qemu-e2k/include/exec/memory.h
Gerd Hoffmann 8deaf12ca1 memory: add support getting and using a dirty bitmap copy.
This patch adds support for getting and using a local copy of the dirty
bitmap.

memory_region_snapshot_and_clear_dirty() will create a snapshot of the
dirty bitmap for the specified range, clear the dirty bitmap and return
the copy.  The returned bitmap can be a bit larger than requested, the
range is expanded so the code can copy unsigned longs from the bitmap
and avoid atomic bit update operations.

memory_region_snapshot_get_dirty() will return the dirty status of
pages, pretty much like memory_region_get_dirty(), but using the copy
returned by memory_region_copy_and_clear_dirty().

Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Message-id: 20170421091632.30900-3-kraxel@redhat.com
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
2017-04-24 10:12:28 +02:00

1805 lines
68 KiB
C

/*
* Physical memory management API
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#ifndef MEMORY_H
#define MEMORY_H
#ifndef CONFIG_USER_ONLY
#include "exec/cpu-common.h"
#ifndef CONFIG_USER_ONLY
#include "exec/hwaddr.h"
#endif
#include "exec/memattrs.h"
#include "exec/ramlist.h"
#include "qemu/queue.h"
#include "qemu/int128.h"
#include "qemu/notify.h"
#include "qom/object.h"
#include "qemu/rcu.h"
#define RAM_ADDR_INVALID (~(ram_addr_t)0)
#define MAX_PHYS_ADDR_SPACE_BITS 62
#define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
#define TYPE_MEMORY_REGION "qemu:memory-region"
#define MEMORY_REGION(obj) \
OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
typedef struct MemoryRegionOps MemoryRegionOps;
typedef struct MemoryRegionMmio MemoryRegionMmio;
struct MemoryRegionMmio {
CPUReadMemoryFunc *read[3];
CPUWriteMemoryFunc *write[3];
};
typedef struct IOMMUTLBEntry IOMMUTLBEntry;
/* See address_space_translate: bit 0 is read, bit 1 is write. */
typedef enum {
IOMMU_NONE = 0,
IOMMU_RO = 1,
IOMMU_WO = 2,
IOMMU_RW = 3,
} IOMMUAccessFlags;
#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
struct IOMMUTLBEntry {
AddressSpace *target_as;
hwaddr iova;
hwaddr translated_addr;
hwaddr addr_mask; /* 0xfff = 4k translation */
IOMMUAccessFlags perm;
};
/*
* Bitmap for different IOMMUNotifier capabilities. Each notifier can
* register with one or multiple IOMMU Notifier capability bit(s).
*/
typedef enum {
IOMMU_NOTIFIER_NONE = 0,
/* Notify cache invalidations */
IOMMU_NOTIFIER_UNMAP = 0x1,
/* Notify entry changes (newly created entries) */
IOMMU_NOTIFIER_MAP = 0x2,
} IOMMUNotifierFlag;
#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
struct IOMMUNotifier;
typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
IOMMUTLBEntry *data);
struct IOMMUNotifier {
IOMMUNotify notify;
IOMMUNotifierFlag notifier_flags;
/* Notify for address space range start <= addr <= end */
hwaddr start;
hwaddr end;
QLIST_ENTRY(IOMMUNotifier) node;
};
typedef struct IOMMUNotifier IOMMUNotifier;
static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
IOMMUNotifierFlag flags,
hwaddr start, hwaddr end)
{
n->notify = fn;
n->notifier_flags = flags;
n->start = start;
n->end = end;
}
/* New-style MMIO accessors can indicate that the transaction failed.
* A zero (MEMTX_OK) response means success; anything else is a failure
* of some kind. The memory subsystem will bitwise-OR together results
* if it is synthesizing an operation from multiple smaller accesses.
