qemu-e2k/hw/pxa2xx.c
balrog a050e24df2 Hush pointer target signedness warnings from gcc 4.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4231 c046a42c-6fe2-441c-8c8c-71466251a162
2008-04-22 02:56:20 +00:00

2281 lines
65 KiB
C

/*
* Intel XScale PXA255/270 processor support.
*
* Copyright (c) 2006 Openedhand Ltd.
* Written by Andrzej Zaborowski <balrog@zabor.org>
*
* This code is licenced under the GPL.
*/
#include "hw.h"
#include "pxa.h"
#include "sysemu.h"
#include "pc.h"
#include "i2c.h"
#include "qemu-timer.h"
#include "qemu-char.h"
static struct {
target_phys_addr_t io_base;
int irqn;
} pxa255_serial[] = {
{ 0x40100000, PXA2XX_PIC_FFUART },
{ 0x40200000, PXA2XX_PIC_BTUART },
{ 0x40700000, PXA2XX_PIC_STUART },
{ 0x41600000, PXA25X_PIC_HWUART },
{ 0, 0 }
}, pxa270_serial[] = {
{ 0x40100000, PXA2XX_PIC_FFUART },
{ 0x40200000, PXA2XX_PIC_BTUART },
{ 0x40700000, PXA2XX_PIC_STUART },
{ 0, 0 }
};
typedef struct PXASSPDef {
target_phys_addr_t io_base;
int irqn;
} PXASSPDef;
#if 0
static PXASSPDef pxa250_ssp[] = {
{ 0x41000000, PXA2XX_PIC_SSP },
{ 0, 0 }
};
#endif
static PXASSPDef pxa255_ssp[] = {
{ 0x41000000, PXA2XX_PIC_SSP },
{ 0x41400000, PXA25X_PIC_NSSP },
{ 0, 0 }
};
#if 0
static PXASSPDef pxa26x_ssp[] = {
{ 0x41000000, PXA2XX_PIC_SSP },
{ 0x41400000, PXA25X_PIC_NSSP },
{ 0x41500000, PXA26X_PIC_ASSP },
{ 0, 0 }
};
#endif
static PXASSPDef pxa27x_ssp[] = {
{ 0x41000000, PXA2XX_PIC_SSP },
{ 0x41700000, PXA27X_PIC_SSP2 },
{ 0x41900000, PXA2XX_PIC_SSP3 },
{ 0, 0 }
};
#define PMCR 0x00 /* Power Manager Control register */
#define PSSR 0x04 /* Power Manager Sleep Status register */
#define PSPR 0x08 /* Power Manager Scratch-Pad register */
#define PWER 0x0c /* Power Manager Wake-Up Enable register */
#define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */
#define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */
#define PEDR 0x18 /* Power Manager Edge-Detect Status register */
#define PCFR 0x1c /* Power Manager General Configuration register */
#define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */
#define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */
#define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */
#define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */
#define RCSR 0x30 /* Reset Controller Status register */
#define PSLR 0x34 /* Power Manager Sleep Configuration register */
#define PTSR 0x38 /* Power Manager Standby Configuration register */
#define PVCR 0x40 /* Power Manager Voltage Change Control register */
#define PUCR 0x4c /* Power Manager USIM Card Control/Status register */
#define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */
#define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */
#define PCMD0 0x80 /* Power Manager I2C Command register File 0 */
#define PCMD31 0xfc /* Power Manager I2C Command register File 31 */
static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
addr -= s->pm_base;
switch (addr) {
case PMCR ... PCMD31:
if (addr & 3)
goto fail;
return s->pm_regs[addr >> 2];
default:
fail:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
return 0;
}
static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
addr -= s->pm_base;
switch (addr) {
case PMCR:
s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a);
s->pm_regs[addr >> 2] |= value & 0x15;
break;
case PSSR: /* Read-clean registers */
case RCSR:
case PKSR:
s->pm_regs[addr >> 2] &= ~value;
break;
default: /* Read-write registers */
if (addr >= PMCR && addr <= PCMD31 && !(addr & 3)) {
s->pm_regs[addr >> 2] = value;
break;
}
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
}
static CPUReadMemoryFunc *pxa2xx_pm_readfn[] = {
pxa2xx_pm_read,
pxa2xx_pm_read,
pxa2xx_pm_read,
};
static CPUWriteMemoryFunc *pxa2xx_pm_writefn[] = {
pxa2xx_pm_write,
pxa2xx_pm_write,
pxa2xx_pm_write,
};
static void pxa2xx_pm_save(QEMUFile *f, void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
int i;
for (i = 0; i < 0x40; i ++)
qemu_put_be32s(f, &s->pm_regs[i]);
}
static int pxa2xx_pm_load(QEMUFile *f, void *opaque, int version_id)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
int i;
for (i = 0; i < 0x40; i ++)
qemu_get_be32s(f, &s->pm_regs[i]);
return 0;
}
#define CCCR 0x00 /* Core Clock Configuration register */
#define CKEN 0x04 /* Clock Enable register */
#define OSCC 0x08 /* Oscillator Configuration register */
#define CCSR 0x0c /* Core Clock Status register */
static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
addr -= s->cm_base;
switch (addr) {
case CCCR:
case CKEN:
case OSCC:
return s->cm_regs[addr >> 2];
case CCSR:
return s->cm_regs[CCCR >> 2] | (3 << 28);
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
return 0;
}
static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
addr -= s->cm_base;
switch (addr) {
case CCCR:
case CKEN:
s->cm_regs[addr >> 2] = value;
break;
case OSCC:
s->cm_regs[addr >> 2] &= ~0x6c;
s->cm_regs[addr >> 2] |= value & 0x6e;
if ((value >> 1) & 1) /* OON */
s->cm_regs[addr >> 2] |= 1 << 0; /* Oscillator is now stable */
break;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
}
static CPUReadMemoryFunc *pxa2xx_cm_readfn[] = {
pxa2xx_cm_read,
pxa2xx_cm_read,
pxa2xx_cm_read,
};
static CPUWriteMemoryFunc *pxa2xx_cm_writefn[] = {
pxa2xx_cm_write,
pxa2xx_cm_write,
pxa2xx_cm_write,
};
static void pxa2xx_cm_save(QEMUFile *f, void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
int i;
for (i = 0; i < 4; i ++)
qemu_put_be32s(f, &s->cm_regs[i]);
qemu_put_be32s(f, &s->clkcfg);
qemu_put_be32s(f, &s->pmnc);
}
static int pxa2xx_cm_load(QEMUFile *f, void *opaque, int version_id)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
int i;
for (i = 0; i < 4; i ++)
qemu_get_be32s(f, &s->cm_regs[i]);
qemu_get_be32s(f, &s->clkcfg);
qemu_get_be32s(f, &s->pmnc);
return 0;
}
static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
switch (reg) {
case 6: /* Clock Configuration register */
return s->clkcfg;
case 7: /* Power Mode register */
return 0;
default:
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
break;
}
return 0;
}
static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
uint32_t value)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
static const char *pwrmode[8] = {
"Normal", "Idle", "Deep-idle", "Standby",
"Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
};
switch (reg) {
case 6: /* Clock Configuration register */
s->clkcfg = value & 0xf;
if (value & 2)
printf("%s: CPU frequency change attempt\n", __FUNCTION__);
break;
case 7: /* Power Mode register */
if (value & 8)
printf("%s: CPU voltage change attempt\n", __FUNCTION__);
switch (value & 7) {
case 0:
/* Do nothing */
break;
case 1:
/* Idle */
if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */
cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
break;
}
/* Fall through. */
case 2:
/* Deep-Idle */
cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
goto message;
case 3:
s->env->uncached_cpsr =
ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
s->env->cp15.c1_sys = 0;
s->env->cp15.c1_coproc = 0;
s->env->cp15.c2_base0 = 0;
s->env->cp15.c3 = 0;
s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
/*
* The scratch-pad register is almost universally used
* for storing the return address on suspend. For the
* lack of a resuming bootloader, perform a jump
* directly to that address.
