
RR_NR = 0x14,
RR_OR = 0x16,
RR_SR = 0x1b,
RR_SLR = 0x1f,
RR_XR = 0x17,
RSY_RLL = 0xeb1d,
RSY_RLLG = 0xeb1c,
RSY_SLLG = 0xeb0d,
RSY_SLLK = 0xebdf,
RSY_SRAG = 0xeb0a,
RSY_SRAK = 0xebdc,
RSY_SRLG = 0xeb0c,
RSY_SRLK = 0xebde,
RS_SLL = 0x89,
RS_SRA = 0x8a,
RS_SRL = 0x88,
RXY_AG = 0xe308,
RXY_AY = 0xe35a,
RXY_CG = 0xe320,
RXY_CLG = 0xe321,
RXY_CLY = 0xe355,
RXY_CY = 0xe359,
RXY_LAY = 0xe371,
RXY_LB = 0xe376,
RXY_LG = 0xe304,
RXY_LGB = 0xe377,
RXY_LGF = 0xe314,
RXY_LGH = 0xe315,
RXY_LHY = 0xe378,
RXY_LLGC = 0xe390,
RXY_LLGF = 0xe316,
RXY_LLGH = 0xe391,
RXY_LMG = 0xeb04,
RXY_LRV = 0xe31e,
RXY_LRVG = 0xe30f,
RXY_LRVH = 0xe31f,
RXY_LY = 0xe358,
RXY_NG = 0xe380,
RXY_OG = 0xe381,
RXY_STCY = 0xe372,
RXY_STG = 0xe324,
RXY_STHY = 0xe370,
RXY_STMG = 0xeb24,
RXY_STRV = 0xe33e,
RXY_STRVG = 0xe32f,
RXY_STRVH = 0xe33f,
RXY_STY = 0xe350,
RXY_XG = 0xe382,
RX_A = 0x5a,
RX_C = 0x59,
RX_L = 0x58,
RX_LA = 0x41,
RX_LH = 0x48,
RX_ST = 0x50,
RX_STC = 0x42,
RX_STH = 0x40,
VRIa_VGBM = 0xe744,
VRIa_VREPI = 0xe745,
VRIb_VGM = 0xe746,
VRIc_VREP = 0xe74d,
VRRa_VLC = 0xe7de,
VRRa_VLP = 0xe7df,
VRRa_VLR = 0xe756,
VRRc_VA = 0xe7f3,
VRRc_VCEQ = 0xe7f8, /* we leave the m5 cs field 0 */
VRRc_VCH = 0xe7fb, /* " */
VRRc_VCHL = 0xe7f9, /* " */
VRRc_VERLLV = 0xe773,
VRRc_VESLV = 0xe770,
VRRc_VESRAV = 0xe77a,
VRRc_VESRLV = 0xe778,
VRRc_VML = 0xe7a2,
VRRc_VMN = 0xe7fe,
VRRc_VMNL = 0xe7fc,
VRRc_VMX = 0xe7ff,
VRRc_VMXL = 0xe7fd,
VRRc_VN = 0xe768,
VRRc_VNC = 0xe769,
VRRc_VNN = 0xe76e,
VRRc_VNO = 0xe76b,
VRRc_VNX = 0xe76c,
VRRc_VO = 0xe76a,
VRRc_VOC = 0xe76f,
VRRc_VPKS = 0xe797, /* we leave the m5 cs field 0 */
VRRc_VS = 0xe7f7,
VRRa_VUPH = 0xe7d7,
VRRa_VUPL = 0xe7d6,
VRRc_VX = 0xe76d,
VRRe_VSEL = 0xe78d,
VRRf_VLVGP = 0xe762,
VRSa_VERLL = 0xe733,
VRSa_VESL = 0xe730,
VRSa_VESRA = 0xe73a,
VRSa_VESRL = 0xe738,
VRSb_VLVG = 0xe722,
VRSc_VLGV = 0xe721,
VRX_VL = 0xe706,
VRX_VLLEZ = 0xe704,
VRX_VLREP = 0xe705,
VRX_VST = 0xe70e,
VRX_VSTEF = 0xe70b,
VRX_VSTEG = 0xe70a,
NOP = 0x0707,
} S390Opcode;
#ifdef CONFIG_DEBUG_TCG
static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
"%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7",
"%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
"%v0", "%v1", "%v2", "%v3", "%v4", "%v5", "%v6", "%v7",
"%v8", "%v9", "%v10", "%v11", "%v12", "%v13", "%v14", "%v15",
"%v16", "%v17", "%v18", "%v19", "%v20", "%v21", "%v22", "%v23",
"%v24", "%v25", "%v26", "%v27", "%v28", "%v29", "%v30", "%v31",
};
#endif
/* Since R6 is a potential argument register, choose it last of the
call-saved registers. Likewise prefer the call-clobbered registers
in reverse order to maximize the chance of avoiding the arguments. */
static const int tcg_target_reg_alloc_order[] = {
/* Call saved registers. */
TCG_REG_R13,
TCG_REG_R12,
TCG_REG_R11,
TCG_REG_R10,
TCG_REG_R9,
TCG_REG_R8,
TCG_REG_R7,
TCG_REG_R6,
/* Call clobbered registers. */
TCG_REG_R14,
TCG_REG_R0,
TCG_REG_R1,
/* Argument registers, in reverse order of allocation. */
TCG_REG_R5,
TCG_REG_R4,
TCG_REG_R3,
TCG_REG_R2,
/* V8-V15 are call saved, and omitted. */
TCG_REG_V0,
TCG_REG_V1,
TCG_REG_V2,
TCG_REG_V3,
TCG_REG_V4,
TCG_REG_V5,
TCG_REG_V6,
TCG_REG_V7,
TCG_REG_V16,
TCG_REG_V17,
TCG_REG_V18,
TCG_REG_V19,
TCG_REG_V20,
TCG_REG_V21,
TCG_REG_V22,
TCG_REG_V23,
TCG_REG_V24,
TCG_REG_V25,
TCG_REG_V26,
TCG_REG_V27,
TCG_REG_V28,
TCG_REG_V29,
TCG_REG_V30,
TCG_REG_V31,
};
static const int tcg_target_call_iarg_regs[] = {
TCG_REG_R2,
TCG_REG_R3,
TCG_REG_R4,
TCG_REG_R5,
TCG_REG_R6,
};
static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot)
{
tcg_debug_assert(kind == TCG_CALL_RET_NORMAL);
tcg_debug_assert(slot == 0);
return TCG_REG_R2;
}
#define S390_CC_EQ 8
#define S390_CC_LT 4
#define S390_CC_GT 2
#define S390_CC_OV 1
#define S390_CC_NE (S390_CC_LT | S390_CC_GT)
#define S390_CC_LE (S390_CC_LT | S390_CC_EQ)
#define S390_CC_GE (S390_CC_GT | S390_CC_EQ)
#define S390_CC_NEVER 0
#define S390_CC_ALWAYS 15
/* Condition codes that result from a COMPARE and COMPARE LOGICAL. */
static const uint8_t tcg_cond_to_s390_cond[] = {
[TCG_COND_EQ] = S390_CC_EQ,
[TCG_COND_NE] = S390_CC_NE,
[TCG_COND_LT] = S390_CC_LT,
[TCG_COND_LE] = S390_CC_LE,
[TCG_COND_GT] = S390_CC_GT,
[TCG_COND_GE] = S390_CC_GE,
[TCG_COND_LTU] = S390_CC_LT,
[TCG_COND_LEU] = S390_CC_LE,
[TCG_COND_GTU] = S390_CC_GT,
[TCG_COND_GEU] = S390_CC_GE,
};
/* Condition codes that result from a LOAD AND TEST. Here, we have no
unsigned instruction variation, however since the test is vs zero we
can re-map the outcomes appropriately. */
static const uint8_t tcg_cond_to_ltr_cond[] = {
[TCG_COND_EQ] = S390_CC_EQ,
[TCG_COND_NE] = S390_CC_NE,
[TCG_COND_LT] = S390_CC_LT,
[TCG_COND_LE] = S390_CC_LE,
[TCG_COND_GT] = S390_CC_GT,
[TCG_COND_GE] = S390_CC_GE,
[TCG_COND_LTU] = S390_CC_NEVER,
[TCG_COND_LEU] = S390_CC_EQ,
[TCG_COND_GTU] = S390_CC_NE,
[TCG_COND_GEU] = S390_CC_ALWAYS,
};
static const tcg_insn_unit *tb_ret_addr;
uint64_t s390_facilities[3];
static inline bool is_general_reg(TCGReg r)
{
return r <= TCG_REG_R15;
}
static inline bool is_vector_reg(TCGReg r)
{
return r >= TCG_REG_V0 && r <= TCG_REG_V31;
}
static bool patch_reloc(tcg_insn_unit *src_rw, int type,
intptr_t value, intptr_t addend)
{
const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
intptr_t pcrel2;
uint32_t old;
value += addend;
pcrel2 = (tcg_insn_unit *)value - src_rx;
switch (type) {
case R_390_PC16DBL:
if (pcrel2 == (int16_t)pcrel2) {
tcg_patch16(src_rw, pcrel2);
return true;
}
break;
case R_390_PC32DBL:
if (pcrel2 == (int32_t)pcrel2) {
tcg_patch32(src_rw, pcrel2);
return true;
}
break;
case R_390_20:
if (value == sextract64(value, 0, 20)) {
old = *(uint32_t *)src_rw & 0xf00000ff;
old |= ((value & 0xfff) << 16) | ((value & 0xff000) >> 4);
tcg_patch32(src_rw, old);
return true;
}
break;
default:
g_assert_not_reached();
}
return false;
}
static int is_const_p16(uint64_t val)
{
for (int i = 0; i < 4; ++i) {
uint64_t mask = 0xffffull << (i * 16);
if ((val & ~mask) == 0) {
return i;
}
}
return -1;
}
static int is_const_p32(uint64_t val)
{
if ((val & 0xffffffff00000000ull) == 0) {
return 0;
}
if ((val & 0x00000000ffffffffull) == 0) {
return 1;
}
return -1;
}
/*
* Accept bit patterns like these:
* 0....01....1
* 1....10....0
* 1..10..01..1
* 0..01..10..0
* Copied from gcc sources.
*/
static bool risbg_mask(uint64_t c)
{
uint64_t lsb;
/* We don't change the number of transitions by inverting,
so make sure we start with the LSB zero. */
if (c & 1) {
c = ~c;
}
/* Reject all zeros or all ones. */
if (c == 0) {
return false;
}
/* Find the first transition. */
lsb = c & -c;
/* Invert to look for a second transition. */
c = ~c;
/* Erase the first transition. */
c &= -lsb;
/* Find the second transition, if any. */
lsb = c & -c;
/* Match if all the bits are 1's, or if c is zero. */
return c == -lsb;
}
/* Test if a constant matches the constraint. */
static bool tcg_target_const_match(int64_t val, TCGType type, int ct)
{
if (ct & TCG_CT_CONST) {
return 1;
}
if (type == TCG_TYPE_I32) {
val = (int32_t)val;
}
/* The following are mutually exclusive. */
if (ct & TCG_CT_CONST_S16) {
return val == (int16_t)val;
} else if (ct & TCG_CT_CONST_S32) {
return val == (int32_t)val;
} else if (ct & TCG_CT_CONST_S33) {
return val >= -0xffffffffll && val <= 0xffffffffll;
} else if (ct & TCG_CT_CONST_ZERO) {
return val == 0;
}
if (ct & TCG_CT_CONST_INV) {
val = ~val;
}
/*
* Note that is_const_p16 is a subset of is_const_p32,
* so we don't need both constraints.
*/
if ((ct & TCG_CT_CONST_P32) && is_const_p32(val) >= 0) {
return true;
}
if ((ct & TCG_CT_CONST_INVRISBG) && risbg_mask(~val)) {
return true;
}
return 0;
}
/* Emit instructions according to the given instruction format. */
static void tcg_out_insn_RR(TCGContext *s, S390Opcode op, TCGReg r1, TCGReg r2)
{
tcg_out16(s, (op << 8) | (r1 << 4) | r2);
}
static void tcg_out_insn_RRE(TCGContext *s, S390Opcode op,
TCGReg r1, TCGReg r2)
{
tcg_out32(s, (op << 16) | (r1 << 4) | r2);
}
/* RRF-a without the m4 field */
static void tcg_out_insn_RRFa(TCGContext *s, S390Opcode op,
TCGReg r1, TCGReg r2, TCGReg r3)
{
tcg_out32(s, (op << 16) | (r3 << 12) | (r1 << 4) | r2);
}
/* RRF-a with the m4 field */
static void tcg_out_insn_RRFam(TCGContext *s, S390Opcode op,
TCGReg r1, TCGReg r2, TCGReg r3, int m4)
{
tcg_out32(s, (op << 16) | (r3 << 12) | (m4 << 8) | (r1 << 4) | r2);
}
static void tcg_out_insn_RRFc(TCGContext *s, S390Opcode op,
TCGReg r1, TCGReg r2, int m3)
{
tcg_out32(s, (op << 16) | (m3 << 12) | (r1 << 4) | r2);
}
static void tcg_out_insn_RI(TCGContext *s, S390Opcode op, TCGReg r1, int i2)
{
tcg_out32(s, (op << 16) | (r1 << 20) | (i2 & 0xffff));
}
static void tcg_out_insn_RIEg(TCGContext *s, S390Opcode op, TCGReg r1,
int i2, int m3)
{
tcg_out16(s, (op & 0xff00) | (r1 << 4) | m3);
tcg_out32(s, (i2 << 16) | (op & 0xff));
}
static void tcg_out_insn_RIL(TCGContext *s, S390Opcode op, TCGReg r1, int i2)
{
tcg_out16(s, op | (r1 << 4));
tcg_out32(s, i2);
}
static void tcg_out_insn_RS(TCGContext *s, S390Opcode op, TCGReg r1,
TCGReg b2, TCGReg r3, int disp)
{
tcg_out32(s, (op << 24) | (r1 << 20) | (r3 << 16) | (b2 << 12)
| (disp & 0xfff));
}
static void tcg_out_insn_RSY(TCGContext *s, S390Opcode op, TCGReg r1,
TCGReg b2, TCGReg r3, int disp)
{
tcg_out16(s, (op & 0xff00) | (r1 << 4) | r3);
tcg_out32(s, (op & 0xff) | (b2 << 28)
| ((disp & 0xfff) << 16) | ((disp & 0xff000) >> 4));
}
#define tcg_out_insn_RX tcg_out_insn_RS
#define tcg_out_insn_RXY tcg_out_insn_RSY
static int RXB(TCGReg v1, TCGReg v2, TCGReg v3, TCGReg v4)
{
/*
* Shift bit 4 of each regno to its corresponding bit of RXB.
