qemu-e2k/hw/apb_pci.c
blueswir1 173a543b36 Add and use #defines for PCI device classes
This patch adds and uses #defines for PCI device classes and subclases,
using a new pci_config_set_class() function, similar to the recently
added pci_config_set_vendor_id() and pci_config_set_device_id().

Change since v1: fixed compilation of hw/sun4u.c

Signed-off-by: Stuart Brady <stuart.brady@gmail.com>


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6491 c046a42c-6fe2-441c-8c8c-71466251a162
2009-02-01 19:26:20 +00:00

276 lines
8.0 KiB
C

/*
* QEMU Ultrasparc APB PCI host
*
* Copyright (c) 2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* XXX This file and most of its contents are somewhat misnamed. The
Ultrasparc PCI host is called the PCI Bus Module (PBM). The APB is
the secondary PCI bridge. */
#include "hw.h"
#include "pci.h"
/* debug APB */
//#define DEBUG_APB
#ifdef DEBUG_APB
#define APB_DPRINTF(fmt, args...) \
do { printf("APB: " fmt , ##args); } while (0)
#else
#define APB_DPRINTF(fmt, args...)
#endif
typedef target_phys_addr_t pci_addr_t;
#include "pci_host.h"
typedef PCIHostState APBState;
static void pci_apb_config_writel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
APBState *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
APB_DPRINTF("config_writel addr " TARGET_FMT_plx " val %x\n", addr,
val);
s->config_reg = val;
}
static uint32_t pci_apb_config_readl (void *opaque,
target_phys_addr_t addr)
{
APBState *s = opaque;
uint32_t val;
val = s->config_reg;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
APB_DPRINTF("config_readl addr " TARGET_FMT_plx " val %x\n", addr,
val);
return val;
}
static CPUWriteMemoryFunc *pci_apb_config_write[] = {
&pci_apb_config_writel,
&pci_apb_config_writel,
&pci_apb_config_writel,
};
static CPUReadMemoryFunc *pci_apb_config_read[] = {
&pci_apb_config_readl,
&pci_apb_config_readl,
&pci_apb_config_readl,
};
static void apb_config_writel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
//PCIBus *s = opaque;
switch (addr & 0x3f) {
case 0x00: // Control/Status
case 0x10: // AFSR
case 0x18: // AFAR
case 0x20: // Diagnostic
case 0x28: // Target address space
// XXX
default:
break;
}
}
static uint32_t apb_config_readl (void *opaque,
target_phys_addr_t addr)
{
//PCIBus *s = opaque;
uint32_t val;
switch (addr & 0x3f) {
case 0x00: // Control/Status
case 0x10: // AFSR
case 0x18: // AFAR
case 0x20: // Diagnostic
case 0x28: // Target address space
// XXX
default:
val = 0;
break;
}
return val;
}
static CPUWriteMemoryFunc *apb_config_write[] = {
&apb_config_writel,
&apb_config_writel,
&apb_config_writel,
};
static CPUReadMemoryFunc *apb_config_read[] = {
&apb_config_readl,
&apb_config_readl,
&apb_config_readl,
};
static CPUWriteMemoryFunc *pci_apb_write[] = {
&pci_host_data_writeb,
&pci_host_data_writew,
&pci_host_data_writel,
};
static CPUReadMemoryFunc *pci_apb_read[] = {
&pci_host_data_readb,
&pci_host_data_readw,
&pci_host_data_readl,
};
static void pci_apb_iowriteb (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
cpu_outb(NULL, addr & 0xffff, val);
}
static void pci_apb_iowritew (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
cpu_outw(NULL, addr & 0xffff, val);