*/
memset(s->env->regs, 0, 4 * 15);
s->env->regs[15] = s->pm_regs[PSPR >> 2];
#if 0
buffer = 0xe59ff000; /* ldr pc, [pc, #0] */
cpu_physical_memory_write(0, &buffer, 4);
buffer = s->pm_regs[PSPR >> 2];
cpu_physical_memory_write(8, &buffer, 4);
#endif
/* Suspend */
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
goto message;
default:
message:
printf("%s: machine entered %s mode\n", __FUNCTION__,
pwrmode[value & 7]);
}
break;
default:
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
break;
}
}
/* Performace Monitoring Registers */
#define CPPMNC 0 /* Performance Monitor Control register */
#define CPCCNT 1 /* Clock Counter register */
#define CPINTEN 4 /* Interrupt Enable register */
#define CPFLAG 5 /* Overflow Flag register */
#define CPEVTSEL 8 /* Event Selection register */
#define CPPMN0 0 /* Performance Count register 0 */
#define CPPMN1 1 /* Performance Count register 1 */
#define CPPMN2 2 /* Performance Count register 2 */
#define CPPMN3 3 /* Performance Count register 3 */
static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
switch (reg) {
case CPPMNC:
return s->pmnc;
case CPCCNT:
if (s->pmnc & 1)
return qemu_get_clock(vm_clock);
else
return 0;
case CPINTEN:
case CPFLAG:
case CPEVTSEL:
return 0;
default:
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
break;
}
return 0;
}
static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm,
uint32_t value)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
switch (reg) {
case CPPMNC:
s->pmnc = value;
break;
case CPCCNT:
case CPINTEN:
case CPFLAG:
case CPEVTSEL:
break;
default:
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
break;
}
}
static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
{
switch (crm) {
case 0:
return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
case 1:
return pxa2xx_perf_read(opaque, op2, reg, crm);
case 2:
switch (reg) {
case CPPMN0:
case CPPMN1:
case CPPMN2:
case CPPMN3:
return 0;
}
/* Fall through */
default:
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
break;
}
return 0;
}
static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
uint32_t value)
{
switch (crm) {
case 0:
pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
break;
case 1:
pxa2xx_perf_write(opaque, op2, reg, crm, value);
break;
case 2:
switch (reg) {
case CPPMN0:
case CPPMN1:
case CPPMN2:
case CPPMN3:
return;
}
/* Fall through */
default:
printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
break;
}
}
#define MDCNFG 0x00 /* SDRAM Configuration register */
#define MDREFR 0x04 /* SDRAM Refresh Control register */
#define MSC0 0x08 /* Static Memory Control register 0 */
#define MSC1 0x0c /* Static Memory Control register 1 */
#define MSC2 0x10 /* Static Memory Control register 2 */
#define MECR 0x14 /* Expansion Memory Bus Config register */
#define SXCNFG 0x1c /* Synchronous Static Memory Config register */
#define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */
#define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */
#define MCATT0 0x30 /* PC Card Attribute Socket 0 register */
#define MCATT1 0x34 /* PC Card Attribute Socket 1 register */
#define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */
#define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */
#define MDMRS 0x40 /* SDRAM Mode Register Set Config register */
#define BOOT_DEF 0x44 /* Boot-time Default Configuration register */
#define ARB_CNTL 0x48 /* Arbiter Control register */
#define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */
#define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */
#define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */
#define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */
#define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */
#define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */
#define SA1110 0x64 /* SA-1110 Memory Compatibility register */
static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
addr -= s->mm_base;
switch (addr) {
case MDCNFG ... SA1110:
if ((addr & 3) == 0)
return s->mm_regs[addr >> 2];
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
return 0;
}
static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
addr -= s->mm_base;
switch (addr) {
case MDCNFG ... SA1110:
if ((addr & 3) == 0) {
s->mm_regs[addr >> 2] = value;
break;
}
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
}
static CPUReadMemoryFunc *pxa2xx_mm_readfn[] = {
pxa2xx_mm_read,
pxa2xx_mm_read,
pxa2xx_mm_read,
};
static CPUWriteMemoryFunc *pxa2xx_mm_writefn[] = {
pxa2xx_mm_write,
pxa2xx_mm_write,
pxa2xx_mm_write,
};
static void pxa2xx_mm_save(QEMUFile *f, void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
int i;
for (i = 0; i < 0x1a; i ++)
qemu_put_be32s(f, &s->mm_regs[i]);
}
static int pxa2xx_mm_load(QEMUFile *f, void *opaque, int version_id)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
int i;
for (i = 0; i < 0x1a; i ++)
qemu_get_be32s(f, &s->mm_regs[i]);
return 0;
}
/* Synchronous Serial Ports */
struct pxa2xx_ssp_s {
target_phys_addr_t base;
qemu_irq irq;
int enable;
uint32_t sscr[2];
uint32_t sspsp;
uint32_t ssto;
uint32_t ssitr;
uint32_t sssr;
uint8_t sstsa;
uint8_t ssrsa;
uint8_t ssacd;
uint32_t rx_fifo[16];
int rx_level;
int rx_start;
uint32_t (*readfn)(void *opaque);
void (*writefn)(void *opaque, uint32_t value);
void *opaque;
};
#define SSCR0 0x00 /* SSP Control register 0 */
#define SSCR1 0x04 /* SSP Control register 1 */
#define SSSR 0x08 /* SSP Status register */
#define SSITR 0x0c /* SSP Interrupt Test register */
#define SSDR 0x10 /* SSP Data register */
#define SSTO 0x28 /* SSP Time-Out register */
#define SSPSP 0x2c /* SSP Programmable Serial Protocol register */
#define SSTSA 0x30 /* SSP TX Time Slot Active register */
#define SSRSA 0x34 /* SSP RX Time Slot Active register */
#define SSTSS 0x38 /* SSP Time Slot Status register */
#define SSACD 0x3c /* SSP Audio Clock Divider register */
/* Bitfields for above registers */
#define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
#define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
#define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
#define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
#define SSCR0_SSE (1 << 7)
#define SSCR0_RIM (1 << 22)
#define SSCR0_TIM (1 << 23)
#define SSCR0_MOD (1 << 31)
#define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
#define SSCR1_RIE (1 << 0)
#define SSCR1_TIE (1 << 1)
#define SSCR1_LBM (1 << 2)
#define SSCR1_MWDS (1 << 5)
#define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1)