* RXB itself begins at bit 8 of the instruction so 8 - 4 = 4
* is the left-shift of the 4th operand.
*/
return ((v1 & 0x10) << (4 + 3))
| ((v2 & 0x10) << (4 + 2))
| ((v3 & 0x10) << (4 + 1))
| ((v4 & 0x10) << (4 + 0));
}
static void tcg_out_insn_VRIa(TCGContext *s, S390Opcode op,
TCGReg v1, uint16_t i2, int m3)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4));
tcg_out16(s, i2);
tcg_out16(s, (op & 0x00ff) | RXB(v1, 0, 0, 0) | (m3 << 12));
}
static void tcg_out_insn_VRIb(TCGContext *s, S390Opcode op,
TCGReg v1, uint8_t i2, uint8_t i3, int m4)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4));
tcg_out16(s, (i2 << 8) | (i3 & 0xff));
tcg_out16(s, (op & 0x00ff) | RXB(v1, 0, 0, 0) | (m4 << 12));
}
static void tcg_out_insn_VRIc(TCGContext *s, S390Opcode op,
TCGReg v1, uint16_t i2, TCGReg v3, int m4)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_debug_assert(is_vector_reg(v3));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4) | (v3 & 0xf));
tcg_out16(s, i2);
tcg_out16(s, (op & 0x00ff) | RXB(v1, 0, v3, 0) | (m4 << 12));
}
static void tcg_out_insn_VRRa(TCGContext *s, S390Opcode op,
TCGReg v1, TCGReg v2, int m3)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_debug_assert(is_vector_reg(v2));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4) | (v2 & 0xf));
tcg_out32(s, (op & 0x00ff) | RXB(v1, v2, 0, 0) | (m3 << 12));
}
static void tcg_out_insn_VRRc(TCGContext *s, S390Opcode op,
TCGReg v1, TCGReg v2, TCGReg v3, int m4)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_debug_assert(is_vector_reg(v2));
tcg_debug_assert(is_vector_reg(v3));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4) | (v2 & 0xf));
tcg_out16(s, v3 << 12);
tcg_out16(s, (op & 0x00ff) | RXB(v1, v2, v3, 0) | (m4 << 12));
}
static void tcg_out_insn_VRRe(TCGContext *s, S390Opcode op,
TCGReg v1, TCGReg v2, TCGReg v3, TCGReg v4)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_debug_assert(is_vector_reg(v2));
tcg_debug_assert(is_vector_reg(v3));
tcg_debug_assert(is_vector_reg(v4));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4) | (v2 & 0xf));
tcg_out16(s, v3 << 12);
tcg_out16(s, (op & 0x00ff) | RXB(v1, v2, v3, v4) | (v4 << 12));
}
static void tcg_out_insn_VRRf(TCGContext *s, S390Opcode op,
TCGReg v1, TCGReg r2, TCGReg r3)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_debug_assert(is_general_reg(r2));
tcg_debug_assert(is_general_reg(r3));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4) | r2);
tcg_out16(s, r3 << 12);
tcg_out16(s, (op & 0x00ff) | RXB(v1, 0, 0, 0));
}
static void tcg_out_insn_VRSa(TCGContext *s, S390Opcode op, TCGReg v1,
intptr_t d2, TCGReg b2, TCGReg v3, int m4)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_debug_assert(d2 >= 0 && d2 <= 0xfff);
tcg_debug_assert(is_general_reg(b2));
tcg_debug_assert(is_vector_reg(v3));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4) | (v3 & 0xf));
tcg_out16(s, b2 << 12 | d2);
tcg_out16(s, (op & 0x00ff) | RXB(v1, 0, v3, 0) | (m4 << 12));
}
static void tcg_out_insn_VRSb(TCGContext *s, S390Opcode op, TCGReg v1,
intptr_t d2, TCGReg b2, TCGReg r3, int m4)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_debug_assert(d2 >= 0 && d2 <= 0xfff);
tcg_debug_assert(is_general_reg(b2));
tcg_debug_assert(is_general_reg(r3));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4) | r3);
tcg_out16(s, b2 << 12 | d2);
tcg_out16(s, (op & 0x00ff) | RXB(v1, 0, 0, 0) | (m4 << 12));
}
static void tcg_out_insn_VRSc(TCGContext *s, S390Opcode op, TCGReg r1,
intptr_t d2, TCGReg b2, TCGReg v3, int m4)
{
tcg_debug_assert(is_general_reg(r1));
tcg_debug_assert(d2 >= 0 && d2 <= 0xfff);
tcg_debug_assert(is_general_reg(b2));
tcg_debug_assert(is_vector_reg(v3));
tcg_out16(s, (op & 0xff00) | (r1 << 4) | (v3 & 0xf));
tcg_out16(s, b2 << 12 | d2);
tcg_out16(s, (op & 0x00ff) | RXB(0, 0, v3, 0) | (m4 << 12));
}
static void tcg_out_insn_VRX(TCGContext *s, S390Opcode op, TCGReg v1,
TCGReg b2, TCGReg x2, intptr_t d2, int m3)
{
tcg_debug_assert(is_vector_reg(v1));
tcg_debug_assert(d2 >= 0 && d2 <= 0xfff);
tcg_debug_assert(is_general_reg(x2));
tcg_debug_assert(is_general_reg(b2));
tcg_out16(s, (op & 0xff00) | ((v1 & 0xf) << 4) | x2);
tcg_out16(s, (b2 << 12) | d2);
tcg_out16(s, (op & 0x00ff) | RXB(v1, 0, 0, 0) | (m3 << 12));
}
/* Emit an opcode with "type-checking" of the format. */
#define tcg_out_insn(S, FMT, OP, ...) \
glue(tcg_out_insn_,FMT)(S, glue(glue(FMT,_),OP), ## __VA_ARGS__)
/* emit 64-bit shifts */
static void tcg_out_sh64(TCGContext* s, S390Opcode op, TCGReg dest,
TCGReg src, TCGReg sh_reg, int sh_imm)
{
tcg_out_insn_RSY(s, op, dest, sh_reg, src, sh_imm);
}
/* emit 32-bit shifts */
static void tcg_out_sh32(TCGContext* s, S390Opcode op, TCGReg dest,
TCGReg sh_reg, int sh_imm)
{
tcg_out_insn_RS(s, op, dest, sh_reg, 0, sh_imm);
}
static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg dst, TCGReg src)
{
if (src == dst) {
return true;
}
switch (type) {
case TCG_TYPE_I32:
if (likely(is_general_reg(dst) && is_general_reg(src))) {
tcg_out_insn(s, RR, LR, dst, src);
break;
}
/* fallthru */
case TCG_TYPE_I64:
if (likely(is_general_reg(dst))) {
if (likely(is_general_reg(src))) {
tcg_out_insn(s, RRE, LGR, dst, src);
} else {
tcg_out_insn(s, VRSc, VLGV, dst, 0, 0, src, 3);
}
break;
} else if (is_general_reg(src)) {
tcg_out_insn(s, VRSb, VLVG, dst, 0, 0, src, 3);
break;
}
/* fallthru */
case TCG_TYPE_V64:
case TCG_TYPE_V128:
tcg_out_insn(s, VRRa, VLR, dst, src, 0);
break;
default:
g_assert_not_reached();
}
return true;
}
static const S390Opcode li_insns[4] = {
RI_LLILL, RI_LLILH, RI_LLIHL, RI_LLIHH
};
static const S390Opcode oi_insns[4] = {
RI_OILL, RI_OILH, RI_OIHL, RI_OIHH
};
static const S390Opcode lif_insns[2] = {
RIL_LLILF, RIL_LLIHF,
};
/* load a register with an immediate value */
static void tcg_out_movi(TCGContext *s, TCGType type,
TCGReg ret, tcg_target_long sval)
{
tcg_target_ulong uval = sval;
ptrdiff_t pc_off;
int i;
if (type == TCG_TYPE_I32) {
uval = (uint32_t)sval;
sval = (int32_t)sval;
}
/* Try all 32-bit insns that can load it in one go. */
if (sval >= -0x8000 && sval < 0x8000) {
tcg_out_insn(s, RI, LGHI, ret, sval);
return;
}
i = is_const_p16(uval);
if (i >= 0) {
tcg_out_insn_RI(s, li_insns[i], ret, uval >> (i * 16));
return;
}
/* Try all 48-bit insns that can load it in one go. */
if (sval == (int32_t)sval) {
tcg_out_insn(s, RIL, LGFI, ret, sval);
return;
}
i = is_const_p32(uval);
if (i >= 0) {
tcg_out_insn_RIL(s, lif_insns[i], ret, uval >> (i * 32));
return;
}
/* Try for PC-relative address load. For odd addresses, add one. */
pc_off = tcg_pcrel_diff(s, (void *)sval) >> 1;
if (pc_off == (int32_t)pc_off) {
tcg_out_insn(s, RIL, LARL, ret, pc_off);
if (sval & 1) {
tcg_out_insn(s, RI, AGHI, ret, 1);
}
return;
}
/* Otherwise, load it by parts. */
i = is_const_p16((uint32_t)uval);
if (i >= 0) {
tcg_out_insn_RI(s, li_insns[i], ret, uval >> (i * 16));
} else {
tcg_out_insn(s, RIL, LLILF, ret, uval);
}
uval >>= 32;
i = is_const_p16(uval);
if (i >= 0) {
tcg_out_insn_RI(s, oi_insns[i + 2], ret, uval >> (i * 16));
} else {
tcg_out_insn(s, RIL, OIHF, ret, uval);
}
}
/* Emit a load/store type instruction. Inputs are:
DATA: The register to be loaded or stored.
BASE+OFS: The effective address.
OPC_RX: If the operation has an RX format opcode (e.g. STC), otherwise 0.