*/
#define MEMTX_OK 0
#define MEMTX_ERROR (1U << 0) /* device returned an error */
#define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
typedef uint32_t MemTxResult;
/*
* Memory region callbacks
*/
struct MemoryRegionOps {
/* Read from the memory region. @addr is relative to @mr; @size is
* in bytes. */
uint64_t (*read)(void *opaque,
hwaddr addr,
unsigned size);
/* Write to the memory region. @addr is relative to @mr; @size is
* in bytes. */
void (*write)(void *opaque,
hwaddr addr,
uint64_t data,
unsigned size);
MemTxResult (*read_with_attrs)(void *opaque,
hwaddr addr,
uint64_t *data,
unsigned size,
MemTxAttrs attrs);
MemTxResult (*write_with_attrs)(void *opaque,
hwaddr addr,
uint64_t data,
unsigned size,
MemTxAttrs attrs);
enum device_endian endianness;
/* Guest-visible constraints: */
struct {
/* If nonzero, specify bounds on access sizes beyond which a machine
* check is thrown.
*/
unsigned min_access_size;
unsigned max_access_size;
/* If true, unaligned accesses are supported. Otherwise unaligned
* accesses throw machine checks.
*/
bool unaligned;
/*
* If present, and returns #false, the transaction is not accepted
* by the device (and results in machine dependent behaviour such
* as a machine check exception).
*/
bool (*accepts)(void *opaque, hwaddr addr,
unsigned size, bool is_write);
} valid;
/* Internal implementation constraints: */
struct {
/* If nonzero, specifies the minimum size implemented. Smaller sizes
* will be rounded upwards and a partial result will be returned.
*/
unsigned min_access_size;
/* If nonzero, specifies the maximum size implemented. Larger sizes
* will be done as a series of accesses with smaller sizes.
*/
unsigned max_access_size;
/* If true, unaligned accesses are supported. Otherwise all accesses
* are converted to (possibly multiple) naturally aligned accesses.
*/
bool unaligned;
} impl;
/* If .read and .write are not present, old_mmio may be used for
* backwards compatibility with old mmio registration
*/
const MemoryRegionMmio old_mmio;
};
typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
struct MemoryRegionIOMMUOps {
/* Return a TLB entry that contains a given address. */
IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
/* Returns minimum supported page size */
uint64_t (*get_min_page_size)(MemoryRegion *iommu);
/* Called when IOMMU Notifier flag changed */
void (*notify_flag_changed)(MemoryRegion *iommu,
IOMMUNotifierFlag old_flags,
IOMMUNotifierFlag new_flags);
/* Set this up to provide customized IOMMU replay function */
void (*replay)(MemoryRegion *iommu, IOMMUNotifier *notifier);
};
typedef struct CoalescedMemoryRange CoalescedMemoryRange;
typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
struct MemoryRegion {
Object parent_obj;
/* All fields are private - violators will be prosecuted */
/* The following fields should fit in a cache line */
bool romd_mode;
bool ram;
bool subpage;
bool readonly; /* For RAM regions */
bool rom_device;
bool flush_coalesced_mmio;
bool global_locking;
uint8_t dirty_log_mask;
RAMBlock *ram_block;
Object *owner;
const MemoryRegionIOMMUOps *iommu_ops;
const MemoryRegionOps *ops;
void *opaque;
MemoryRegion *container;
Int128 size;
hwaddr addr;
void (*destructor)(MemoryRegion *mr);
uint64_t align;
bool terminates;
bool ram_device;
bool enabled;
bool warning_printed; /* For reservations */
uint8_t vga_logging_count;
MemoryRegion *alias;
hwaddr alias_offset;
int32_t priority;
QTAILQ_HEAD(subregions, MemoryRegion) subregions;
QTAILQ_ENTRY(MemoryRegion) subregions_link;
QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
const char *name;
unsigned ioeventfd_nb;
MemoryRegionIoeventfd *ioeventfds;
QLIST_HEAD(, IOMMUNotifier) iommu_notify;
IOMMUNotifierFlag iommu_notify_flags;
};
#define IOMMU_NOTIFIER_FOREACH(n, mr) \
QLIST_FOREACH((n), &(mr)->iommu_notify, node)
/**
* MemoryListener: callbacks structure for updates to the physical memory map
*
* Allows a component to adjust to changes in the guest-visible memory map.