#define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1)
#define SSCR1_EFWR (1 << 14)
#define SSCR1_PINTE (1 << 18)
#define SSCR1_TINTE (1 << 19)
#define SSCR1_RSRE (1 << 20)
#define SSCR1_TSRE (1 << 21)
#define SSCR1_EBCEI (1 << 29)
#define SSITR_INT (7 << 5)
#define SSSR_TNF (1 << 2)
#define SSSR_RNE (1 << 3)
#define SSSR_TFS (1 << 5)
#define SSSR_RFS (1 << 6)
#define SSSR_ROR (1 << 7)
#define SSSR_PINT (1 << 18)
#define SSSR_TINT (1 << 19)
#define SSSR_EOC (1 << 20)
#define SSSR_TUR (1 << 21)
#define SSSR_BCE (1 << 23)
#define SSSR_RW 0x00bc0080
static void pxa2xx_ssp_int_update(struct pxa2xx_ssp_s *s)
{
int level = 0;
level |= s->ssitr & SSITR_INT;
level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI);
level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM);
level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT));
level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE);
level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE);
level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM);
level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
qemu_set_irq(s->irq, !!level);
}
static void pxa2xx_ssp_fifo_update(struct pxa2xx_ssp_s *s)
{
s->sssr &= ~(0xf << 12); /* Clear RFL */
s->sssr &= ~(0xf << 8); /* Clear TFL */
s->sssr &= ~SSSR_TNF;
if (s->enable) {
s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
s->sssr |= SSSR_RFS;
else
s->sssr &= ~SSSR_RFS;
if (0 <= SSCR1_TFT(s->sscr[1]))
s->sssr |= SSSR_TFS;
else
s->sssr &= ~SSSR_TFS;
if (s->rx_level)
s->sssr |= SSSR_RNE;
else
s->sssr &= ~SSSR_RNE;
s->sssr |= SSSR_TNF;
}
pxa2xx_ssp_int_update(s);
}
static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr)
{
struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
uint32_t retval;
addr -= s->base;
switch (addr) {
case SSCR0:
return s->sscr[0];
case SSCR1:
return s->sscr[1];
case SSPSP:
return s->sspsp;
case SSTO:
return s->ssto;
case SSITR:
return s->ssitr;
case SSSR:
return s->sssr | s->ssitr;
case SSDR:
if (!s->enable)
return 0xffffffff;
if (s->rx_level < 1) {
printf("%s: SSP Rx Underrun\n", __FUNCTION__);
return 0xffffffff;
}
s->rx_level --;
retval = s->rx_fifo[s->rx_start ++];
s->rx_start &= 0xf;
pxa2xx_ssp_fifo_update(s);
return retval;
case SSTSA:
return s->sstsa;
case SSRSA:
return s->ssrsa;
case SSTSS:
return 0;
case SSACD:
return s->ssacd;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
return 0;
}
static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
addr -= s->base;
switch (addr) {
case SSCR0:
s->sscr[0] = value & 0xc7ffffff;
s->enable = value & SSCR0_SSE;
if (value & SSCR0_MOD)
printf("%s: Attempt to use network mode\n", __FUNCTION__);
if (s->enable && SSCR0_DSS(value) < 4)
printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
SSCR0_DSS(value));
if (!(value & SSCR0_SSE)) {
s->sssr = 0;
s->ssitr = 0;
s->rx_level = 0;
}
pxa2xx_ssp_fifo_update(s);
break;
case SSCR1:
s->sscr[1] = value;
if (value & (SSCR1_LBM | SSCR1_EFWR))
printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
pxa2xx_ssp_fifo_update(s);
break;
case SSPSP:
s->sspsp = value;
break;
case SSTO:
s->ssto = value;
break;
case SSITR:
s->ssitr = value & SSITR_INT;
pxa2xx_ssp_int_update(s);
break;
case SSSR:
s->sssr &= ~(value & SSSR_RW);
pxa2xx_ssp_int_update(s);
break;
case SSDR:
if (SSCR0_UWIRE(s->sscr[0])) {
if (s->sscr[1] & SSCR1_MWDS)
value &= 0xffff;
else
value &= 0xff;
} else
/* Note how 32bits overflow does no harm here */
value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
/* Data goes from here to the Tx FIFO and is shifted out from
* there directly to the slave, no need to buffer it.
*/
if (s->enable) {
if (s->writefn)
s->writefn(s->opaque, value);
if (s->rx_level < 0x10) {
if (s->readfn)
s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] =
s->readfn(s->opaque);
else
s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = 0x0;
} else
s->sssr |= SSSR_ROR;
}
pxa2xx_ssp_fifo_update(s);
break;
case SSTSA:
s->sstsa = value;
break;
case SSRSA:
s->ssrsa = value;
break;
case SSACD:
s->ssacd = value;
break;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
}
void pxa2xx_ssp_attach(struct pxa2xx_ssp_s *port,
uint32_t (*readfn)(void *opaque),
void (*writefn)(void *opaque, uint32_t value), void *opaque)
{
if (!port) {
printf("%s: no such SSP\n", __FUNCTION__);
exit(-1);
}
port->opaque = opaque;
port->readfn = readfn;
port->writefn = writefn;
}
static CPUReadMemoryFunc *pxa2xx_ssp_readfn[] = {
pxa2xx_ssp_read,
pxa2xx_ssp_read,
pxa2xx_ssp_read,
};
static CPUWriteMemoryFunc *pxa2xx_ssp_writefn[] = {
pxa2xx_ssp_write,
pxa2xx_ssp_write,
pxa2xx_ssp_write,
};
static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
{
struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
int i;
qemu_put_be32(f, s->enable);
qemu_put_be32s(f, &s->sscr[0]);
qemu_put_be32s(f, &s->sscr[1]);
qemu_put_be32s(f, &s->sspsp);
qemu_put_be32s(f, &s->ssto);
qemu_put_be32s(f, &s->ssitr);
qemu_put_be32s(f, &s->sssr);
qemu_put_8s(f, &s->sstsa);
qemu_put_8s(f, &s->ssrsa);
qemu_put_8s(f, &s->ssacd);
qemu_put_byte(f, s->rx_level);
for (i = 0; i < s->rx_level; i ++)
qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
}
static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
{
struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
int i;
s->enable = qemu_get_be32(f);
qemu_get_be32s(f, &s->sscr[0]);
qemu_get_be32s(f, &s->sscr[1]);
qemu_get_be32s(f, &s->sspsp);
qemu_get_be32s(f, &s->ssto);
qemu_get_be32s(f, &s->ssitr);
qemu_get_be32s(f, &s->sssr);
qemu_get_8s(f, &s->sstsa);
qemu_get_8s(f, &s->ssrsa);
qemu_get_8s(f, &s->ssacd);
s->rx_level = qemu_get_byte(f);
s->rx_start = 0;
for (i = 0; i < s->rx_level; i ++)
s->rx_fifo[i] = qemu_get_byte(f);
return 0;
}
/* Real-Time Clock */
#define RCNR 0x00 /* RTC Counter register */
#define RTAR 0x04 /* RTC Alarm register */
#define RTSR 0x08 /* RTC Status register */
#define RTTR 0x0c /* RTC Timer Trim register */
#define RDCR 0x10 /* RTC Day Counter register */
#define RYCR 0x14 /* RTC Year Counter register */
#define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */
#define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */
#define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */
#define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */
#define SWCR 0x28 /* RTC Stopwatch Counter register */
#define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */
#define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */
#define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */
#define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */
static inline void pxa2xx_rtc_int_update(struct pxa2xx_state_s *s)
{
qemu_set_irq(s->pic[PXA2XX_PIC_RTCALARM], !!(s->rtsr & 0x2553));
}
static void pxa2xx_rtc_hzupdate(struct pxa2xx_state_s *s)
{
int64_t rt = qemu_get_clock(rt_clock);
s->last_rcnr += ((rt - s->last_hz) << 15) /
(1000 * ((s->rttr & 0xffff) + 1));
s->last_rdcr += ((rt - s->last_hz) << 15) /
(1000 * ((s->rttr & 0xffff) + 1));
s->last_hz = rt;
}
static void pxa2xx_rtc_swupdate(struct pxa2xx_state_s *s)
{
int64_t rt = qemu_get_clock(rt_clock);
if (s->rtsr & (1 << 12))
s->last_swcr += (rt - s->last_sw) / 10;
s->last_sw = rt;
}
static void pxa2xx_rtc_piupdate(struct pxa2xx_state_s *s)
{
int64_t rt = qemu_get_clock(rt_clock);
if (s->rtsr & (1 << 15))
s->last_swcr += rt - s->last_pi;
s->last_pi = rt;
}
static inline void pxa2xx_rtc_alarm_update(struct pxa2xx_state_s *s,
uint32_t rtsr)
{
if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
qemu_mod_timer(s->rtc_hz, s->last_hz +
(((s->rtar - s->last_rcnr) * 1000 *
((s->rttr & 0xffff) + 1)) >> 15));
else
qemu_del_timer(s->rtc_hz);
if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
qemu_mod_timer(s->rtc_rdal1, s->last_hz +
(((s->rdar1 - s->last_rdcr) * 1000 *
((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
else
qemu_del_timer(s->rtc_rdal1);
if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
qemu_mod_timer(s->rtc_rdal2, s->last_hz +
(((s->rdar2 - s->last_rdcr) * 1000 *
((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
else
qemu_del_timer(s->rtc_rdal2);
if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
qemu_mod_timer(s->rtc_swal1, s->last_sw +
(s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
else
qemu_del_timer(s->rtc_swal1);
if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
qemu_mod_timer(s->rtc_swal2, s->last_sw +
(s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
else
qemu_del_timer(s->rtc_swal2);
if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
qemu_mod_timer(s->rtc_pi, s->last_pi +
(s->piar & 0xffff) - s->last_rtcpicr);
else
qemu_del_timer(s->rtc_pi);
}
static inline void pxa2xx_rtc_hz_tick(void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
s->rtsr |= (1 << 0);
pxa2xx_rtc_alarm_update(s, s->rtsr);
pxa2xx_rtc_int_update(s);
}
static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
s->rtsr |= (1 << 4);
pxa2xx_rtc_alarm_update(s, s->rtsr);
pxa2xx_rtc_int_update(s);
}
static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
s->rtsr |= (1 << 6);
pxa2xx_rtc_alarm_update(s, s->rtsr);
pxa2xx_rtc_int_update(s);
}
static inline void pxa2xx_rtc_swal1_tick(void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
s->rtsr |= (1 << 8);
pxa2xx_rtc_alarm_update(s, s->rtsr);
pxa2xx_rtc_int_update(s);
}
static inline void pxa2xx_rtc_swal2_tick(void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
s->rtsr |= (1 << 10);
pxa2xx_rtc_alarm_update(s, s->rtsr);
pxa2xx_rtc_int_update(s);
}
static inline void pxa2xx_rtc_pi_tick(void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
s->rtsr |= (1 << 13);
pxa2xx_rtc_piupdate(s);
s->last_rtcpicr = 0;
pxa2xx_rtc_alarm_update(s, s->rtsr);
pxa2xx_rtc_int_update(s);
}
static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
addr -= s->rtc_base;
switch (addr) {
case RTTR:
return s->rttr;
case RTSR:
return s->rtsr;
case RTAR:
return s->rtar;
case RDAR1:
return s->rdar1;
case RDAR2:
return s->rdar2;
case RYAR1:
return s->ryar1;
case RYAR2:
return s->ryar2;
case SWAR1:
return s->swar1;
case SWAR2:
return s->swar2;
case PIAR:
return s->piar;
case RCNR:
return s->last_rcnr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
(1000 * ((s->rttr & 0xffff) + 1));
case RDCR:
return s->last_rdcr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
(1000 * ((s->rttr & 0xffff) + 1));
case RYCR:
return s->last_rycr;
case SWCR:
if (s->rtsr & (1 << 12))
return s->last_swcr + (qemu_get_clock(rt_clock) - s->last_sw) / 10;
else
return s->last_swcr;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
return 0;
}
static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
addr -= s->rtc_base;
switch (addr) {
case RTTR:
if (!(s->rttr & (1 << 31))) {
pxa2xx_rtc_hzupdate(s);
s->rttr = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
}
break;
case RTSR:
if ((s->rtsr ^ value) & (1 << 15))
pxa2xx_rtc_piupdate(s);
if ((s->rtsr ^ value) & (1 << 12))
pxa2xx_rtc_swupdate(s);
if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
pxa2xx_rtc_alarm_update(s, value);
s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
pxa2xx_rtc_int_update(s);
break;
case RTAR:
s->rtar = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case RDAR1:
s->rdar1 = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case RDAR2:
s->rdar2 = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case RYAR1:
s->ryar1 = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case RYAR2:
s->ryar2 = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case SWAR1:
pxa2xx_rtc_swupdate(s);
s->swar1 = value;
s->last_swcr = 0;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case SWAR2:
s->swar2 = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case PIAR:
s->piar = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case RCNR:
pxa2xx_rtc_hzupdate(s);
s->last_rcnr = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case RDCR:
pxa2xx_rtc_hzupdate(s);
s->last_rdcr = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case RYCR:
s->last_rycr = value;
break;
case SWCR:
pxa2xx_rtc_swupdate(s);
s->last_swcr = value;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
case RTCPICR:
pxa2xx_rtc_piupdate(s);
s->last_rtcpicr = value & 0xffff;
pxa2xx_rtc_alarm_update(s, s->rtsr);
break;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
}
}
static CPUReadMemoryFunc *pxa2xx_rtc_readfn[] = {
pxa2xx_rtc_read,
pxa2xx_rtc_read,
pxa2xx_rtc_read,
};
static CPUWriteMemoryFunc *pxa2xx_rtc_writefn[] = {
pxa2xx_rtc_write,
pxa2xx_rtc_write,
pxa2xx_rtc_write,
};
static void pxa2xx_rtc_init(struct pxa2xx_state_s *s)
{
struct tm tm;
int wom;
s->rttr = 0x7fff;
s->rtsr = 0;
qemu_get_timedate(&tm, 0);
wom = ((tm.tm_mday - 1) / 7) + 1;
s->last_rcnr = (uint32_t) mktime(&tm);
s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
(tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
s->last_rycr = ((tm.tm_year + 1900) << 9) |
((tm.tm_mon + 1) << 5) | tm.tm_mday;
s->last_swcr = (tm.tm_hour << 19) |
(tm.tm_min << 13) | (tm.tm_sec << 7);
s->last_rtcpicr = 0;
s->last_hz = s->last_sw = s->last_pi = qemu_get_clock(rt_clock);
s->rtc_hz = qemu_new_timer(rt_clock, pxa2xx_rtc_hz_tick, s);