OPC_RXY: The RXY format opcode for the operation (e.g. STCY). */
static void tcg_out_mem(TCGContext *s, S390Opcode opc_rx, S390Opcode opc_rxy,
TCGReg data, TCGReg base, TCGReg index,
tcg_target_long ofs)
{
if (ofs < -0x80000 || ofs >= 0x80000) {
/* Combine the low 20 bits of the offset with the actual load insn;
the high 44 bits must come from an immediate load. */
tcg_target_long low = ((ofs & 0xfffff) ^ 0x80000) - 0x80000;
tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, ofs - low);
ofs = low;
/* If we were already given an index register, add it in. */
if (index != TCG_REG_NONE) {
tcg_out_insn(s, RRE, AGR, TCG_TMP0, index);
}
index = TCG_TMP0;
}
if (opc_rx && ofs >= 0 && ofs < 0x1000) {
tcg_out_insn_RX(s, opc_rx, data, base, index, ofs);
} else {
tcg_out_insn_RXY(s, opc_rxy, data, base, index, ofs);
}
}
static void tcg_out_vrx_mem(TCGContext *s, S390Opcode opc_vrx,
TCGReg data, TCGReg base, TCGReg index,
tcg_target_long ofs, int m3)
{
if (ofs < 0 || ofs >= 0x1000) {
if (ofs >= -0x80000 && ofs < 0x80000) {
tcg_out_insn(s, RXY, LAY, TCG_TMP0, base, index, ofs);
base = TCG_TMP0;
index = TCG_REG_NONE;
ofs = 0;
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, ofs);
if (index != TCG_REG_NONE) {
tcg_out_insn(s, RRE, AGR, TCG_TMP0, index);
}
index = TCG_TMP0;
ofs = 0;
}
}
tcg_out_insn_VRX(s, opc_vrx, data, base, index, ofs, m3);
}
/* load data without address translation or endianness conversion */
static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg data,
TCGReg base, intptr_t ofs)
{
switch (type) {
case TCG_TYPE_I32:
if (likely(is_general_reg(data))) {
tcg_out_mem(s, RX_L, RXY_LY, data, base, TCG_REG_NONE, ofs);
break;
}
tcg_out_vrx_mem(s, VRX_VLLEZ, data, base, TCG_REG_NONE, ofs, MO_32);
break;
case TCG_TYPE_I64:
if (likely(is_general_reg(data))) {
tcg_out_mem(s, 0, RXY_LG, data, base, TCG_REG_NONE, ofs);
break;
}
/* fallthru */
case TCG_TYPE_V64:
tcg_out_vrx_mem(s, VRX_VLLEZ, data, base, TCG_REG_NONE, ofs, MO_64);
break;
case TCG_TYPE_V128:
/* Hint quadword aligned. */
tcg_out_vrx_mem(s, VRX_VL, data, base, TCG_REG_NONE, ofs, 4);
break;
default:
g_assert_not_reached();
}
}
static void tcg_out_st(TCGContext *s, TCGType type, TCGReg data,
TCGReg base, intptr_t ofs)
{
switch (type) {
case TCG_TYPE_I32:
if (likely(is_general_reg(data))) {
tcg_out_mem(s, RX_ST, RXY_STY, data, base, TCG_REG_NONE, ofs);
} else {
tcg_out_vrx_mem(s, VRX_VSTEF, data, base, TCG_REG_NONE, ofs, 1);
}
break;
case TCG_TYPE_I64:
if (likely(is_general_reg(data))) {
tcg_out_mem(s, 0, RXY_STG, data, base, TCG_REG_NONE, ofs);
break;
}
/* fallthru */
case TCG_TYPE_V64:
tcg_out_vrx_mem(s, VRX_VSTEG, data, base, TCG_REG_NONE, ofs, 0);
break;
case TCG_TYPE_V128:
/* Hint quadword aligned. */
tcg_out_vrx_mem(s, VRX_VST, data, base, TCG_REG_NONE, ofs, 4);
break;
default:
g_assert_not_reached();
}
}
static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
TCGReg base, intptr_t ofs)
{
return false;
}
static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2)
{
return false;
}
static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs,
tcg_target_long imm)
{
/* This function is only used for passing structs by reference. */
tcg_out_mem(s, RX_LA, RXY_LAY, rd, rs, TCG_REG_NONE, imm);
}
static inline void tcg_out_risbg(TCGContext *s, TCGReg dest, TCGReg src,
int msb, int lsb, int ofs, int z)
{
/* Format RIE-f */
tcg_out16(s, (RIEf_RISBG & 0xff00) | (dest << 4) | src);
tcg_out16(s, (msb << 8) | (z << 7) | lsb);
tcg_out16(s, (ofs << 8) | (RIEf_RISBG & 0xff));
}
static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
{
tcg_out_insn(s, RRE, LGBR, dest, src);
}
static void tcg_out_ext8u(TCGContext *s, TCGReg dest, TCGReg src)
{
tcg_out_insn(s, RRE, LLGCR, dest, src);
}
static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
{
tcg_out_insn(s, RRE, LGHR, dest, src);
}
static void tcg_out_ext16u(TCGContext *s, TCGReg dest, TCGReg src)
{
tcg_out_insn(s, RRE, LLGHR, dest, src);
}
static void tcg_out_ext32s(TCGContext *s, TCGReg dest, TCGReg src)
{
tcg_out_insn(s, RRE, LGFR, dest, src);
}
static void tcg_out_ext32u(TCGContext *s, TCGReg dest, TCGReg src)
{
tcg_out_insn(s, RRE, LLGFR, dest, src);
}
static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
{
tcg_out_ext32s(s, dest, src);
}
static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
{
tcg_out_ext32u(s, dest, src);
}
static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg dest, TCGReg src)
{
tcg_out_mov(s, TCG_TYPE_I32, dest, src);
}
static void tgen_andi_risbg(TCGContext *s, TCGReg out, TCGReg in, uint64_t val)
{
int msb, lsb;
if ((val & 0x8000000000000001ull) == 0x8000000000000001ull) {
/* Achieve wraparound by swapping msb and lsb. */
msb = 64 - ctz64(~val);
lsb = clz64(~val) - 1;
} else {
msb = clz64(val);
lsb = 63 - ctz64(val);
}
tcg_out_risbg(s, out, in, msb, lsb, 0, 1);
}
static void tgen_andi(TCGContext *s, TCGType type, TCGReg dest, uint64_t val)
{
static const S390Opcode ni_insns[4] = {
RI_NILL, RI_NILH, RI_NIHL, RI_NIHH
};
static const S390Opcode nif_insns[2] = {
RIL_NILF, RIL_NIHF
};
uint64_t valid = (type == TCG_TYPE_I32 ? 0xffffffffull : -1ull);
int i;
/* Look for the zero-extensions. */
if ((val & valid) == 0xffffffff) {
tcg_out_ext32u(s, dest, dest);
return;
}
if ((val & valid) == 0xff) {
tcg_out_ext8u(s, dest, dest);
return;
}
if ((val & valid) == 0xffff) {
tcg_out_ext16u(s, dest, dest);
return;
}
i = is_const_p16(~val & valid);
if (i >= 0) {
tcg_out_insn_RI(s, ni_insns[i], dest, val >> (i * 16));
return;
}
i = is_const_p32(~val & valid);
tcg_debug_assert(i == 0 || type != TCG_TYPE_I32);
if (i >= 0) {
tcg_out_insn_RIL(s, nif_insns[i], dest, val >> (i * 32));
return;
}
if (risbg_mask(val)) {
tgen_andi_risbg(s, dest, dest, val);
return;
}
g_assert_not_reached();
}
static void tgen_ori(TCGContext *s, TCGReg dest, uint64_t val)
{
static const S390Opcode oif_insns[2] = {
RIL_OILF, RIL_OIHF
};
int i;
i = is_const_p16(val);
if (i >= 0) {
tcg_out_insn_RI(s, oi_insns[i], dest, val >> (i * 16));
return;
}
i = is_const_p32(val);
if (i >= 0) {
tcg_out_insn_RIL(s, oif_insns[i], dest, val >> (i * 32));
return;
}
g_assert_not_reached();
}
static void tgen_xori(TCGContext *s, TCGReg dest, uint64_t val)
{
switch (is_const_p32(val)) {
case 0:
tcg_out_insn(s, RIL, XILF, dest, val);
break;
case 1:
tcg_out_insn(s, RIL, XIHF, dest, val >> 32);
break;
default:
g_assert_not_reached();
}
}
static int tgen_cmp2(TCGContext *s, TCGType type, TCGCond c, TCGReg r1,
TCGArg c2, bool c2const, bool need_carry, int *inv_cc)
{
bool is_unsigned = is_unsigned_cond(c);
TCGCond inv_c = tcg_invert_cond(c);
S390Opcode op;
if (c2const) {
if (c2 == 0) {
if (!(is_unsigned && need_carry)) {
if (type == TCG_TYPE_I32) {
tcg_out_insn(s, RR, LTR, r1, r1);
} else {
tcg_out_insn(s, RRE, LTGR, r1, r1);
}
*inv_cc = tcg_cond_to_ltr_cond[inv_c];
return tcg_cond_to_ltr_cond[c];
}
}
if (!is_unsigned && c2 == (int16_t)c2) {
op = (type == TCG_TYPE_I32 ? RI_CHI : RI_CGHI);
tcg_out_insn_RI(s, op, r1, c2);
goto exit;
}
if (type == TCG_TYPE_I32) {
op = (is_unsigned ? RIL_CLFI : RIL_CFI);
tcg_out_insn_RIL(s, op, r1, c2);
goto exit;
}
/*
* Constraints are for a signed 33-bit operand, which is a
* convenient superset of this signed/unsigned test.
*/
if (c2 == (is_unsigned ? (TCGArg)(uint32_t)c2 : (TCGArg)(int32_t)c2)) {
op = (is_unsigned ? RIL_CLGFI : RIL_CGFI);
tcg_out_insn_RIL(s, op, r1, c2);
goto exit;
}
/* Load everything else into a register. */
tcg_out_movi(s, TCG_TYPE_I64, TCG_TMP0, c2);
c2 = TCG_TMP0;
}
if (type == TCG_TYPE_I32) {
op = (is_unsigned ? RR_CLR : RR_CR);
tcg_out_insn_RR(s, op, r1, c2);
} else {
op = (is_unsigned ? RRE_CLGR : RRE_CGR);
tcg_out_insn_RRE(s, op, r1, c2);
}
exit:
*inv_cc = tcg_cond_to_s390_cond[inv_c];
return tcg_cond_to_s390_cond[c];
}
static int tgen_cmp(TCGContext *s, TCGType type, TCGCond c, TCGReg r1,
TCGArg c2, bool c2const, bool need_carry)
{
int inv_cc;
return tgen_cmp2(s, type, c, r1, c2, c2const, need_carry, &inv_cc);
}
static void tgen_setcond(TCGContext *s, TCGType type, TCGCond cond,
TCGReg dest, TCGReg c1, TCGArg c2, int c2const)
{
int cc;
/* With LOC2, we can always emit the minimum 3 insns. */
if (HAVE_FACILITY(LOAD_ON_COND2)) {
/* Emit: d = 0, d = (cc ? 1 : d). */
cc = tgen_cmp(s, type, cond, c1, c2, c2const, false);
tcg_out_movi(s, TCG_TYPE_I64, dest, 0);
tcg_out_insn(s, RIEg, LOCGHI, dest, 1, cc);
return;
}
restart:
switch (cond) {
case TCG_COND_NE:
/* X != 0 is X > 0. */
if (c2const && c2 == 0) {
cond = TCG_COND_GTU;
} else {
break;
}
/* fallthru */
case TCG_COND_GTU:
case TCG_COND_GT:
/* The result of a compare has CC=2 for GT and CC=3 unused.
ADD LOGICAL WITH CARRY considers (CC & 2) the carry bit. */
tgen_cmp(s, type, cond, c1, c2, c2const, true);
tcg_out_movi(s, type, dest, 0);
tcg_out_insn(s, RRE, ALCGR, dest, dest);
return;
case TCG_COND_EQ:
/* X == 0 is X <= 0. */
if (c2const && c2 == 0) {
cond = TCG_COND_LEU;
} else {
break;
}
/* fallthru */
case TCG_COND_LEU:
case TCG_COND_LE:
/* As above, but we're looking for borrow, or !carry.