* Use with memory_listener_register() and memory_listener_unregister().
*/
struct MemoryListener {
void (*begin)(MemoryListener *listener);
void (*commit)(MemoryListener *listener);
void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
int old, int new);
void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
int old, int new);
void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
void (*log_global_start)(MemoryListener *listener);
void (*log_global_stop)(MemoryListener *listener);
void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
bool match_data, uint64_t data, EventNotifier *e);
void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
bool match_data, uint64_t data, EventNotifier *e);
void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
hwaddr addr, hwaddr len);
void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
hwaddr addr, hwaddr len);
/* Lower = earlier (during add), later (during del) */
unsigned priority;
AddressSpace *address_space;
QTAILQ_ENTRY(MemoryListener) link;
QTAILQ_ENTRY(MemoryListener) link_as;
};
/**
* AddressSpace: describes a mapping of addresses to #MemoryRegion objects
*/
struct AddressSpace {
/* All fields are private. */
struct rcu_head rcu;
char *name;
MemoryRegion *root;
int ref_count;
bool malloced;
/* Accessed via RCU. */
struct FlatView *current_map;
int ioeventfd_nb;
struct MemoryRegionIoeventfd *ioeventfds;
struct AddressSpaceDispatch *dispatch;
struct AddressSpaceDispatch *next_dispatch;
MemoryListener dispatch_listener;
QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
QTAILQ_ENTRY(AddressSpace) address_spaces_link;
};
/**
* MemoryRegionSection: describes a fragment of a #MemoryRegion
*
* @mr: the region, or %NULL if empty
* @address_space: the address space the region is mapped in
* @offset_within_region: the beginning of the section, relative to @mr's start
* @size: the size of the section; will not exceed @mr's boundaries
* @offset_within_address_space: the address of the first byte of the section
* relative to the region's address space
* @readonly: writes to this section are ignored
*/
struct MemoryRegionSection {
MemoryRegion *mr;
AddressSpace *address_space;
hwaddr offset_within_region;
Int128 size;
hwaddr offset_within_address_space;
bool readonly;
};
/**
* memory_region_init: Initialize a memory region
*
* The region typically acts as a container for other memory regions. Use
* memory_region_add_subregion() to add subregions.
*
* @mr: the #MemoryRegion to be initialized
* @owner: the object that tracks the region's reference count
* @name: used for debugging; not visible to the user or ABI
* @size: size of the region; any subregions beyond this size will be clipped
*/
void memory_region_init(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size);
/**
* memory_region_ref: Add 1 to a memory region's reference count
*
* Whenever memory regions are accessed outside the BQL, they need to be
* preserved against hot-unplug. MemoryRegions actually do not have their
* own reference count; they piggyback on a QOM object, their "owner".
* This function adds a reference to the owner.
*
* All MemoryRegions must have an owner if they can disappear, even if the
* device they belong to operates exclusively under the BQL. This is because
* the region could be returned at any time by memory_region_find, and this
* is usually under guest control.
*
* @mr: the #MemoryRegion
*/
void memory_region_ref(MemoryRegion *mr);
/**
* memory_region_unref: Remove 1 to a memory region's reference count
*
* Whenever memory regions are accessed outside the BQL, they need to be
* preserved against hot-unplug. MemoryRegions actually do not have their
* own reference count; they piggyback on a QOM object, their "owner".
* This function removes a reference to the owner and possibly destroys it.
*
* @mr: the #MemoryRegion
*/
void memory_region_unref(MemoryRegion *mr);
/**
* memory_region_init_io: Initialize an I/O memory region.