s->rtc_rdal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal1_tick, s);
s->rtc_rdal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal2_tick, s);
s->rtc_swal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal1_tick, s);
s->rtc_swal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal2_tick, s);
s->rtc_pi = qemu_new_timer(rt_clock, pxa2xx_rtc_pi_tick, s);
}
static void pxa2xx_rtc_save(QEMUFile *f, void *opaque)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
pxa2xx_rtc_hzupdate(s);
pxa2xx_rtc_piupdate(s);
pxa2xx_rtc_swupdate(s);
qemu_put_be32s(f, &s->rttr);
qemu_put_be32s(f, &s->rtsr);
qemu_put_be32s(f, &s->rtar);
qemu_put_be32s(f, &s->rdar1);
qemu_put_be32s(f, &s->rdar2);
qemu_put_be32s(f, &s->ryar1);
qemu_put_be32s(f, &s->ryar2);
qemu_put_be32s(f, &s->swar1);
qemu_put_be32s(f, &s->swar2);
qemu_put_be32s(f, &s->piar);
qemu_put_be32s(f, &s->last_rcnr);
qemu_put_be32s(f, &s->last_rdcr);
qemu_put_be32s(f, &s->last_rycr);
qemu_put_be32s(f, &s->last_swcr);
qemu_put_be32s(f, &s->last_rtcpicr);
qemu_put_be64s(f, (uint64_t *) &s->last_hz);
qemu_put_be64s(f, (uint64_t *) &s->last_sw);
qemu_put_be64s(f, (uint64_t *) &s->last_pi);
}
static int pxa2xx_rtc_load(QEMUFile *f, void *opaque, int version_id)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
qemu_get_be32s(f, &s->rttr);
qemu_get_be32s(f, &s->rtsr);
qemu_get_be32s(f, &s->rtar);
qemu_get_be32s(f, &s->rdar1);
qemu_get_be32s(f, &s->rdar2);
qemu_get_be32s(f, &s->ryar1);
qemu_get_be32s(f, &s->ryar2);
qemu_get_be32s(f, &s->swar1);
qemu_get_be32s(f, &s->swar2);
qemu_get_be32s(f, &s->piar);
qemu_get_be32s(f, &s->last_rcnr);
qemu_get_be32s(f, &s->last_rdcr);
qemu_get_be32s(f, &s->last_rycr);
qemu_get_be32s(f, &s->last_swcr);
qemu_get_be32s(f, &s->last_rtcpicr);
qemu_get_be64s(f, (uint64_t *) &s->last_hz);
qemu_get_be64s(f, (uint64_t *) &s->last_sw);
qemu_get_be64s(f, (uint64_t *) &s->last_pi);
pxa2xx_rtc_alarm_update(s, s->rtsr);
return 0;
}
/* I2C Interface */
struct pxa2xx_i2c_s {
i2c_slave slave;
i2c_bus *bus;
target_phys_addr_t base;
qemu_irq irq;
uint16_t control;
uint16_t status;
uint8_t ibmr;
uint8_t data;
};
#define IBMR 0x80 /* I2C Bus Monitor register */
#define IDBR 0x88 /* I2C Data Buffer register */
#define ICR 0x90 /* I2C Control register */
#define ISR 0x98 /* I2C Status register */
#define ISAR 0xa0 /* I2C Slave Address register */
static void pxa2xx_i2c_update(struct pxa2xx_i2c_s *s)
{
uint16_t level = 0;
level |= s->status & s->control & (1 << 10); /* BED */
level |= (s->status & (1 << 7)) && (s->control & (1 << 9)); /* IRF */
level |= (s->status & (1 << 6)) && (s->control & (1 << 8)); /* ITE */
level |= s->status & (1 << 9); /* SAD */
qemu_set_irq(s->irq, !!level);
}
/* These are only stubs now. */
static void pxa2xx_i2c_event(i2c_slave *i2c, enum i2c_event event)
{
struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
switch (event) {
case I2C_START_SEND:
s->status |= (1 << 9); /* set SAD */
s->status &= ~(1 << 0); /* clear RWM */
break;
case I2C_START_RECV:
s->status |= (1 << 9); /* set SAD */
s->status |= 1 << 0; /* set RWM */
break;
case I2C_FINISH:
s->status |= (1 << 4); /* set SSD */
break;
case I2C_NACK:
s->status |= 1 << 1; /* set ACKNAK */
break;
}
pxa2xx_i2c_update(s);
}
static int pxa2xx_i2c_rx(i2c_slave *i2c)
{
struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
return 0;
if (s->status & (1 << 0)) { /* RWM */
s->status |= 1 << 6; /* set ITE */
}
pxa2xx_i2c_update(s);
return s->data;
}
static int pxa2xx_i2c_tx(i2c_slave *i2c, uint8_t data)
{
struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
return 1;
if (!(s->status & (1 << 0))) { /* RWM */
s->status |= 1 << 7; /* set IRF */
s->data = data;
}
pxa2xx_i2c_update(s);
return 1;
}
static uint32_t pxa2xx_i2c_read(void *opaque, target_phys_addr_t addr)
{
struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
addr -= s->base;
switch (addr) {
case ICR:
return s->control;
case ISR:
return s->status | (i2c_bus_busy(s->bus) << 2);
case ISAR:
return s->slave.address;
case IDBR:
return s->data;
case IBMR:
if (s->status & (1 << 2))
s->ibmr ^= 3; /* Fake SCL and SDA pin changes */
else
s->ibmr = 0;
return s->ibmr;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
return 0;
}
static void pxa2xx_i2c_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
int ack;
addr -= s->base;
switch (addr) {
case ICR:
s->control = value & 0xfff7;
if ((value & (1 << 3)) && (value & (1 << 6))) { /* TB and IUE */
/* TODO: slave mode */
if (value & (1 << 0)) { /* START condition */
if (s->data & 1)
s->status |= 1 << 0; /* set RWM */
else
s->status &= ~(1 << 0); /* clear RWM */
ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
} else {
if (s->status & (1 << 0)) { /* RWM */
s->data = i2c_recv(s->bus);
if (value & (1 << 2)) /* ACKNAK */
i2c_nack(s->bus);
ack = 1;
} else
ack = !i2c_send(s->bus, s->data);
}
if (value & (1 << 1)) /* STOP condition */
i2c_end_transfer(s->bus);
if (ack) {
if (value & (1 << 0)) /* START condition */
s->status |= 1 << 6; /* set ITE */
else
if (s->status & (1 << 0)) /* RWM */
s->status |= 1 << 7; /* set IRF */
else
s->status |= 1 << 6; /* set ITE */
s->status &= ~(1 << 1); /* clear ACKNAK */
} else {
s->status |= 1 << 6; /* set ITE */
s->status |= 1 << 10; /* set BED */
s->status |= 1 << 1; /* set ACKNAK */
}
}
if (!(value & (1 << 3)) && (value & (1 << 6))) /* !TB and IUE */
if (value & (1 << 4)) /* MA */
i2c_end_transfer(s->bus);
pxa2xx_i2c_update(s);
break;
case ISR:
s->status &= ~(value & 0x07f0);
pxa2xx_i2c_update(s);
break;
case ISAR:
i2c_set_slave_address(&s->slave, value & 0x7f);
break;
case IDBR:
s->data = value & 0xff;
break;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
}
}
static CPUReadMemoryFunc *pxa2xx_i2c_readfn[] = {
pxa2xx_i2c_read,
pxa2xx_i2c_read,
pxa2xx_i2c_read,
};
static CPUWriteMemoryFunc *pxa2xx_i2c_writefn[] = {
pxa2xx_i2c_write,
pxa2xx_i2c_write,
pxa2xx_i2c_write,
};
static void pxa2xx_i2c_save(QEMUFile *f, void *opaque)
{
struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
qemu_put_be16s(f, &s->control);
qemu_put_be16s(f, &s->status);
qemu_put_8s(f, &s->ibmr);
qemu_put_8s(f, &s->data);
i2c_bus_save(f, s->bus);
i2c_slave_save(f, &s->slave);
}
static int pxa2xx_i2c_load(QEMUFile *f, void *opaque, int version_id)
{
struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
qemu_get_be16s(f, &s->control);
qemu_get_be16s(f, &s->status);
qemu_get_8s(f, &s->ibmr);
qemu_get_8s(f, &s->data);
i2c_bus_load(f, s->bus);
i2c_slave_load(f, &s->slave);
return 0;
}
struct pxa2xx_i2c_s *pxa2xx_i2c_init(target_phys_addr_t base,