The second insn computes d - d - borrow, or -1 for true
and 0 for false. So we must mask to 1 bit afterward. */
tgen_cmp(s, type, cond, c1, c2, c2const, true);
tcg_out_insn(s, RRE, SLBGR, dest, dest);
tgen_andi(s, type, dest, 1);
return;
case TCG_COND_GEU:
case TCG_COND_LTU:
case TCG_COND_LT:
case TCG_COND_GE:
/* Swap operands so that we can use LEU/GTU/GT/LE. */
if (!c2const) {
TCGReg t = c1;
c1 = c2;
c2 = t;
cond = tcg_swap_cond(cond);
goto restart;
}
break;
default:
g_assert_not_reached();
}
cc = tgen_cmp(s, type, cond, c1, c2, c2const, false);
/* Emit: d = 0, t = 1, d = (cc ? t : d). */
tcg_out_movi(s, TCG_TYPE_I64, dest, 0);
tcg_out_movi(s, TCG_TYPE_I64, TCG_TMP0, 1);
tcg_out_insn(s, RRFc, LOCGR, dest, TCG_TMP0, cc);
}
static void tgen_movcond_int(TCGContext *s, TCGType type, TCGReg dest,
TCGArg v3, int v3const, TCGReg v4,
int cc, int inv_cc)
{
TCGReg src;
if (v3const) {
if (dest == v4) {
if (HAVE_FACILITY(LOAD_ON_COND2)) {
/* Emit: if (cc) dest = v3. */
tcg_out_insn(s, RIEg, LOCGHI, dest, v3, cc);
return;
}
tcg_out_insn(s, RI, LGHI, TCG_TMP0, v3);
src = TCG_TMP0;
} else {
/* LGR+LOCGHI is larger than LGHI+LOCGR. */
tcg_out_insn(s, RI, LGHI, dest, v3);
cc = inv_cc;
src = v4;
}
} else {
if (HAVE_FACILITY(MISC_INSN_EXT3)) {
/* Emit: dest = cc ? v3 : v4. */
tcg_out_insn(s, RRFam, SELGR, dest, v3, v4, cc);
return;
}
if (dest == v4) {
src = v3;
} else {
tcg_out_mov(s, type, dest, v3);
cc = inv_cc;
src = v4;
}
}
/* Emit: if (cc) dest = src. */
tcg_out_insn(s, RRFc, LOCGR, dest, src, cc);
}
static void tgen_movcond(TCGContext *s, TCGType type, TCGCond c, TCGReg dest,
TCGReg c1, TCGArg c2, int c2const,
TCGArg v3, int v3const, TCGReg v4)
{
int cc, inv_cc;
cc = tgen_cmp2(s, type, c, c1, c2, c2const, false, &inv_cc);
tgen_movcond_int(s, type, dest, v3, v3const, v4, cc, inv_cc);
}
static void tgen_clz(TCGContext *s, TCGReg dest, TCGReg a1,
TCGArg a2, int a2const)
{
/* Since this sets both R and R+1, we have no choice but to store the
result into R0, allowing R1 == TCG_TMP0 to be clobbered as well. */
QEMU_BUILD_BUG_ON(TCG_TMP0 != TCG_REG_R1);
tcg_out_insn(s, RRE, FLOGR, TCG_REG_R0, a1);
if (a2const && a2 == 64) {
tcg_out_mov(s, TCG_TYPE_I64, dest, TCG_REG_R0);
return;
}
/*
* Conditions from FLOGR are:
* 2 -> one bit found
* 8 -> no one bit found
*/
tgen_movcond_int(s, TCG_TYPE_I64, dest, a2, a2const, TCG_REG_R0, 8, 2);
}
static void tgen_ctpop(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
{
/* With MIE3, and bit 0 of m4 set, we get the complete result. */
if (HAVE_FACILITY(MISC_INSN_EXT3)) {
if (type == TCG_TYPE_I32) {
tcg_out_ext32u(s, dest, src);
src = dest;
}
tcg_out_insn(s, RRFc, POPCNT, dest, src, 8);
return;
}
/* Without MIE3, each byte gets the count of bits for the byte. */
tcg_out_insn(s, RRFc, POPCNT, dest, src, 0);
/* Multiply to sum each byte at the top of the word. */
if (type == TCG_TYPE_I32) {
tcg_out_insn(s, RIL, MSFI, dest, 0x01010101);
tcg_out_sh32(s, RS_SRL, dest, TCG_REG_NONE, 24);
} else {
tcg_out_movi(s, TCG_TYPE_I64, TCG_TMP0, 0x0101010101010101ull);
tcg_out_insn(s, RRE, MSGR, dest, TCG_TMP0);
tcg_out_sh64(s, RSY_SRLG, dest, dest, TCG_REG_NONE, 56);
}
}
static void tgen_deposit(TCGContext *s, TCGReg dest, TCGReg src,
int ofs, int len, int z)
{
int lsb = (63 - ofs);
int msb = lsb - (len - 1);
tcg_out_risbg(s, dest, src, msb, lsb, ofs, z);
}
static void tgen_extract(TCGContext *s, TCGReg dest, TCGReg src,
int ofs, int len)
{
tcg_out_risbg(s, dest, src, 64 - len, 63, 64 - ofs, 1);
}
static void tgen_gotoi(TCGContext *s, int cc, const tcg_insn_unit *dest)
{
ptrdiff_t off = tcg_pcrel_diff(s, dest) >> 1;
if (off == (int16_t)off) {
tcg_out_insn(s, RI, BRC, cc, off);
} else if (off == (int32_t)off) {
tcg_out_insn(s, RIL, BRCL, cc, off);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, (uintptr_t)dest);
tcg_out_insn(s, RR, BCR, cc, TCG_TMP0);
}
}
static void tgen_branch(TCGContext *s, int cc, TCGLabel *l)
{
if (l->has_value) {
tgen_gotoi(s, cc, l->u.value_ptr);
} else {
tcg_out16(s, RI_BRC | (cc << 4));
tcg_out_reloc(s, s->code_ptr, R_390_PC16DBL, l, 2);
s->code_ptr += 1;
}
}
static void tgen_compare_branch(TCGContext *s, S390Opcode opc, int cc,
TCGReg r1, TCGReg r2, TCGLabel *l)
{
tcg_out_reloc(s, s->code_ptr + 1, R_390_PC16DBL, l, 2);
/* Format RIE-b */
tcg_out16(s, (opc & 0xff00) | (r1 << 4) | r2);
tcg_out16(s, 0);
tcg_out16(s, cc << 12 | (opc & 0xff));
}
static void tgen_compare_imm_branch(TCGContext *s, S390Opcode opc, int cc,
TCGReg r1, int i2, TCGLabel *l)
{
tcg_out_reloc(s, s->code_ptr + 1, R_390_PC16DBL, l, 2);
/* Format RIE-c */
tcg_out16(s, (opc & 0xff00) | (r1 << 4) | cc);
tcg_out16(s, 0);
tcg_out16(s, (i2 << 8) | (opc & 0xff));
}
static void tgen_brcond(TCGContext *s, TCGType type, TCGCond c,
TCGReg r1, TCGArg c2, int c2const, TCGLabel *l)
{
int cc;
bool is_unsigned = is_unsigned_cond(c);
bool in_range;
S390Opcode opc;
cc = tcg_cond_to_s390_cond[c];
if (!c2const) {
opc = (type == TCG_TYPE_I32
? (is_unsigned ? RIEb_CLRJ : RIEb_CRJ)
: (is_unsigned ? RIEb_CLGRJ : RIEb_CGRJ));
tgen_compare_branch(s, opc, cc, r1, c2, l);
return;
}
/*
* COMPARE IMMEDIATE AND BRANCH RELATIVE has an 8-bit immediate field.
* If the immediate we've been given does not fit that range, we'll
* fall back to separate compare and branch instructions using the
* larger comparison range afforded by COMPARE IMMEDIATE.
*/
if (type == TCG_TYPE_I32) {
if (is_unsigned) {
opc = RIEc_CLIJ;
in_range = (uint32_t)c2 == (uint8_t)c2;
} else {
opc = RIEc_CIJ;
in_range = (int32_t)c2 == (int8_t)c2;
}
} else {
if (is_unsigned) {
opc = RIEc_CLGIJ;
in_range = (uint64_t)c2 == (uint8_t)c2;
} else {
opc = RIEc_CGIJ;
in_range = (int64_t)c2 == (int8_t)c2;
}
}
if (in_range) {
tgen_compare_imm_branch(s, opc, cc, r1, c2, l);
return;
}
cc = tgen_cmp(s, type, c, r1, c2, c2const, false);
tgen_branch(s, cc, l);
}
static void tcg_out_call_int(TCGContext *s, const tcg_insn_unit *dest)
{
ptrdiff_t off = tcg_pcrel_diff(s, dest) >> 1;
if (off == (int32_t)off) {
tcg_out_insn(s, RIL, BRASL, TCG_REG_R14, off);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, (uintptr_t)dest);
tcg_out_insn(s, RR, BASR, TCG_REG_R14, TCG_TMP0);
}
}
static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest,
const TCGHelperInfo *info)
{
tcg_out_call_int(s, dest);
}
typedef struct {
TCGReg base;
TCGReg index;
int disp;
TCGAtomAlign aa;
} HostAddress;
bool tcg_target_has_memory_bswap(MemOp memop)
{
return true;
}
static void tcg_out_qemu_ld_direct(TCGContext *s, MemOp opc, TCGReg data,
HostAddress h)
{
switch (opc & (MO_SSIZE | MO_BSWAP)) {
case MO_UB:
tcg_out_insn(s, RXY, LLGC, data, h.base, h.index, h.disp);
break;
case MO_SB:
tcg_out_insn(s, RXY, LGB, data, h.base, h.index, h.disp);
break;
case MO_UW | MO_BSWAP:
/* swapped unsigned halfword load with upper bits zeroed */
tcg_out_insn(s, RXY, LRVH, data, h.base, h.index, h.disp);
tcg_out_ext16u(s, data, data);
break;
case MO_UW:
tcg_out_insn(s, RXY, LLGH, data, h.base, h.index, h.disp);
break;
case MO_SW | MO_BSWAP:
/* swapped sign-extended halfword load */
tcg_out_insn(s, RXY, LRVH, data, h.base, h.index, h.disp);
tcg_out_ext16s(s, TCG_TYPE_REG, data, data);
break;
case MO_SW:
tcg_out_insn(s, RXY, LGH, data, h.base, h.index, h.disp);
break;
case MO_UL | MO_BSWAP:
/* swapped unsigned int load with upper bits zeroed */
tcg_out_insn(s, RXY, LRV, data, h.base, h.index, h.disp);
tcg_out_ext32u(s, data, data);
break;
case MO_UL:
tcg_out_insn(s, RXY, LLGF, data, h.base, h.index, h.disp);
break;
case MO_SL | MO_BSWAP:
/* swapped sign-extended int load */
tcg_out_insn(s, RXY, LRV, data, h.base, h.index, h.disp);
tcg_out_ext32s(s, data, data);
break;
case MO_SL:
tcg_out_insn(s, RXY, LGF, data, h.base, h.index, h.disp);
break;
case MO_UQ | MO_BSWAP:
tcg_out_insn(s, RXY, LRVG, data, h.base, h.index, h.disp);
break;
case MO_UQ:
tcg_out_insn(s, RXY, LG, data, h.base, h.index, h.disp);
break;
default:
g_assert_not_reached();
}
}
static void tcg_out_qemu_st_direct(TCGContext *s, MemOp opc, TCGReg data,
HostAddress h)
{
switch (opc & (MO_SIZE | MO_BSWAP)) {
case MO_UB:
if (h.disp >= 0 && h.disp < 0x1000) {
tcg_out_insn(s, RX, STC, data, h.base, h.index, h.disp);
} else {
tcg_out_insn(s, RXY, STCY, data, h.base, h.index, h.disp);
}
break;
case MO_UW | MO_BSWAP:
tcg_out_insn(s, RXY, STRVH, data, h.base, h.index, h.disp);
break;
case MO_UW:
if (h.disp >= 0 && h.disp < 0x1000) {
tcg_out_insn(s, RX, STH, data, h.base, h.index, h.disp);
} else {
tcg_out_insn(s, RXY, STHY, data, h.base, h.index, h.disp);
}
break;
case MO_UL | MO_BSWAP:
tcg_out_insn(s, RXY, STRV, data, h.base, h.index, h.disp);
break;
case MO_UL:
if (h.disp >= 0 && h.disp < 0x1000) {
tcg_out_insn(s, RX, ST, data, h.base, h.index, h.disp);
} else {
tcg_out_insn(s, RXY, STY, data, h.base, h.index, h.disp);
}
break;
case MO_UQ | MO_BSWAP:
tcg_out_insn(s, RXY, STRVG, data, h.base, h.index, h.disp);
break;
case MO_UQ:
tcg_out_insn(s, RXY, STG, data, h.base, h.index, h.disp);
break;
default:
g_assert_not_reached();
}
}
static const TCGLdstHelperParam ldst_helper_param = {
.ntmp = 1, .tmp = { TCG_TMP0 }
};
static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
{
MemOp opc = get_memop(lb->oi);
if (!patch_reloc(lb->label_ptr[0], R_390_PC16DBL,
(intptr_t)tcg_splitwx_to_rx(s->code_ptr), 2)) {
return false;
}
tcg_out_ld_helper_args(s, lb, &ldst_helper_param);
tcg_out_call_int(s, qemu_ld_helpers[opc & MO_SIZE]);
tcg_out_ld_helper_ret(s, lb, false, &ldst_helper_param);
tgen_gotoi(s, S390_CC_ALWAYS, lb->raddr);
return true;
}
static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
{
MemOp opc = get_memop(lb->oi);
if (!patch_reloc(lb->label_ptr[0], R_390_PC16DBL,
(intptr_t)tcg_splitwx_to_rx(s->code_ptr), 2)) {
return false;
}
tcg_out_st_helper_args(s, lb, &ldst_helper_param);
tcg_out_call_int(s, qemu_st_helpers[opc & MO_SIZE]);
tgen_gotoi(s, S390_CC_ALWAYS, lb->raddr);
return true;
}
/*
* For softmmu, perform the TLB load and compare.
* For useronly, perform any required alignment tests.
* In both cases, return a TCGLabelQemuLdst structure if the slow path
* is required and fill in @h with the host address for the fast path.
*/
static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h,
TCGReg addr_reg, MemOpIdx oi,
bool is_ld)
{
TCGLabelQemuLdst *ldst = NULL;
MemOp opc = get_memop(oi);
unsigned a_mask;
h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, false);
a_mask = (1 << h->aa.align) - 1;
#ifdef CONFIG_SOFTMMU
unsigned s_bits = opc & MO_SIZE;
unsigned s_mask = (1 << s_bits) - 1;
int mem_index = get_mmuidx(oi);
int fast_off = TLB_MASK_TABLE_OFS(mem_index);
int mask_off = fast_off + offsetof(CPUTLBDescFast, mask);
int table_off = fast_off + offsetof(CPUTLBDescFast, table);
int ofs, a_off;
uint64_t tlb_mask;
ldst = new_ldst_label(s);
ldst->is_ld = is_ld;
ldst->oi = oi;
ldst->addrlo_reg = addr_reg;
tcg_out_sh64(s, RSY_SRLG, TCG_TMP0, addr_reg, TCG_REG_NONE,
TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) > 0);
QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) < -(1 << 19));
tcg_out_insn(s, RXY, NG, TCG_TMP0, TCG_AREG0, TCG_REG_NONE, mask_off);
tcg_out_insn(s, RXY, AG, TCG_TMP0, TCG_AREG0, TCG_REG_NONE, table_off);
/*
* For aligned accesses, we check the first byte and include the alignment
* bits within the address. For unaligned access, we check that we don't
* cross pages using the address of the last byte of the access.