}
static void pci_apb_iowritel (void *opaque, target_phys_addr_t addr,
uint32_t val)
{
cpu_outl(NULL, addr & 0xffff, val);
}
static uint32_t pci_apb_ioreadb (void *opaque, target_phys_addr_t addr)
{
uint32_t val;
val = cpu_inb(NULL, addr & 0xffff);
return val;
}
static uint32_t pci_apb_ioreadw (void *opaque, target_phys_addr_t addr)
{
uint32_t val;
val = cpu_inw(NULL, addr & 0xffff);
return val;
}
static uint32_t pci_apb_ioreadl (void *opaque, target_phys_addr_t addr)
{
uint32_t val;
val = cpu_inl(NULL, addr & 0xffff);
return val;
}
static CPUWriteMemoryFunc *pci_apb_iowrite[] = {
&pci_apb_iowriteb,
&pci_apb_iowritew,
&pci_apb_iowritel,
};
static CPUReadMemoryFunc *pci_apb_ioread[] = {
&pci_apb_ioreadb,
&pci_apb_ioreadw,
&pci_apb_ioreadl,
};
/* The APB host has an IRQ line for each IRQ line of each slot. */
static int pci_apb_map_irq(PCIDevice *pci_dev, int irq_num)
{
return ((pci_dev->devfn & 0x18) >> 1) + irq_num;
}
static int pci_pbm_map_irq(PCIDevice *pci_dev, int irq_num)
{
int bus_offset;
if (pci_dev->devfn & 1)
bus_offset = 16;
else
bus_offset = 0;
return bus_offset + irq_num;
}
static void pci_apb_set_irq(qemu_irq *pic, int irq_num, int level)
{
/* PCI IRQ map onto the first 32 INO. */
qemu_set_irq(pic[irq_num], level);
}
PCIBus *pci_apb_init(target_phys_addr_t special_base,
target_phys_addr_t mem_base,
qemu_irq *pic, PCIBus **bus2, PCIBus **bus3)
{
APBState *s;
PCIDevice *d;
int pci_mem_config, pci_mem_data, apb_config, pci_ioport;
s = qemu_mallocz(sizeof(APBState));
/* Ultrasparc PBM main bus */
s->bus = pci_register_bus(pci_apb_set_irq, pci_pbm_map_irq, pic, 0, 32);
pci_mem_config = cpu_register_io_memory(0, pci_apb_config_read,
pci_apb_config_write, s);
apb_config = cpu_register_io_memory(0, apb_config_read,
apb_config_write, s);
pci_mem_data = cpu_register_io_memory(0, pci_apb_read,
pci_apb_write, s);
pci_ioport = cpu_register_io_memory(0, pci_apb_ioread,
pci_apb_iowrite, s);
cpu_register_physical_memory(special_base + 0x2000ULL, 0x40, apb_config);
cpu_register_physical_memory(special_base + 0x1000000ULL, 0x10,
pci_mem_config);
cpu_register_physical_memory(special_base + 0x2000000ULL, 0x10000,
pci_ioport);
cpu_register_physical_memory(mem_base, 0x10000000,
pci_mem_data); // XXX size should be 4G-prom
d = pci_register_device(s->bus, "Advanced PCI Bus", sizeof(PCIDevice),
0, NULL, NULL);
pci_config_set_vendor_id(d->config, PCI_VENDOR_ID_SUN);
pci_config_set_device_id(d->config, PCI_DEVICE_ID_SUN_SABRE);
d->config[0x04] = 0x06; // command = bus master, pci mem
d->config[0x05] = 0x00;
d->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
d->config[0x07] = 0x03; // status = medium devsel
d->config[0x08] = 0x00; // revision
d->config[0x09] = 0x00; // programming i/f
pci_config_set_class(d->config, PCI_CLASS_BRIDGE_HOST);
d->config[0x0D] = 0x10; // latency_timer
d->config[0x0E] = 0x00; // header_type
/* APB secondary busses */
*bus2 = pci_bridge_init(s->bus, 8, PCI_VENDOR_ID_SUN,
PCI_DEVICE_ID_SUN_SIMBA, pci_apb_map_irq,
"Advanced PCI Bus secondary bridge 1");
*bus3 = pci_bridge_init(s->bus, 9, PCI_VENDOR_ID_SUN,
PCI_DEVICE_ID_SUN_SIMBA, pci_apb_map_irq,
"Advanced PCI Bus secondary bridge 2");
return s->bus;
}