qemu_irq irq, uint32_t page_size)
{
int iomemtype;
struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *)
i2c_slave_init(i2c_init_bus(), 0, sizeof(struct pxa2xx_i2c_s));
s->base = base;
s->irq = irq;
s->slave.event = pxa2xx_i2c_event;
s->slave.recv = pxa2xx_i2c_rx;
s->slave.send = pxa2xx_i2c_tx;
s->bus = i2c_init_bus();
iomemtype = cpu_register_io_memory(0, pxa2xx_i2c_readfn,
pxa2xx_i2c_writefn, s);
cpu_register_physical_memory(s->base & ~page_size, page_size, iomemtype);
register_savevm("pxa2xx_i2c", base, 0,
pxa2xx_i2c_save, pxa2xx_i2c_load, s);
return s;
}
i2c_bus *pxa2xx_i2c_bus(struct pxa2xx_i2c_s *s)
{
return s->bus;
}
/* PXA Inter-IC Sound Controller */
static void pxa2xx_i2s_reset(struct pxa2xx_i2s_s *i2s)
{
i2s->rx_len = 0;
i2s->tx_len = 0;
i2s->fifo_len = 0;
i2s->clk = 0x1a;
i2s->control[0] = 0x00;
i2s->control[1] = 0x00;
i2s->status = 0x00;
i2s->mask = 0x00;
}
#define SACR_TFTH(val) ((val >> 8) & 0xf)
#define SACR_RFTH(val) ((val >> 12) & 0xf)
#define SACR_DREC(val) (val & (1 << 3))
#define SACR_DPRL(val) (val & (1 << 4))
static inline void pxa2xx_i2s_update(struct pxa2xx_i2s_s *i2s)
{
int rfs, tfs;
rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
!SACR_DREC(i2s->control[1]);
tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
i2s->enable && !SACR_DPRL(i2s->control[1]);
pxa2xx_dma_request(i2s->dma, PXA2XX_RX_RQ_I2S, rfs);
pxa2xx_dma_request(i2s->dma, PXA2XX_TX_RQ_I2S, tfs);
i2s->status &= 0xe0;
if (i2s->fifo_len < 16 || !i2s->enable)
i2s->status |= 1 << 0; /* TNF */
if (i2s->rx_len)
i2s->status |= 1 << 1; /* RNE */
if (i2s->enable)
i2s->status |= 1 << 2; /* BSY */
if (tfs)
i2s->status |= 1 << 3; /* TFS */
if (rfs)
i2s->status |= 1 << 4; /* RFS */
if (!(i2s->tx_len && i2s->enable))
i2s->status |= i2s->fifo_len << 8; /* TFL */
i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */
qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
}
#define SACR0 0x00 /* Serial Audio Global Control register */
#define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */
#define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */
#define SAIMR 0x14 /* Serial Audio Interrupt Mask register */
#define SAICR 0x18 /* Serial Audio Interrupt Clear register */
#define SADIV 0x60 /* Serial Audio Clock Divider register */
#define SADR 0x80 /* Serial Audio Data register */
static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr)
{
struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
addr -= s->base;
switch (addr) {
case SACR0:
return s->control[0];
case SACR1:
return s->control[1];
case SASR0:
return s->status;
case SAIMR:
return s->mask;
case SAICR:
return 0;
case SADIV:
return s->clk;
case SADR:
if (s->rx_len > 0) {
s->rx_len --;
pxa2xx_i2s_update(s);
return s->codec_in(s->opaque);
}
return 0;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
return 0;
}
static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
uint32_t *sample;
addr -= s->base;
switch (addr) {
case SACR0:
if (value & (1 << 3)) /* RST */
pxa2xx_i2s_reset(s);
s->control[0] = value & 0xff3d;
if (!s->enable && (value & 1) && s->tx_len) { /* ENB */
for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
s->codec_out(s->opaque, *sample);
s->status &= ~(1 << 7); /* I2SOFF */
}
if (value & (1 << 4)) /* EFWR */
printf("%s: Attempt to use special function\n", __FUNCTION__);
s->enable = ((value ^ 4) & 5) == 5; /* ENB && !RST*/
pxa2xx_i2s_update(s);
break;
case SACR1:
s->control[1] = value & 0x0039;
if (value & (1 << 5)) /* ENLBF */
printf("%s: Attempt to use loopback function\n", __FUNCTION__);
if (value & (1 << 4)) /* DPRL */
s->fifo_len = 0;
pxa2xx_i2s_update(s);
break;
case SAIMR:
s->mask = value & 0x0078;
pxa2xx_i2s_update(s);
break;
case SAICR:
s->status &= ~(value & (3 << 5));
pxa2xx_i2s_update(s);
break;
case SADIV:
s->clk = value & 0x007f;
break;
case SADR:
if (s->tx_len && s->enable) {
s->tx_len --;
pxa2xx_i2s_update(s);
s->codec_out(s->opaque, value);
} else if (s->fifo_len < 16) {
s->fifo[s->fifo_len ++] = value;
pxa2xx_i2s_update(s);
}
break;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
}
}
static CPUReadMemoryFunc *pxa2xx_i2s_readfn[] = {
pxa2xx_i2s_read,
pxa2xx_i2s_read,
pxa2xx_i2s_read,
};
static CPUWriteMemoryFunc *pxa2xx_i2s_writefn[] = {
pxa2xx_i2s_write,
pxa2xx_i2s_write,
pxa2xx_i2s_write,
};
static void pxa2xx_i2s_save(QEMUFile *f, void *opaque)
{
struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
qemu_put_be32s(f, &s->control[0]);
qemu_put_be32s(f, &s->control[1]);
qemu_put_be32s(f, &s->status);
qemu_put_be32s(f, &s->mask);
qemu_put_be32s(f, &s->clk);
qemu_put_be32(f, s->enable);
qemu_put_be32(f, s->rx_len);
qemu_put_be32(f, s->tx_len);
qemu_put_be32(f, s->fifo_len);
}
static int pxa2xx_i2s_load(QEMUFile *f, void *opaque, int version_id)
{
struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
qemu_get_be32s(f, &s->control[0]);
qemu_get_be32s(f, &s->control[1]);
qemu_get_be32s(f, &s->status);
qemu_get_be32s(f, &s->mask);
qemu_get_be32s(f, &s->clk);
s->enable = qemu_get_be32(f);
s->rx_len = qemu_get_be32(f);
s->tx_len = qemu_get_be32(f);
s->fifo_len = qemu_get_be32(f);
return 0;
}
static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
{
struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
uint32_t *sample;
/* Signal FIFO errors */
if (s->enable && s->tx_len)
s->status |= 1 << 5; /* TUR */
if (s->enable && s->rx_len)
s->status |= 1 << 6; /* ROR */
/* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
* handle the cases where it makes a difference. */
s->tx_len = tx - s->fifo_len;
s->rx_len = rx;
/* Note that is s->codec_out wasn't set, we wouldn't get called. */
if (s->enable)
for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
s->codec_out(s->opaque, *sample);
pxa2xx_i2s_update(s);
}
static struct pxa2xx_i2s_s *pxa2xx_i2s_init(target_phys_addr_t base,
qemu_irq irq, struct pxa2xx_dma_state_s *dma)
{
int iomemtype;
struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *)
qemu_mallocz(sizeof(struct pxa2xx_i2s_s));
s->base = base;
s->irq = irq;
s->dma = dma;
s->data_req = pxa2xx_i2s_data_req;
pxa2xx_i2s_reset(s);
iomemtype = cpu_register_io_memory(0, pxa2xx_i2s_readfn,
pxa2xx_i2s_writefn, s);
cpu_register_physical_memory(s->base & 0xfff00000, 0x100000, iomemtype);
register_savevm("pxa2xx_i2s", base, 0,
pxa2xx_i2s_save, pxa2xx_i2s_load, s);
return s;
}
/* PXA Fast Infra-red Communications Port */
struct pxa2xx_fir_s {
target_phys_addr_t base;
qemu_irq irq;
struct pxa2xx_dma_state_s *dma;
int enable;
CharDriverState *chr;
uint8_t control[3];