*/
a_off = (a_mask >= s_mask ? 0 : s_mask - a_mask);
tlb_mask = (uint64_t)TARGET_PAGE_MASK | a_mask;
if (a_off == 0) {
tgen_andi_risbg(s, TCG_REG_R0, addr_reg, tlb_mask);
} else {
tcg_out_insn(s, RX, LA, TCG_REG_R0, addr_reg, TCG_REG_NONE, a_off);
tgen_andi(s, TCG_TYPE_TL, TCG_REG_R0, tlb_mask);
}
if (is_ld) {
ofs = offsetof(CPUTLBEntry, addr_read);
} else {
ofs = offsetof(CPUTLBEntry, addr_write);
}
if (TARGET_LONG_BITS == 32) {
tcg_out_insn(s, RX, C, TCG_REG_R0, TCG_TMP0, TCG_REG_NONE, ofs);
} else {
tcg_out_insn(s, RXY, CG, TCG_REG_R0, TCG_TMP0, TCG_REG_NONE, ofs);
}
tcg_out16(s, RI_BRC | (S390_CC_NE << 4));
ldst->label_ptr[0] = s->code_ptr++;
h->index = TCG_TMP0;
tcg_out_insn(s, RXY, LG, h->index, TCG_TMP0, TCG_REG_NONE,
offsetof(CPUTLBEntry, addend));
if (TARGET_LONG_BITS == 32) {
tcg_out_insn(s, RRE, ALGFR, h->index, addr_reg);
h->base = TCG_REG_NONE;
} else {
h->base = addr_reg;
}
h->disp = 0;
#else
if (a_mask) {
ldst = new_ldst_label(s);
ldst->is_ld = is_ld;
ldst->oi = oi;
ldst->addrlo_reg = addr_reg;
/* We are expecting a_bits to max out at 7, much lower than TMLL. */
tcg_debug_assert(a_mask <= 0xffff);
tcg_out_insn(s, RI, TMLL, addr_reg, a_mask);
tcg_out16(s, RI_BRC | (7 << 4)); /* CC in {1,2,3} */
ldst->label_ptr[0] = s->code_ptr++;
}
h->base = addr_reg;
if (TARGET_LONG_BITS == 32) {
tcg_out_ext32u(s, TCG_TMP0, addr_reg);
h->base = TCG_TMP0;
}
if (guest_base < 0x80000) {
h->index = TCG_REG_NONE;
h->disp = guest_base;
} else {
h->index = TCG_GUEST_BASE_REG;
h->disp = 0;
}
#endif
return ldst;
}
static void tcg_out_qemu_ld(TCGContext* s, TCGReg data_reg, TCGReg addr_reg,
MemOpIdx oi, TCGType data_type)
{
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addr_reg, oi, true);
tcg_out_qemu_ld_direct(s, get_memop(oi), data_reg, h);
if (ldst) {
ldst->type = data_type;
ldst->datalo_reg = data_reg;
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
}
}
static void tcg_out_qemu_st(TCGContext* s, TCGReg data_reg, TCGReg addr_reg,
MemOpIdx oi, TCGType data_type)
{
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addr_reg, oi, false);
tcg_out_qemu_st_direct(s, get_memop(oi), data_reg, h);
if (ldst) {
ldst->type = data_type;
ldst->datalo_reg = data_reg;
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
}
}
static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0)
{
/* Reuse the zeroing that exists for goto_ptr. */
if (a0 == 0) {
tgen_gotoi(s, S390_CC_ALWAYS, tcg_code_gen_epilogue);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R2, a0);
tgen_gotoi(s, S390_CC_ALWAYS, tb_ret_addr);
}
}
static void tcg_out_goto_tb(TCGContext *s, int which)
{
/*
* Branch displacement must be aligned for atomic patching;
* see if we need to add extra nop before branch
*/
if (!QEMU_PTR_IS_ALIGNED(s->code_ptr + 1, 4)) {
tcg_out16(s, NOP);
}
tcg_out16(s, RIL_BRCL | (S390_CC_ALWAYS << 4));
set_jmp_insn_offset(s, which);
s->code_ptr += 2;
set_jmp_reset_offset(s, which);
}
void tb_target_set_jmp_target(const TranslationBlock *tb, int n,
uintptr_t jmp_rx, uintptr_t jmp_rw)
{
if (!HAVE_FACILITY(GEN_INST_EXT)) {
return;
}
/* patch the branch destination */
uintptr_t addr = tb->jmp_target_addr[n];
intptr_t disp = addr - (jmp_rx - 2);
qatomic_set((int32_t *)jmp_rw, disp / 2);
/* no need to flush icache explicitly */
}
# define OP_32_64(x) \
case glue(glue(INDEX_op_,x),_i32): \
case glue(glue(INDEX_op_,x),_i64)
static inline void tcg_out_op(TCGContext *s, TCGOpcode opc,
const TCGArg args[TCG_MAX_OP_ARGS],
const int const_args[TCG_MAX_OP_ARGS])
{
S390Opcode op, op2;
TCGArg a0, a1, a2;
switch (opc) {
case INDEX_op_goto_ptr:
a0 = args[0];
tcg_out_insn(s, RR, BCR, S390_CC_ALWAYS, a0);
break;
OP_32_64(ld8u):
/* ??? LLC (RXY format) is only present with the extended-immediate
facility, whereas LLGC is always present. */
tcg_out_mem(s, 0, RXY_LLGC, args[0], args[1], TCG_REG_NONE, args[2]);
break;
OP_32_64(ld8s):
/* ??? LB is no smaller than LGB, so no point to using it. */
tcg_out_mem(s, 0, RXY_LGB, args[0], args[1], TCG_REG_NONE, args[2]);
break;
OP_32_64(ld16u):
/* ??? LLH (RXY format) is only present with the extended-immediate
facility, whereas LLGH is always present. */
tcg_out_mem(s, 0, RXY_LLGH, args[0], args[1], TCG_REG_NONE, args[2]);
break;
case INDEX_op_ld16s_i32:
tcg_out_mem(s, RX_LH, RXY_LHY, args[0], args[1], TCG_REG_NONE, args[2]);
break;
case INDEX_op_ld_i32:
tcg_out_ld(s, TCG_TYPE_I32, args[0], args[1], args[2]);
break;
OP_32_64(st8):
tcg_out_mem(s, RX_STC, RXY_STCY, args[0], args[1],
TCG_REG_NONE, args[2]);
break;
OP_32_64(st16):
tcg_out_mem(s, RX_STH, RXY_STHY, args[0], args[1],
TCG_REG_NONE, args[2]);
break;
case INDEX_op_st_i32:
tcg_out_st(s, TCG_TYPE_I32, args[0], args[1], args[2]);
break;
case INDEX_op_add_i32:
a0 = args[0], a1 = args[1], a2 = (int32_t)args[2];
if (const_args[2]) {
do_addi_32:
if (a0 == a1) {
if (a2 == (int16_t)a2) {
tcg_out_insn(s, RI, AHI, a0, a2);
break;
}
tcg_out_insn(s, RIL, AFI, a0, a2);
break;
}
tcg_out_mem(s, RX_LA, RXY_LAY, a0, a1, TCG_REG_NONE, a2);
} else if (a0 == a1) {
tcg_out_insn(s, RR, AR, a0, a2);
} else {
tcg_out_insn(s, RX, LA, a0, a1, a2, 0);
}
break;
case INDEX_op_sub_i32:
a0 = args[0], a1 = args[1], a2 = (int32_t)args[2];
if (const_args[2]) {
a2 = -a2;
goto do_addi_32;
} else if (a0 == a1) {
tcg_out_insn(s, RR, SR, a0, a2);
} else {
tcg_out_insn(s, RRFa, SRK, a0, a1, a2);
}
break;
case INDEX_op_and_i32:
a0 = args[0], a1 = args[1], a2 = (uint32_t)args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
tgen_andi(s, TCG_TYPE_I32, a0, a2);
} else if (a0 == a1) {
tcg_out_insn(s, RR, NR, a0, a2);
} else {
tcg_out_insn(s, RRFa, NRK, a0, a1, a2);
}
break;
case INDEX_op_or_i32:
a0 = args[0], a1 = args[1], a2 = (uint32_t)args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
tgen_ori(s, a0, a2);
} else if (a0 == a1) {
tcg_out_insn(s, RR, OR, a0, a2);
} else {
tcg_out_insn(s, RRFa, ORK, a0, a1, a2);
}
break;
case INDEX_op_xor_i32:
a0 = args[0], a1 = args[1], a2 = (uint32_t)args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
tcg_out_insn(s, RIL, XILF, a0, a2);
} else if (a0 == a1) {
tcg_out_insn(s, RR, XR, args[0], args[2]);
} else {
tcg_out_insn(s, RRFa, XRK, a0, a1, a2);
}
break;
case INDEX_op_andc_i32:
a0 = args[0], a1 = args[1], a2 = (uint32_t)args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
tgen_andi(s, TCG_TYPE_I32, a0, (uint32_t)~a2);
} else {
tcg_out_insn(s, RRFa, NCRK, a0, a1, a2);
}
break;
case INDEX_op_orc_i32:
a0 = args[0], a1 = args[1], a2 = (uint32_t)args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
tgen_ori(s, a0, (uint32_t)~a2);
} else {
tcg_out_insn(s, RRFa, OCRK, a0, a1, a2);
}
break;
case INDEX_op_eqv_i32:
a0 = args[0], a1 = args[1], a2 = (uint32_t)args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
tcg_out_insn(s, RIL, XILF, a0, ~a2);
} else {
tcg_out_insn(s, RRFa, NXRK, a0, a1, a2);
}
break;
case INDEX_op_nand_i32:
tcg_out_insn(s, RRFa, NNRK, args[0], args[1], args[2]);
break;
case INDEX_op_nor_i32:
tcg_out_insn(s, RRFa, NORK, args[0], args[1], args[2]);
break;
case INDEX_op_neg_i32:
tcg_out_insn(s, RR, LCR, args[0], args[1]);
break;
case INDEX_op_not_i32:
tcg_out_insn(s, RRFa, NORK, args[0], args[1], args[1]);
break;
case INDEX_op_mul_i32:
a0 = args[0], a1 = args[1], a2 = (int32_t)args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
if (a2 == (int16_t)a2) {
tcg_out_insn(s, RI, MHI, a0, a2);
} else {
tcg_out_insn(s, RIL, MSFI, a0, a2);
}
} else if (a0 == a1) {
tcg_out_insn(s, RRE, MSR, a0, a2);
} else {
tcg_out_insn(s, RRFa, MSRKC, a0, a1, a2);
}
break;
case INDEX_op_div2_i32:
tcg_debug_assert(args[0] == args[2]);
tcg_debug_assert(args[1] == args[3]);
tcg_debug_assert((args[1] & 1) == 0);
tcg_debug_assert(args[0] == args[1] + 1);
tcg_out_insn(s, RR, DR, args[1], args[4]);
break;
case INDEX_op_divu2_i32:
tcg_debug_assert(args[0] == args[2]);
tcg_debug_assert(args[1] == args[3]);
tcg_debug_assert((args[1] & 1) == 0);
tcg_debug_assert(args[0] == args[1] + 1);
tcg_out_insn(s, RRE, DLR, args[1], args[4]);
break;
case INDEX_op_shl_i32:
op = RS_SLL;
op2 = RSY_SLLK;
do_shift32:
a0 = args[0], a1 = args[1], a2 = (int32_t)args[2];
if (a0 == a1) {
if (const_args[2]) {
tcg_out_sh32(s, op, a0, TCG_REG_NONE, a2);
} else {
tcg_out_sh32(s, op, a0, a2, 0);
}
} else {
/* Using tcg_out_sh64 here for the format; it is a 32-bit shift. */
if (const_args[2]) {
tcg_out_sh64(s, op2, a0, a1, TCG_REG_NONE, a2);
} else {
tcg_out_sh64(s, op2, a0, a1, a2, 0);
}
}
break;
case INDEX_op_shr_i32:
op = RS_SRL;
op2 = RSY_SRLK;
goto do_shift32;
case INDEX_op_sar_i32:
op = RS_SRA;
op2 = RSY_SRAK;
goto do_shift32;
case INDEX_op_rotl_i32:
/* ??? Using tcg_out_sh64 here for the format; it is a 32-bit rol. */
if (const_args[2]) {
tcg_out_sh64(s, RSY_RLL, args[0], args[1], TCG_REG_NONE, args[2]);
} else {
tcg_out_sh64(s, RSY_RLL, args[0], args[1], args[2], 0);
}
break;
case INDEX_op_rotr_i32:
if (const_args[2]) {
tcg_out_sh64(s, RSY_RLL, args[0], args[1],
TCG_REG_NONE, (32 - args[2]) & 31);
} else {
tcg_out_insn(s, RR, LCR, TCG_TMP0, args[2]);
tcg_out_sh64(s, RSY_RLL, args[0], args[1], TCG_TMP0, 0);
}
break;
case INDEX_op_bswap16_i32:
a0 = args[0], a1 = args[1], a2 = args[2];
tcg_out_insn(s, RRE, LRVR, a0, a1);
if (a2 & TCG_BSWAP_OS) {
tcg_out_sh32(s, RS_SRA, a0, TCG_REG_NONE, 16);
} else {
tcg_out_sh32(s, RS_SRL, a0, TCG_REG_NONE, 16);
}
break;
case INDEX_op_bswap16_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
tcg_out_insn(s, RRE, LRVGR, a0, a1);
if (a2 & TCG_BSWAP_OS) {
tcg_out_sh64(s, RSY_SRAG, a0, a0, TCG_REG_NONE, 48);
} else {
tcg_out_sh64(s, RSY_SRLG, a0, a0, TCG_REG_NONE, 48);
}
break;
case INDEX_op_bswap32_i32:
tcg_out_insn(s, RRE, LRVR, args[0], args[1]);