*
* Accesses into the region will cause the callbacks in @ops to be called.
* if @size is nonzero, subregions will be clipped to @size.
*
* @mr: the #MemoryRegion to be initialized.
* @owner: the object that tracks the region's reference count
* @ops: a structure containing read and write callbacks to be used when
* I/O is performed on the region.
* @opaque: passed to the read and write callbacks of the @ops structure.
* @name: used for debugging; not visible to the user or ABI
* @size: size of the region.
*/
void memory_region_init_io(MemoryRegion *mr,
struct Object *owner,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size);
/**
* memory_region_init_ram: Initialize RAM memory region. Accesses into the
* region will modify memory directly.
*
* @mr: the #MemoryRegion to be initialized.
* @owner: the object that tracks the region's reference count
* @name: Region name, becomes part of RAMBlock name used in migration stream
* must be unique within any device
* @size: size of the region.
* @errp: pointer to Error*, to store an error if it happens.
*/
void memory_region_init_ram(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size,
Error **errp);
/**
* memory_region_init_resizeable_ram: Initialize memory region with resizeable
* RAM. Accesses into the region will
* modify memory directly. Only an initial
* portion of this RAM is actually used.
* The used size can change across reboots.
*
* @mr: the #MemoryRegion to be initialized.
* @owner: the object that tracks the region's reference count
* @name: Region name, becomes part of RAMBlock name used in migration stream
* must be unique within any device
* @size: used size of the region.
* @max_size: max size of the region.
* @resized: callback to notify owner about used size change.
* @errp: pointer to Error*, to store an error if it happens.
*/
void memory_region_init_resizeable_ram(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size,
uint64_t max_size,
void (*resized)(const char*,
uint64_t length,
void *host),
Error **errp);
#ifdef __linux__
/**
* memory_region_init_ram_from_file: Initialize RAM memory region with a
* mmap-ed backend.
*
* @mr: the #MemoryRegion to be initialized.
* @owner: the object that tracks the region's reference count
* @name: Region name, becomes part of RAMBlock name used in migration stream
* must be unique within any device
* @size: size of the region.
* @share: %true if memory must be mmaped with the MAP_SHARED flag
* @path: the path in which to allocate the RAM.
* @errp: pointer to Error*, to store an error if it happens.
*/
void memory_region_init_ram_from_file(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size,
bool share,
const char *path,
Error **errp);
#endif
/**
* memory_region_init_ram_ptr: Initialize RAM memory region from a
* user-provided pointer. Accesses into the
* region will modify memory directly.
*
* @mr: the #MemoryRegion to be initialized.
* @owner: the object that tracks the region's reference count
* @name: Region name, becomes part of RAMBlock name used in migration stream
* must be unique within any device
* @size: size of the region.
* @ptr: memory to be mapped; must contain at least @size bytes.
*/
void memory_region_init_ram_ptr(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size,
void *ptr);
/**
* memory_region_init_ram_device_ptr: Initialize RAM device memory region from
* a user-provided pointer.
*
* A RAM device represents a mapping to a physical device, such as to a PCI
* MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
* into the VM address space and access to the region will modify memory
* directly. However, the memory region should not be included in a memory
* dump (device may not be enabled/mapped at the time of the dump), and
* operations incompatible with manipulating MMIO should be avoided. Replaces
* skip_dump flag.
*
* @mr: the #MemoryRegion to be initialized.
* @owner: the object that tracks the region's reference count
* @name: the name of the region.
* @size: size of the region.
* @ptr: memory to be mapped; must contain at least @size bytes.
*/
void memory_region_init_ram_device_ptr(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size,
void *ptr);
/**
* memory_region_init_alias: Initialize a memory region that aliases all or a
* part of another memory region.
*
* @mr: the #MemoryRegion to be initialized.