uint8_t status[2];
int rx_len;
int rx_start;
uint8_t rx_fifo[64];
};
static void pxa2xx_fir_reset(struct pxa2xx_fir_s *s)
{
s->control[0] = 0x00;
s->control[1] = 0x00;
s->control[2] = 0x00;
s->status[0] = 0x00;
s->status[1] = 0x00;
s->enable = 0;
}
static inline void pxa2xx_fir_update(struct pxa2xx_fir_s *s)
{
static const int tresh[4] = { 8, 16, 32, 0 };
int intr = 0;
if ((s->control[0] & (1 << 4)) && /* RXE */
s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */
s->status[0] |= 1 << 4; /* RFS */
else
s->status[0] &= ~(1 << 4); /* RFS */
if (s->control[0] & (1 << 3)) /* TXE */
s->status[0] |= 1 << 3; /* TFS */
else
s->status[0] &= ~(1 << 3); /* TFS */
if (s->rx_len)
s->status[1] |= 1 << 2; /* RNE */
else
s->status[1] &= ~(1 << 2); /* RNE */
if (s->control[0] & (1 << 4)) /* RXE */
s->status[1] |= 1 << 0; /* RSY */
else
s->status[1] &= ~(1 << 0); /* RSY */
intr |= (s->control[0] & (1 << 5)) && /* RIE */
(s->status[0] & (1 << 4)); /* RFS */
intr |= (s->control[0] & (1 << 6)) && /* TIE */
(s->status[0] & (1 << 3)); /* TFS */
intr |= (s->control[2] & (1 << 4)) && /* TRAIL */
(s->status[0] & (1 << 6)); /* EOC */
intr |= (s->control[0] & (1 << 2)) && /* TUS */
(s->status[0] & (1 << 1)); /* TUR */
intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */
pxa2xx_dma_request(s->dma, PXA2XX_RX_RQ_ICP, (s->status[0] >> 4) & 1);
pxa2xx_dma_request(s->dma, PXA2XX_TX_RQ_ICP, (s->status[0] >> 3) & 1);
qemu_set_irq(s->irq, intr && s->enable);
}
#define ICCR0 0x00 /* FICP Control register 0 */
#define ICCR1 0x04 /* FICP Control register 1 */
#define ICCR2 0x08 /* FICP Control register 2 */
#define ICDR 0x0c /* FICP Data register */
#define ICSR0 0x14 /* FICP Status register 0 */
#define ICSR1 0x18 /* FICP Status register 1 */
#define ICFOR 0x1c /* FICP FIFO Occupancy Status register */
static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr)
{
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
uint8_t ret;
addr -= s->base;
switch (addr) {
case ICCR0:
return s->control[0];
case ICCR1:
return s->control[1];
case ICCR2:
return s->control[2];
case ICDR:
s->status[0] &= ~0x01;
s->status[1] &= ~0x72;
if (s->rx_len) {
s->rx_len --;
ret = s->rx_fifo[s->rx_start ++];
s->rx_start &= 63;
pxa2xx_fir_update(s);
return ret;
}
printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
break;
case ICSR0:
return s->status[0];
case ICSR1:
return s->status[1] | (1 << 3); /* TNF */
case ICFOR:
return s->rx_len;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
return 0;
}
static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
uint8_t ch;
addr -= s->base;
switch (addr) {
case ICCR0:
s->control[0] = value;
if (!(value & (1 << 4))) /* RXE */
s->rx_len = s->rx_start = 0;
if (!(value & (1 << 3))) /* TXE */
/* Nop */;
s->enable = value & 1; /* ITR */
if (!s->enable)
s->status[0] = 0;
pxa2xx_fir_update(s);
break;
case ICCR1:
s->control[1] = value;
break;
case ICCR2:
s->control[2] = value & 0x3f;
pxa2xx_fir_update(s);
break;
case ICDR:
if (s->control[2] & (1 << 2)) /* TXP */
ch = value;
else
ch = ~value;
if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */
qemu_chr_write(s->chr, &ch, 1);
break;
case ICSR0:
s->status[0] &= ~(value & 0x66);
pxa2xx_fir_update(s);
break;
case ICFOR:
break;
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
}
}
static CPUReadMemoryFunc *pxa2xx_fir_readfn[] = {
pxa2xx_fir_read,
pxa2xx_fir_read,
pxa2xx_fir_read,
};
static CPUWriteMemoryFunc *pxa2xx_fir_writefn[] = {
pxa2xx_fir_write,
pxa2xx_fir_write,
pxa2xx_fir_write,
};
static int pxa2xx_fir_is_empty(void *opaque)
{
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
return (s->rx_len < 64);
}
static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
{
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
if (!(s->control[0] & (1 << 4))) /* RXE */
return;
while (size --) {
s->status[1] |= 1 << 4; /* EOF */
if (s->rx_len >= 64) {
s->status[1] |= 1 << 6; /* ROR */
break;
}
if (s->control[2] & (1 << 3)) /* RXP */
s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
else
s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
}
pxa2xx_fir_update(s);
}
static void pxa2xx_fir_event(void *opaque, int event)
{
}
static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
{
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
int i;
qemu_put_be32(f, s->enable);
qemu_put_8s(f, &s->control[0]);
qemu_put_8s(f, &s->control[1]);
qemu_put_8s(f, &s->control[2]);
qemu_put_8s(f, &s->status[0]);
qemu_put_8s(f, &s->status[1]);
qemu_put_byte(f, s->rx_len);
for (i = 0; i < s->rx_len; i ++)
qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
}
static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
{
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
int i;
s->enable = qemu_get_be32(f);
qemu_get_8s(f, &s->control[0]);
qemu_get_8s(f, &s->control[1]);
qemu_get_8s(f, &s->control[2]);
qemu_get_8s(f, &s->status[0]);
qemu_get_8s(f, &s->status[1]);
s->rx_len = qemu_get_byte(f);
s->rx_start = 0;
for (i = 0; i < s->rx_len; i ++)
s->rx_fifo[i] = qemu_get_byte(f);
return 0;
}
static struct pxa2xx_fir_s *pxa2xx_fir_init(target_phys_addr_t base,
qemu_irq irq, struct pxa2xx_dma_state_s *dma,
CharDriverState *chr)
{
int iomemtype;
struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *)
qemu_mallocz(sizeof(struct pxa2xx_fir_s));
s->base = base;
s->irq = irq;
s->dma = dma;
s->chr = chr;
pxa2xx_fir_reset(s);
iomemtype = cpu_register_io_memory(0, pxa2xx_fir_readfn,
pxa2xx_fir_writefn, s);
cpu_register_physical_memory(s->base, 0x1000, iomemtype);
if (chr)
qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
pxa2xx_fir_rx, pxa2xx_fir_event, s);
register_savevm("pxa2xx_fir", 0, 0, pxa2xx_fir_save, pxa2xx_fir_load, s);
return s;
}
static void pxa2xx_reset(void *opaque, int line, int level)
{
struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */
cpu_reset(s->env);
/* TODO: reset peripherals */
}
}
/* Initialise a PXA270 integrated chip (ARM based core). */
struct pxa2xx_state_s *pxa270_init(unsigned int sdram_size,
DisplayState *ds, const char *revision)
{
struct pxa2xx_state_s *s;
struct pxa2xx_ssp_s *ssp;
int iomemtype, i;
int index;
s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
if (revision && strncmp(revision, "pxa27", 5)) {
fprintf(stderr, "Machine requires a PXA27x processor.\n");
exit(1);
}
if (!revision)
revision = "pxa270";
s->env = cpu_init(revision);
if (!s->env) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
register_savevm("cpu", 0, ARM_CPU_SAVE_VERSION, cpu_save, cpu_load,
s->env);
s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