break;
case INDEX_op_bswap32_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
tcg_out_insn(s, RRE, LRVR, a0, a1);
if (a2 & TCG_BSWAP_OS) {
tcg_out_ext32s(s, a0, a0);
} else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
tcg_out_ext32u(s, a0, a0);
}
break;
case INDEX_op_add2_i32:
if (const_args[4]) {
tcg_out_insn(s, RIL, ALFI, args[0], args[4]);
} else {
tcg_out_insn(s, RR, ALR, args[0], args[4]);
}
tcg_out_insn(s, RRE, ALCR, args[1], args[5]);
break;
case INDEX_op_sub2_i32:
if (const_args[4]) {
tcg_out_insn(s, RIL, SLFI, args[0], args[4]);
} else {
tcg_out_insn(s, RR, SLR, args[0], args[4]);
}
tcg_out_insn(s, RRE, SLBR, args[1], args[5]);
break;
case INDEX_op_br:
tgen_branch(s, S390_CC_ALWAYS, arg_label(args[0]));
break;
case INDEX_op_brcond_i32:
tgen_brcond(s, TCG_TYPE_I32, args[2], args[0],
args[1], const_args[1], arg_label(args[3]));
break;
case INDEX_op_setcond_i32:
tgen_setcond(s, TCG_TYPE_I32, args[3], args[0], args[1],
args[2], const_args[2]);
break;
case INDEX_op_movcond_i32:
tgen_movcond(s, TCG_TYPE_I32, args[5], args[0], args[1],
args[2], const_args[2], args[3], const_args[3], args[4]);
break;
case INDEX_op_qemu_ld_i32:
tcg_out_qemu_ld(s, args[0], args[1], args[2], TCG_TYPE_I32);
break;
case INDEX_op_qemu_ld_i64:
tcg_out_qemu_ld(s, args[0], args[1], args[2], TCG_TYPE_I64);
break;
case INDEX_op_qemu_st_i32:
tcg_out_qemu_st(s, args[0], args[1], args[2], TCG_TYPE_I32);
break;
case INDEX_op_qemu_st_i64:
tcg_out_qemu_st(s, args[0], args[1], args[2], TCG_TYPE_I64);
break;
case INDEX_op_ld16s_i64:
tcg_out_mem(s, 0, RXY_LGH, args[0], args[1], TCG_REG_NONE, args[2]);
break;
case INDEX_op_ld32u_i64:
tcg_out_mem(s, 0, RXY_LLGF, args[0], args[1], TCG_REG_NONE, args[2]);
break;
case INDEX_op_ld32s_i64:
tcg_out_mem(s, 0, RXY_LGF, args[0], args[1], TCG_REG_NONE, args[2]);
break;
case INDEX_op_ld_i64:
tcg_out_ld(s, TCG_TYPE_I64, args[0], args[1], args[2]);
break;
case INDEX_op_st32_i64:
tcg_out_st(s, TCG_TYPE_I32, args[0], args[1], args[2]);
break;
case INDEX_op_st_i64:
tcg_out_st(s, TCG_TYPE_I64, args[0], args[1], args[2]);
break;
case INDEX_op_add_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
do_addi_64:
if (a0 == a1) {
if (a2 == (int16_t)a2) {
tcg_out_insn(s, RI, AGHI, a0, a2);
break;
}
if (a2 == (int32_t)a2) {
tcg_out_insn(s, RIL, AGFI, a0, a2);
break;
}
if (a2 == (uint32_t)a2) {
tcg_out_insn(s, RIL, ALGFI, a0, a2);
break;
}
if (-a2 == (uint32_t)-a2) {
tcg_out_insn(s, RIL, SLGFI, a0, -a2);
break;
}
}
tcg_out_mem(s, RX_LA, RXY_LAY, a0, a1, TCG_REG_NONE, a2);
} else if (a0 == a1) {
tcg_out_insn(s, RRE, AGR, a0, a2);
} else {
tcg_out_insn(s, RX, LA, a0, a1, a2, 0);
}
break;
case INDEX_op_sub_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
a2 = -a2;
goto do_addi_64;
} else {
tcg_out_insn(s, RRFa, SGRK, a0, a1, a2);
}
break;
case INDEX_op_and_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I64, a0, a1);
tgen_andi(s, TCG_TYPE_I64, args[0], args[2]);
} else {
tcg_out_insn(s, RRFa, NGRK, a0, a1, a2);
}
break;
case INDEX_op_or_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I64, a0, a1);
tgen_ori(s, a0, a2);
} else {
tcg_out_insn(s, RRFa, OGRK, a0, a1, a2);
}
break;
case INDEX_op_xor_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I64, a0, a1);
tgen_xori(s, a0, a2);
} else {
tcg_out_insn(s, RRFa, XGRK, a0, a1, a2);
}
break;
case INDEX_op_andc_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I64, a0, a1);
tgen_andi(s, TCG_TYPE_I64, a0, ~a2);
} else {
tcg_out_insn(s, RRFa, NCGRK, a0, a1, a2);
}
break;
case INDEX_op_orc_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I64, a0, a1);
tgen_ori(s, a0, ~a2);
} else {
tcg_out_insn(s, RRFa, OCGRK, a0, a1, a2);
}
break;
case INDEX_op_eqv_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I64, a0, a1);
tgen_xori(s, a0, ~a2);
} else {
tcg_out_insn(s, RRFa, NXGRK, a0, a1, a2);
}
break;
case INDEX_op_nand_i64:
tcg_out_insn(s, RRFa, NNGRK, args[0], args[1], args[2]);
break;
case INDEX_op_nor_i64:
tcg_out_insn(s, RRFa, NOGRK, args[0], args[1], args[2]);
break;
case INDEX_op_neg_i64:
tcg_out_insn(s, RRE, LCGR, args[0], args[1]);
break;
case INDEX_op_not_i64:
tcg_out_insn(s, RRFa, NOGRK, args[0], args[1], args[1]);
break;
case INDEX_op_bswap64_i64:
tcg_out_insn(s, RRE, LRVGR, args[0], args[1]);
break;
case INDEX_op_mul_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_mov(s, TCG_TYPE_I64, a0, a1);
if (a2 == (int16_t)a2) {
tcg_out_insn(s, RI, MGHI, a0, a2);
} else {
tcg_out_insn(s, RIL, MSGFI, a0, a2);
}
} else if (a0 == a1) {
tcg_out_insn(s, RRE, MSGR, a0, a2);
} else {
tcg_out_insn(s, RRFa, MSGRKC, a0, a1, a2);
}
break;
case INDEX_op_div2_i64:
/*
* ??? We get an unnecessary sign-extension of the dividend
* into op0 with this definition, but as we do in fact always
* produce both quotient and remainder using INDEX_op_div_i64
* instead requires jumping through even more hoops.
*/
tcg_debug_assert(args[0] == args[2]);
tcg_debug_assert(args[1] == args[3]);
tcg_debug_assert((args[1] & 1) == 0);
tcg_debug_assert(args[0] == args[1] + 1);
tcg_out_insn(s, RRE, DSGR, args[1], args[4]);
break;
case INDEX_op_divu2_i64:
tcg_debug_assert(args[0] == args[2]);
tcg_debug_assert(args[1] == args[3]);
tcg_debug_assert((args[1] & 1) == 0);
tcg_debug_assert(args[0] == args[1] + 1);
tcg_out_insn(s, RRE, DLGR, args[1], args[4]);
break;
case INDEX_op_mulu2_i64:
tcg_debug_assert(args[0] == args[2]);
tcg_debug_assert((args[1] & 1) == 0);
tcg_debug_assert(args[0] == args[1] + 1);
tcg_out_insn(s, RRE, MLGR, args[1], args[3]);
break;
case INDEX_op_muls2_i64:
tcg_debug_assert((args[1] & 1) == 0);
tcg_debug_assert(args[0] == args[1] + 1);
tcg_out_insn(s, RRFa, MGRK, args[1], args[2], args[3]);
break;
case INDEX_op_shl_i64:
op = RSY_SLLG;
do_shift64:
if (const_args[2]) {
tcg_out_sh64(s, op, args[0], args[1], TCG_REG_NONE, args[2]);
} else {
tcg_out_sh64(s, op, args[0], args[1], args[2], 0);
}
break;
case INDEX_op_shr_i64:
op = RSY_SRLG;
goto do_shift64;
case INDEX_op_sar_i64:
op = RSY_SRAG;
goto do_shift64;
case INDEX_op_rotl_i64:
if (const_args[2]) {
tcg_out_sh64(s, RSY_RLLG, args[0], args[1],
TCG_REG_NONE, args[2]);
} else {
tcg_out_sh64(s, RSY_RLLG, args[0], args[1], args[2], 0);
}
break;
case INDEX_op_rotr_i64:
if (const_args[2]) {
tcg_out_sh64(s, RSY_RLLG, args[0], args[1],
TCG_REG_NONE, (64 - args[2]) & 63);
} else {
/* We can use the smaller 32-bit negate because only the
low 6 bits are examined for the rotate. */
tcg_out_insn(s, RR, LCR, TCG_TMP0, args[2]);
tcg_out_sh64(s, RSY_RLLG, args[0], args[1], TCG_TMP0, 0);
}
break;
case INDEX_op_add2_i64:
if (const_args[4]) {
if ((int64_t)args[4] >= 0) {
tcg_out_insn(s, RIL, ALGFI, args[0], args[4]);
} else {
tcg_out_insn(s, RIL, SLGFI, args[0], -args[4]);
}
} else {
tcg_out_insn(s, RRE, ALGR, args[0], args[4]);
}
tcg_out_insn(s, RRE, ALCGR, args[1], args[5]);
break;
case INDEX_op_sub2_i64:
if (const_args[4]) {
if ((int64_t)args[4] >= 0) {
tcg_out_insn(s, RIL, SLGFI, args[0], args[4]);
} else {
tcg_out_insn(s, RIL, ALGFI, args[0], -args[4]);
}
} else {
tcg_out_insn(s, RRE, SLGR, args[0], args[4]);
}
tcg_out_insn(s, RRE, SLBGR, args[1], args[5]);
break;
case INDEX_op_brcond_i64:
tgen_brcond(s, TCG_TYPE_I64, args[2], args[0],
args[1], const_args[1], arg_label(args[3]));
break;
case INDEX_op_setcond_i64:
tgen_setcond(s, TCG_TYPE_I64, args[3], args[0], args[1],
args[2], const_args[2]);
break;
case INDEX_op_movcond_i64:
tgen_movcond(s, TCG_TYPE_I64, args[5], args[0], args[1],
args[2], const_args[2], args[3], const_args[3], args[4]);
break;
OP_32_64(deposit):
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[1]) {
tgen_deposit(s, a0, a2, args[3], args[4], 1);
} else {
/* Since we can't support "0Z" as a constraint, we allow a1 in
any register. Fix things up as if a matching constraint. */
if (a0 != a1) {
TCGType type = (opc == INDEX_op_deposit_i64);
if (a0 == a2) {
tcg_out_mov(s, type, TCG_TMP0, a2);
a2 = TCG_TMP0;
}
tcg_out_mov(s, type, a0, a1);
}
tgen_deposit(s, a0, a2, args[3], args[4], 0);
}
break;
OP_32_64(extract):
tgen_extract(s, args[0], args[1], args[2], args[3]);
break;
case INDEX_op_clz_i64:
tgen_clz(s, args[0], args[1], args[2], const_args[2]);
break;
case INDEX_op_ctpop_i32:
tgen_ctpop(s, TCG_TYPE_I32, args[0], args[1]);
break;
case INDEX_op_ctpop_i64:
tgen_ctpop(s, TCG_TYPE_I64, args[0], args[1]);
break;
case INDEX_op_mb:
/* The host memory model is quite strong, we simply need to
serialize the instruction stream. */
if (args[0] & TCG_MO_ST_LD) {
/* fast-bcr-serialization facility (45) is present */
tcg_out_insn(s, RR, BCR, 14, 0);
}
break;
case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
case INDEX_op_mov_i64:
case INDEX_op_call: /* Always emitted via tcg_out_call. */
case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */
case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */
case INDEX_op_ext8s_i32: /* Always emitted via tcg_reg_alloc_op. */
case INDEX_op_ext8s_i64:
case INDEX_op_ext8u_i32:
case INDEX_op_ext8u_i64:
case INDEX_op_ext16s_i32:
case INDEX_op_ext16s_i64:
case INDEX_op_ext16u_i32:
case INDEX_op_ext16u_i64:
case INDEX_op_ext32s_i64:
case INDEX_op_ext32u_i64:
case INDEX_op_ext_i32_i64:
case INDEX_op_extu_i32_i64:
case INDEX_op_extrl_i64_i32:
default:
g_assert_not_reached();
}
}
static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg dst, TCGReg src)
{
if (is_general_reg(src)) {
/* Replicate general register into two MO_64. */
tcg_out_insn(s, VRRf, VLVGP, dst, src, src);
if (vece == MO_64) {
return true;
}
src = dst;
}
/*
* Recall that the "standard" integer, within a vector, is the
* rightmost element of the leftmost doubleword, a-la VLLEZ.