/* SDRAM & Internal Memory Storage */
cpu_register_physical_memory(PXA2XX_SDRAM_BASE,
sdram_size, qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
cpu_register_physical_memory(PXA2XX_INTERNAL_BASE,
0x40000, qemu_ram_alloc(0x40000) | IO_MEM_RAM);
s->pic = pxa2xx_pic_init(0x40d00000, s->env);
s->dma = pxa27x_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
pxa27x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0],
s->pic[PXA27X_PIC_OST_4_11]);
s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
index = drive_get_index(IF_SD, 0, 0);
if (index == -1) {
fprintf(stderr, "qemu: missing SecureDigital device\n");
exit(1);
}
s->mmc = pxa2xx_mmci_init(0x41100000, drives_table[index].bdrv,
s->pic[PXA2XX_PIC_MMC], s->dma);
for (i = 0; pxa270_serial[i].io_base; i ++)
if (serial_hds[i])
serial_mm_init(pxa270_serial[i].io_base, 2,
s->pic[pxa270_serial[i].irqn], serial_hds[i], 1);
else
break;
if (serial_hds[i])
s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
s->dma, serial_hds[i]);
if (ds)
s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds);
s->cm_base = 0x41300000;
s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
s->clkcfg = 0x00000009; /* Turbo mode active */
iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
pxa2xx_cm_writefn, s);
cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
s->mm_base = 0x48000000;
s->mm_regs[MDMRS >> 2] = 0x00020002;
s->mm_regs[MDREFR >> 2] = 0x03ca4000;
s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
pxa2xx_mm_writefn, s);
cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
s->pm_base = 0x40f00000;
iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
pxa2xx_pm_writefn, s);
cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
for (i = 0; pxa27x_ssp[i].io_base; i ++);
s->ssp = (struct pxa2xx_ssp_s **)
qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
ssp = (struct pxa2xx_ssp_s *)
qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
for (i = 0; pxa27x_ssp[i].io_base; i ++) {
s->ssp[i] = &ssp[i];
ssp[i].base = pxa27x_ssp[i].io_base;
ssp[i].irq = s->pic[pxa27x_ssp[i].irqn];
iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
pxa2xx_ssp_writefn, &ssp[i]);
cpu_register_physical_memory(ssp[i].base, 0x1000, iomemtype);
register_savevm("pxa2xx_ssp", i, 0,
pxa2xx_ssp_save, pxa2xx_ssp_load, s);
}
if (usb_enabled) {
usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
}
s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
s->rtc_base = 0x40900000;
iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
pxa2xx_rtc_writefn, s);
cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
pxa2xx_rtc_init(s);
register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save, pxa2xx_rtc_load, s);
s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);
s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
s->kp = pxa27x_keypad_init(0x41500000, s->pic[PXA2XX_PIC_KEYPAD]);
/* GPIO1 resets the processor */
/* The handler can be overridden by board-specific code */
pxa2xx_gpio_out_set(s->gpio, 1, s->reset);
return s;
}
/* Initialise a PXA255 integrated chip (ARM based core). */
struct pxa2xx_state_s *pxa255_init(unsigned int sdram_size,
DisplayState *ds)
{
struct pxa2xx_state_s *s;
struct pxa2xx_ssp_s *ssp;
int iomemtype, i;
int index;
s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
s->env = cpu_init("pxa255");
if (!s->env) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
register_savevm("cpu", 0, ARM_CPU_SAVE_VERSION, cpu_save, cpu_load,
s->env);
s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
/* SDRAM & Internal Memory Storage */
cpu_register_physical_memory(PXA2XX_SDRAM_BASE, sdram_size,
qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
cpu_register_physical_memory(PXA2XX_INTERNAL_BASE, PXA2XX_INTERNAL_SIZE,
qemu_ram_alloc(PXA2XX_INTERNAL_SIZE) | IO_MEM_RAM);
s->pic = pxa2xx_pic_init(0x40d00000, s->env);
s->dma = pxa255_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
pxa25x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0]);
s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 85);
index = drive_get_index(IF_SD, 0, 0);
if (index == -1) {
fprintf(stderr, "qemu: missing SecureDigital device\n");
exit(1);
}
s->mmc = pxa2xx_mmci_init(0x41100000, drives_table[index].bdrv,
s->pic[PXA2XX_PIC_MMC], s->dma);
for (i = 0; pxa255_serial[i].io_base; i ++)
if (serial_hds[i])
serial_mm_init(pxa255_serial[i].io_base, 2,
s->pic[pxa255_serial[i].irqn], serial_hds[i], 1);
else
break;
if (serial_hds[i])
s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
s->dma, serial_hds[i]);
if (ds)
s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds);
s->cm_base = 0x41300000;
s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
s->clkcfg = 0x00000009; /* Turbo mode active */
iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
pxa2xx_cm_writefn, s);
cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
s->mm_base = 0x48000000;
s->mm_regs[MDMRS >> 2] = 0x00020002;
s->mm_regs[MDREFR >> 2] = 0x03ca4000;
s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
pxa2xx_mm_writefn, s);
cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
s->pm_base = 0x40f00000;
iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
pxa2xx_pm_writefn, s);
cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
for (i = 0; pxa255_ssp[i].io_base; i ++);
s->ssp = (struct pxa2xx_ssp_s **)
qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
ssp = (struct pxa2xx_ssp_s *)
qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
for (i = 0; pxa255_ssp[i].io_base; i ++) {
s->ssp[i] = &ssp[i];
ssp[i].base = pxa255_ssp[i].io_base;
ssp[i].irq = s->pic[pxa255_ssp[i].irqn];
iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
pxa2xx_ssp_writefn, &ssp[i]);
cpu_register_physical_memory(ssp[i].base, 0x1000, iomemtype);
register_savevm("pxa2xx_ssp", i, 0,
pxa2xx_ssp_save, pxa2xx_ssp_load, s);
}
if (usb_enabled) {
usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
}
s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
s->rtc_base = 0x40900000;
iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
pxa2xx_rtc_writefn, s);
cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
pxa2xx_rtc_init(s);
register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save, pxa2xx_rtc_load, s);
s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);
s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
/* GPIO1 resets the processor */
/* The handler can be overridden by board-specific code */
pxa2xx_gpio_out_set(s->gpio, 1, s->reset);
return s;
}