*/
tcg_out_insn(s, VRIc, VREP, dst, (8 >> vece) - 1, src, vece);
return true;
}
static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg dst, TCGReg base, intptr_t offset)
{
tcg_out_vrx_mem(s, VRX_VLREP, dst, base, TCG_REG_NONE, offset, vece);
return true;
}
static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg dst, int64_t val)
{
int i, mask, msb, lsb;
/* Look for int16_t elements. */
if (vece <= MO_16 ||
(vece == MO_32 ? (int32_t)val : val) == (int16_t)val) {
tcg_out_insn(s, VRIa, VREPI, dst, val, vece);
return;
}
/* Look for bit masks. */
if (vece == MO_32) {
if (risbg_mask((int32_t)val)) {
/* Handle wraparound by swapping msb and lsb. */
if ((val & 0x80000001u) == 0x80000001u) {
msb = 32 - ctz32(~val);
lsb = clz32(~val) - 1;
} else {
msb = clz32(val);
lsb = 31 - ctz32(val);
}
tcg_out_insn(s, VRIb, VGM, dst, msb, lsb, MO_32);
return;
}
} else {
if (risbg_mask(val)) {
/* Handle wraparound by swapping msb and lsb. */
if ((val & 0x8000000000000001ull) == 0x8000000000000001ull) {
/* Handle wraparound by swapping msb and lsb. */
msb = 64 - ctz64(~val);
lsb = clz64(~val) - 1;
} else {
msb = clz64(val);
lsb = 63 - ctz64(val);
}
tcg_out_insn(s, VRIb, VGM, dst, msb, lsb, MO_64);
return;
}
}
/* Look for all bytes 0x00 or 0xff. */
for (i = mask = 0; i < 8; i++) {
uint8_t byte = val >> (i * 8);
if (byte == 0xff) {
mask |= 1 << i;
} else if (byte != 0) {
break;
}
}
if (i == 8) {
tcg_out_insn(s, VRIa, VGBM, dst, mask * 0x0101, 0);
return;
}
/* Otherwise, stuff it in the constant pool. */
tcg_out_insn(s, RIL, LARL, TCG_TMP0, 0);
new_pool_label(s, val, R_390_PC32DBL, s->code_ptr - 2, 2);
tcg_out_insn(s, VRX, VLREP, dst, TCG_TMP0, TCG_REG_NONE, 0, MO_64);
}
static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
unsigned vecl, unsigned vece,
const TCGArg args[TCG_MAX_OP_ARGS],
const int const_args[TCG_MAX_OP_ARGS])
{
TCGType type = vecl + TCG_TYPE_V64;
TCGArg a0 = args[0], a1 = args[1], a2 = args[2];
switch (opc) {
case INDEX_op_ld_vec:
tcg_out_ld(s, type, a0, a1, a2);
break;
case INDEX_op_st_vec:
tcg_out_st(s, type, a0, a1, a2);
break;
case INDEX_op_dupm_vec:
tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
break;
case INDEX_op_abs_vec:
tcg_out_insn(s, VRRa, VLP, a0, a1, vece);
break;
case INDEX_op_neg_vec:
tcg_out_insn(s, VRRa, VLC, a0, a1, vece);
break;
case INDEX_op_not_vec:
tcg_out_insn(s, VRRc, VNO, a0, a1, a1, 0);
break;
case INDEX_op_add_vec:
tcg_out_insn(s, VRRc, VA, a0, a1, a2, vece);
break;
case INDEX_op_sub_vec:
tcg_out_insn(s, VRRc, VS, a0, a1, a2, vece);
break;
case INDEX_op_and_vec:
tcg_out_insn(s, VRRc, VN, a0, a1, a2, 0);
break;
case INDEX_op_andc_vec:
tcg_out_insn(s, VRRc, VNC, a0, a1, a2, 0);
break;
case INDEX_op_mul_vec:
tcg_out_insn(s, VRRc, VML, a0, a1, a2, vece);
break;
case INDEX_op_or_vec:
tcg_out_insn(s, VRRc, VO, a0, a1, a2, 0);
break;
case INDEX_op_orc_vec:
tcg_out_insn(s, VRRc, VOC, a0, a1, a2, 0);
break;
case INDEX_op_xor_vec:
tcg_out_insn(s, VRRc, VX, a0, a1, a2, 0);
break;
case INDEX_op_nand_vec:
tcg_out_insn(s, VRRc, VNN, a0, a1, a2, 0);
break;
case INDEX_op_nor_vec:
tcg_out_insn(s, VRRc, VNO, a0, a1, a2, 0);
break;
case INDEX_op_eqv_vec:
tcg_out_insn(s, VRRc, VNX, a0, a1, a2, 0);
break;
case INDEX_op_shli_vec:
tcg_out_insn(s, VRSa, VESL, a0, a2, TCG_REG_NONE, a1, vece);
break;
case INDEX_op_shri_vec:
tcg_out_insn(s, VRSa, VESRL, a0, a2, TCG_REG_NONE, a1, vece);
break;
case INDEX_op_sari_vec:
tcg_out_insn(s, VRSa, VESRA, a0, a2, TCG_REG_NONE, a1, vece);
break;
case INDEX_op_rotli_vec:
tcg_out_insn(s, VRSa, VERLL, a0, a2, TCG_REG_NONE, a1, vece);
break;
case INDEX_op_shls_vec:
tcg_out_insn(s, VRSa, VESL, a0, 0, a2, a1, vece);
break;
case INDEX_op_shrs_vec:
tcg_out_insn(s, VRSa, VESRL, a0, 0, a2, a1, vece);
break;
case INDEX_op_sars_vec:
tcg_out_insn(s, VRSa, VESRA, a0, 0, a2, a1, vece);
break;
case INDEX_op_rotls_vec:
tcg_out_insn(s, VRSa, VERLL, a0, 0, a2, a1, vece);
break;
case INDEX_op_shlv_vec:
tcg_out_insn(s, VRRc, VESLV, a0, a1, a2, vece);
break;
case INDEX_op_shrv_vec:
tcg_out_insn(s, VRRc, VESRLV, a0, a1, a2, vece);
break;
case INDEX_op_sarv_vec:
tcg_out_insn(s, VRRc, VESRAV, a0, a1, a2, vece);
break;
case INDEX_op_rotlv_vec:
tcg_out_insn(s, VRRc, VERLLV, a0, a1, a2, vece);
break;
case INDEX_op_smin_vec:
tcg_out_insn(s, VRRc, VMN, a0, a1, a2, vece);
break;
case INDEX_op_smax_vec:
tcg_out_insn(s, VRRc, VMX, a0, a1, a2, vece);
break;
case INDEX_op_umin_vec:
tcg_out_insn(s, VRRc, VMNL, a0, a1, a2, vece);
break;
case INDEX_op_umax_vec:
tcg_out_insn(s, VRRc, VMXL, a0, a1, a2, vece);
break;
case INDEX_op_bitsel_vec:
tcg_out_insn(s, VRRe, VSEL, a0, a2, args[3], a1);
break;
case INDEX_op_cmp_vec:
switch ((TCGCond)args[3]) {
case TCG_COND_EQ:
tcg_out_insn(s, VRRc, VCEQ, a0, a1, a2, vece);
break;
case TCG_COND_GT:
tcg_out_insn(s, VRRc, VCH, a0, a1, a2, vece);
break;
case TCG_COND_GTU:
tcg_out_insn(s, VRRc, VCHL, a0, a1, a2, vece);
break;
default:
g_assert_not_reached();
}
break;
case INDEX_op_s390_vuph_vec:
tcg_out_insn(s, VRRa, VUPH, a0, a1, vece);
break;
case INDEX_op_s390_vupl_vec:
tcg_out_insn(s, VRRa, VUPL, a0, a1, vece);
break;
case INDEX_op_s390_vpks_vec:
tcg_out_insn(s, VRRc, VPKS, a0, a1, a2, vece);
break;
case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */
case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */
default:
g_assert_not_reached();
}
}
int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
{
switch (opc) {
case INDEX_op_abs_vec:
case INDEX_op_add_vec:
case INDEX_op_and_vec:
case INDEX_op_andc_vec:
case INDEX_op_bitsel_vec:
case INDEX_op_eqv_vec:
case INDEX_op_nand_vec:
case INDEX_op_neg_vec:
case INDEX_op_nor_vec:
case INDEX_op_not_vec:
case INDEX_op_or_vec:
case INDEX_op_orc_vec:
case INDEX_op_rotli_vec:
case INDEX_op_rotls_vec:
case INDEX_op_rotlv_vec:
case INDEX_op_sari_vec:
case INDEX_op_sars_vec:
case INDEX_op_sarv_vec:
case INDEX_op_shli_vec:
case INDEX_op_shls_vec:
case INDEX_op_shlv_vec:
case INDEX_op_shri_vec:
case INDEX_op_shrs_vec:
case INDEX_op_shrv_vec:
case INDEX_op_smax_vec:
case INDEX_op_smin_vec:
case INDEX_op_sub_vec:
case INDEX_op_umax_vec:
case INDEX_op_umin_vec:
case INDEX_op_xor_vec:
return 1;
case INDEX_op_cmp_vec:
case INDEX_op_cmpsel_vec:
case INDEX_op_rotrv_vec:
return -1;
case INDEX_op_mul_vec:
return vece < MO_64;
case INDEX_op_ssadd_vec:
case INDEX_op_sssub_vec:
return vece < MO_64 ? -1 : 0;
default:
return 0;
}
}
static bool expand_vec_cmp_noinv(TCGType type, unsigned vece, TCGv_vec v0,
TCGv_vec v1, TCGv_vec v2, TCGCond cond)
{
bool need_swap = false, need_inv = false;
switch (cond) {
case TCG_COND_EQ:
case TCG_COND_GT:
case TCG_COND_GTU:
break;
case TCG_COND_NE:
case TCG_COND_LE:
case TCG_COND_LEU:
need_inv = true;
break;
case TCG_COND_LT:
case TCG_COND_LTU:
need_swap = true;
break;
case TCG_COND_GE:
case TCG_COND_GEU:
need_swap = need_inv = true;
break;
default:
g_assert_not_reached();
}
if (need_inv) {
cond = tcg_invert_cond(cond);
}
if (need_swap) {
TCGv_vec t1;
t1 = v1, v1 = v2, v2 = t1;
cond = tcg_swap_cond(cond);
}
vec_gen_4(INDEX_op_cmp_vec, type, vece, tcgv_vec_arg(v0),
tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond);
return need_inv;
}
static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0,
TCGv_vec v1, TCGv_vec v2, TCGCond cond)
{
if (expand_vec_cmp_noinv(type, vece, v0, v1, v2, cond)) {
tcg_gen_not_vec(vece, v0, v0);
}
}
static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGv_vec v0,
TCGv_vec c1, TCGv_vec c2,
TCGv_vec v3, TCGv_vec v4, TCGCond cond)
{
TCGv_vec t = tcg_temp_new_vec(type);
if (expand_vec_cmp_noinv(type, vece, t, c1, c2, cond)) {
/* Invert the sense of the compare by swapping arguments. */
tcg_gen_bitsel_vec(vece, v0, t, v4, v3);
} else {
tcg_gen_bitsel_vec(vece, v0, t, v3, v4);
}
tcg_temp_free_vec(t);
}
static void expand_vec_sat(TCGType type, unsigned vece, TCGv_vec v0,
TCGv_vec v1, TCGv_vec v2, TCGOpcode add_sub_opc)
{
TCGv_vec h1 = tcg_temp_new_vec(type);
TCGv_vec h2 = tcg_temp_new_vec(type);
TCGv_vec l1 = tcg_temp_new_vec(type);
TCGv_vec l2 = tcg_temp_new_vec(type);
tcg_debug_assert (vece < MO_64);
/* Unpack with sign-extension. */
vec_gen_2(INDEX_op_s390_vuph_vec, type, vece,
tcgv_vec_arg(h1), tcgv_vec_arg(v1));
vec_gen_2(INDEX_op_s390_vuph_vec, type, vece,
tcgv_vec_arg(h2), tcgv_vec_arg(v2));
vec_gen_2(INDEX_op_s390_vupl_vec, type, vece,
tcgv_vec_arg(l1), tcgv_vec_arg(v1));
vec_gen_2(INDEX_op_s390_vupl_vec, type, vece,
tcgv_vec_arg(l2), tcgv_vec_arg(v2));
/* Arithmetic on a wider element size. */
vec_gen_3(add_sub_opc, type, vece + 1, tcgv_vec_arg(h1),
tcgv_vec_arg(h1), tcgv_vec_arg(h2));
vec_gen_3(add_sub_opc, type, vece + 1, tcgv_vec_arg(l1),
tcgv_vec_arg(l1), tcgv_vec_arg(l2));
/* Pack with saturation. */
vec_gen_3(INDEX_op_s390_vpks_vec, type, vece + 1,
tcgv_vec_arg(v0), tcgv_vec_arg(h1), tcgv_vec_arg(l1));
tcg_temp_free_vec(h1);
tcg_temp_free_vec(h2);
tcg_temp_free_vec(l1);
tcg_temp_free_vec(l2);
}
void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
TCGArg a0, ...)
{
va_list va;
TCGv_vec v0, v1, v2, v3, v4, t0;
va_start(va, a0);
v0 = temp_tcgv_vec(arg_temp(a0));
v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
v2 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
switch (opc) {
case INDEX_op_cmp_vec:
expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg));
break;
case INDEX_op_cmpsel_vec:
v3 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
v4 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
expand_vec_cmpsel(type, vece, v0, v1, v2, v3, v4, va_arg(va, TCGArg));
break;
case INDEX_op_rotrv_vec:
t0 = tcg_temp_new_vec(type);
tcg_gen_neg_vec(vece, t0, v2);
tcg_gen_rotlv_vec(vece, v0, v1, t0);
tcg_temp_free_vec(t0);
break;
case INDEX_op_ssadd_vec:
expand_vec_sat(type, vece, v0, v1, v2, INDEX_op_add_vec);
break;
case INDEX_op_sssub_vec:
expand_vec_sat(type, vece, v0, v1, v2, INDEX_op_sub_vec);
break;
default:
g_assert_not_reached();
}
va_end(va);
}
static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op)
{
switch (op) {
case INDEX_op_goto_ptr:
return C_O0_I1(r);
case INDEX_op_ld8u_i32:
case INDEX_op_ld8u_i64:
case INDEX_op_ld8s_i32:
case INDEX_op_ld8s_i64:
case INDEX_op_ld16u_i32:
case INDEX_op_ld16u_i64:
case INDEX_op_ld16s_i32:
case INDEX_op_ld16s_i64:
case INDEX_op_ld_i32:
case INDEX_op_ld32u_i64:
case INDEX_op_ld32s_i64:
case INDEX_op_ld_i64:
return C_O1_I1(r, r);
case INDEX_op_st8_i32:
case INDEX_op_st8_i64:
case INDEX_op_st16_i32:
case INDEX_op_st16_i64:
case INDEX_op_st_i32:
case INDEX_op_st32_i64:
case INDEX_op_st_i64:
return C_O0_I2(r, r);
case INDEX_op_add_i32:
case INDEX_op_add_i64:
case INDEX_op_shl_i64:
case INDEX_op_shr_i64:
case INDEX_op_sar_i64:
case INDEX_op_rotl_i32:
case INDEX_op_rotl_i64:
case INDEX_op_rotr_i32:
case INDEX_op_rotr_i64:
case INDEX_op_setcond_i32:
return C_O1_I2(r, r, ri);
case INDEX_op_setcond_i64:
return C_O1_I2(r, r, rA);
case INDEX_op_clz_i64:
return C_O1_I2(r, r, rI);
case INDEX_op_sub_i32:
case INDEX_op_sub_i64:
case INDEX_op_and_i32:
case INDEX_op_or_i32:
case INDEX_op_xor_i32:
return C_O1_I2(r, r, ri);
case INDEX_op_and_i64:
return C_O1_I2(r, r, rNKR);
case INDEX_op_or_i64:
case INDEX_op_xor_i64:
return C_O1_I2(r, r, rK);
case INDEX_op_andc_i32:
case INDEX_op_orc_i32:
case INDEX_op_eqv_i32:
return C_O1_I2(r, r, ri);
case INDEX_op_andc_i64:
return C_O1_I2(r, r, rKR);
case INDEX_op_orc_i64:
case INDEX_op_eqv_i64:
return C_O1_I2(r, r, rNK);
case INDEX_op_nand_i32:
case INDEX_op_nand_i64:
case INDEX_op_nor_i32:
case INDEX_op_nor_i64:
return C_O1_I2(r, r, r);
case INDEX_op_mul_i32:
return (HAVE_FACILITY(MISC_INSN_EXT2)
? C_O1_I2(r, r, ri)
: C_O1_I2(r, 0, ri));
case INDEX_op_mul_i64:
return (HAVE_FACILITY(MISC_INSN_EXT2)
? C_O1_I2(r, r, rJ)
: C_O1_I2(r, 0, rJ));
case INDEX_op_shl_i32:
case INDEX_op_shr_i32:
case INDEX_op_sar_i32:
return C_O1_I2(r, r, ri);
case INDEX_op_brcond_i32:
return C_O0_I2(r, ri);
case INDEX_op_brcond_i64:
return C_O0_I2(r, rA);
case INDEX_op_bswap16_i32:
case INDEX_op_bswap16_i64:
case INDEX_op_bswap32_i32:
case INDEX_op_bswap32_i64:
case INDEX_op_bswap64_i64:
case INDEX_op_neg_i32:
case INDEX_op_neg_i64:
case INDEX_op_not_i32:
case INDEX_op_not_i64:
case INDEX_op_ext8s_i32:
case INDEX_op_ext8s_i64:
case INDEX_op_ext8u_i32:
case INDEX_op_ext8u_i64:
case INDEX_op_ext16s_i32:
case INDEX_op_ext16s_i64:
case INDEX_op_ext16u_i32:
case INDEX_op_ext16u_i64:
case INDEX_op_ext32s_i64:
case INDEX_op_ext32u_i64:
case INDEX_op_ext_i32_i64:
case INDEX_op_extu_i32_i64:
case INDEX_op_extract_i32:
case INDEX_op_extract_i64:
case INDEX_op_ctpop_i32:
case INDEX_op_ctpop_i64:
return C_O1_I1(r, r);
case INDEX_op_qemu_ld_i32:
case INDEX_op_qemu_ld_i64:
return C_O1_I1(r, r);
case INDEX_op_qemu_st_i64:
case INDEX_op_qemu_st_i32:
return C_O0_I2(r, r);
case INDEX_op_deposit_i32:
case INDEX_op_deposit_i64:
return C_O1_I2(r, rZ, r);
case INDEX_op_movcond_i32:
return C_O1_I4(r, r, ri, rI, r);
case INDEX_op_movcond_i64:
return C_O1_I4(r, r, rA, rI, r);
case INDEX_op_div2_i32:
case INDEX_op_div2_i64:
case INDEX_op_divu2_i32:
case INDEX_op_divu2_i64:
return C_O2_I3(o, m, 0, 1, r);
case INDEX_op_mulu2_i64:
return C_O2_I2(o, m, 0, r);
case INDEX_op_muls2_i64:
return C_O2_I2(o, m, r, r);
case INDEX_op_add2_i32:
case INDEX_op_sub2_i32:
return C_O2_I4(r, r, 0, 1, ri, r);
case INDEX_op_add2_i64:
case INDEX_op_sub2_i64:
return C_O2_I4(r, r, 0, 1, rA, r);
case INDEX_op_st_vec:
return C_O0_I2(v, r);
case INDEX_op_ld_vec:
case INDEX_op_dupm_vec:
return C_O1_I1(v, r);
case INDEX_op_dup_vec:
return C_O1_I1(v, vr);
case INDEX_op_abs_vec:
case INDEX_op_neg_vec:
case INDEX_op_not_vec:
case INDEX_op_rotli_vec:
case INDEX_op_sari_vec:
case INDEX_op_shli_vec:
case INDEX_op_shri_vec:
case INDEX_op_s390_vuph_vec:
case INDEX_op_s390_vupl_vec:
return C_O1_I1(v, v);
case INDEX_op_add_vec:
case INDEX_op_sub_vec:
case INDEX_op_and_vec:
case INDEX_op_andc_vec:
case INDEX_op_or_vec:
case INDEX_op_orc_vec:
case INDEX_op_xor_vec:
case INDEX_op_nand_vec:
case INDEX_op_nor_vec:
case INDEX_op_eqv_vec:
case INDEX_op_cmp_vec:
case INDEX_op_mul_vec:
case INDEX_op_rotlv_vec:
case INDEX_op_rotrv_vec:
case INDEX_op_shlv_vec:
case INDEX_op_shrv_vec:
case INDEX_op_sarv_vec:
case INDEX_op_smax_vec:
case INDEX_op_smin_vec:
case INDEX_op_umax_vec:
case INDEX_op_umin_vec:
case INDEX_op_s390_vpks_vec:
return C_O1_I2(v, v, v);
case INDEX_op_rotls_vec:
case INDEX_op_shls_vec:
case INDEX_op_shrs_vec:
case INDEX_op_sars_vec:
return C_O1_I2(v, v, r);
case INDEX_op_bitsel_vec:
return C_O1_I3(v, v, v, v);
default:
g_assert_not_reached();
}
}
/*
* Mainline glibc added HWCAP_S390_VX before it was kernel abi.
* Some distros have fixed this up locally, others have not.
*/
#ifndef HWCAP_S390_VXRS
#define HWCAP_S390_VXRS 2048
#endif
static void query_s390_facilities(void)
{
unsigned long hwcap = qemu_getauxval(AT_HWCAP);
const char *which;
/* Is STORE FACILITY LIST EXTENDED available? Honestly, I believe this
is present on all 64-bit systems, but let's check for it anyway. */
if (hwcap & HWCAP_S390_STFLE) {
register int r0 __asm__("0") = ARRAY_SIZE(s390_facilities) - 1;
register void *r1 __asm__("1") = s390_facilities;
/* stfle 0(%r1) */
asm volatile(".word 0xb2b0,0x1000"
: "=r"(r0) : "r"(r0), "r"(r1) : "memory", "cc");
}
/*
* Use of vector registers requires os support beyond the facility bit.
* If the kernel does not advertise support, disable the facility bits.
* There is nothing else we currently care about in the 3rd word, so
* disable VECTOR with one store.
*/
if (!(hwcap & HWCAP_S390_VXRS)) {
s390_facilities[2] = 0;
}
/*
* Minimum supported cpu revision is z196.
* Check for all required facilities.
* ZARCH_ACTIVE is done via preprocessor check for 64-bit.
*/
if (!HAVE_FACILITY(LONG_DISP)) {
which = "long-displacement";
goto fail;
}
if (!HAVE_FACILITY(EXT_IMM)) {
which = "extended-immediate";
goto fail;
}
if (!HAVE_FACILITY(GEN_INST_EXT)) {
which = "general-instructions-extension";
goto fail;
}
/*
* Facility 45 is a big bin that contains: distinct-operands,
* fast-BCR-serialization, high-word, population-count,
* interlocked-access-1, and load/store-on-condition-1
*/
if (!HAVE_FACILITY(45)) {
which = "45";
goto fail;
}
return;
fail:
error_report("%s: missing required facility %s", __func__, which);
exit(EXIT_FAILURE);
}
static void tcg_target_init(TCGContext *s)
{
query_s390_facilities();
tcg_target_available_regs[TCG_TYPE_I32] = 0xffff;
tcg_target_available_regs[TCG_TYPE_I64] = 0xffff;
if (HAVE_FACILITY(VECTOR)) {
tcg_target_available_regs[TCG_TYPE_V64] = 0xffffffff00000000ull;
tcg_target_available_regs[TCG_TYPE_V128] = 0xffffffff00000000ull;
}
tcg_target_call_clobber_regs = 0;
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R0);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R1);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R2);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R3);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R4);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R5);
/* The r6 register is technically call-saved, but it's also a parameter
register, so it can get killed by setup for the qemu_st helper. */
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R6);
/* The return register can be considered call-clobbered. */
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R14);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V0);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V1);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V2);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V3);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V4);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V5);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V6);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V7);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V16);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V17);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V18);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V19);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V20);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V21);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V22);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V23);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V24);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V25);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V26);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V27);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V28);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V29);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V30);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V31);
s->reserved_regs = 0;
tcg_regset_set_reg(s->reserved_regs, TCG_TMP0);
/* XXX many insns can't be used with R0, so we better avoid it for now */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_R0);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK);
}
#define FRAME_SIZE ((int)(TCG_TARGET_CALL_STACK_OFFSET \
+ TCG_STATIC_CALL_ARGS_SIZE \
+ CPU_TEMP_BUF_NLONGS * sizeof(long)))
static void tcg_target_qemu_prologue(TCGContext *s)
{
/* stmg %r6,%r15,48(%r15) (save registers) */
tcg_out_insn(s, RXY, STMG, TCG_REG_R6, TCG_REG_R15, TCG_REG_R15, 48);
/* aghi %r15,-frame_size */
tcg_out_insn(s, RI, AGHI, TCG_REG_R15, -FRAME_SIZE);
tcg_set_frame(s, TCG_REG_CALL_STACK,
TCG_STATIC_CALL_ARGS_SIZE + TCG_TARGET_CALL_STACK_OFFSET,
CPU_TEMP_BUF_NLONGS * sizeof(long));
#ifndef CONFIG_SOFTMMU
if (guest_base >= 0x80000) {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, guest_base);
tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
}
#endif
tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
/* br %r3 (go to TB) */
tcg_out_insn(s, RR, BCR, S390_CC_ALWAYS, tcg_target_call_iarg_regs[1]);
/*
* Return path for goto_ptr. Set return value to 0, a-la exit_tb,
* and fall through to the rest of the epilogue.
*/
tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R2, 0);
/* TB epilogue */
tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr);
/* lmg %r6,%r15,fs+48(%r15) (restore registers) */
tcg_out_insn(s, RXY, LMG, TCG_REG_R6, TCG_REG_R15, TCG_REG_R15,
FRAME_SIZE + 48);
/* br %r14 (return) */
tcg_out_insn(s, RR, BCR, S390_CC_ALWAYS, TCG_REG_R14);
}
static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
{
memset(p, 0x07, count * sizeof(tcg_insn_unit));
}
typedef struct {
DebugFrameHeader h;
uint8_t fde_def_cfa[4];
uint8_t fde_reg_ofs[18];
} DebugFrame;
/* We're expecting a 2 byte uleb128 encoded value. */
QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
#define ELF_HOST_MACHINE EM_S390
static const DebugFrame debug_frame = {
.h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
.h.cie.id = -1,
.h.cie.version = 1,
.h.cie.code_align = 1,
.h.cie.data_align = 8, /* sleb128 8 */
.h.cie.return_column = TCG_REG_R14,
/* Total FDE size does not include the "len" member. */
.h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
.fde_def_cfa = {
12, TCG_REG_CALL_STACK, /* DW_CFA_def_cfa %r15, ... */
(FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
(FRAME_SIZE >> 7)
},
.fde_reg_ofs = {
0x86, 6, /* DW_CFA_offset, %r6, 48 */
0x87, 7, /* DW_CFA_offset, %r7, 56 */
0x88, 8, /* DW_CFA_offset, %r8, 64 */
0x89, 9, /* DW_CFA_offset, %r92, 72 */
0x8a, 10, /* DW_CFA_offset, %r10, 80 */
0x8b, 11, /* DW_CFA_offset, %r11, 88 */
0x8c, 12, /* DW_CFA_offset, %r12, 96 */
0x8d, 13, /* DW_CFA_offset, %r13, 104 */
0x8e, 14, /* DW_CFA_offset, %r14, 112 */
}
};
void tcg_register_jit(const void *buf, size_t buf_size)
{
tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
}