* @owner: the object that tracks the region's reference count
* @name: used for debugging; not visible to the user or ABI
* @orig: the region to be referenced; @mr will be equivalent to
* @orig between @offset and @offset + @size - 1.
* @offset: start of the section in @orig to be referenced.
* @size: size of the region.
*/
void memory_region_init_alias(MemoryRegion *mr,
struct Object *owner,
const char *name,
MemoryRegion *orig,
hwaddr offset,
uint64_t size);
/**
* memory_region_init_rom: Initialize a ROM memory region.
*
* This has the same effect as calling memory_region_init_ram()
* and then marking the resulting region read-only with
* memory_region_set_readonly().
*
* @mr: the #MemoryRegion to be initialized.
* @owner: the object that tracks the region's reference count
* @name: Region name, becomes part of RAMBlock name used in migration stream
* must be unique within any device
* @size: size of the region.
* @errp: pointer to Error*, to store an error if it happens.
*/
void memory_region_init_rom(MemoryRegion *mr,
struct Object *owner,
const char *name,
uint64_t size,
Error **errp);
/**
* memory_region_init_rom_device: Initialize a ROM memory region. Writes are
* handled via callbacks.
*
* @mr: the #MemoryRegion to be initialized.
* @owner: the object that tracks the region's reference count
* @ops: callbacks for write access handling (must not be NULL).
* @name: Region name, becomes part of RAMBlock name used in migration stream
* must be unique within any device
* @size: size of the region.
* @errp: pointer to Error*, to store an error if it happens.
*/
void memory_region_init_rom_device(MemoryRegion *mr,
struct Object *owner,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size,
Error **errp);
/**
* memory_region_init_reservation: Initialize a memory region that reserves
* I/O space.
*
* A reservation region primariy serves debugging purposes. It claims I/O
* space that is not supposed to be handled by QEMU itself. Any access via
* the memory API will cause an abort().
* This function is deprecated. Use memory_region_init_io() with NULL
* callbacks instead.
*
* @mr: the #MemoryRegion to be initialized
* @owner: the object that tracks the region's reference count
* @name: used for debugging; not visible to the user or ABI
* @size: size of the region.
*/
static inline void memory_region_init_reservation(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size)
{
memory_region_init_io(mr, owner, NULL, mr, name, size);
}
/**
* memory_region_init_iommu: Initialize a memory region that translates
* addresses
*
* An IOMMU region translates addresses and forwards accesses to a target
* memory region.
*
* @mr: the #MemoryRegion to be initialized
* @owner: the object that tracks the region's reference count
* @ops: a function that translates addresses into the @target region
* @name: used for debugging; not visible to the user or ABI
* @size: size of the region.
*/
void memory_region_init_iommu(MemoryRegion *mr,
struct Object *owner,
const MemoryRegionIOMMUOps *ops,
const char *name,
uint64_t size);
/**
* memory_region_owner: get a memory region's owner.
*
* @mr: the memory region being queried.
*/
struct Object *memory_region_owner(MemoryRegion *mr);
/**
* memory_region_size: get a memory region's size.
*
* @mr: the memory region being queried.
*/
uint64_t memory_region_size(MemoryRegion *mr);
/**
* memory_region_is_ram: check whether a memory region is random access
*
* Returns %true is a memory region is random access.
*
* @mr: the memory region being queried
*/
static inline bool memory_region_is_ram(MemoryRegion *mr)
{
return mr->ram;
}
/**
* memory_region_is_ram_device: check whether a memory region is a ram device
*
* Returns %true is a memory region is a device backed ram region
*
* @mr: the memory region being queried
*/
bool memory_region_is_ram_device(MemoryRegion *mr);
/**
* memory_region_is_romd: check whether a memory region is in ROMD mode
*
* Returns %true if a memory region is a ROM device and currently set to allow
* direct reads.
*
* @mr: the memory region being queried
*/
static inline bool memory_region_is_romd(MemoryRegion *mr)
{
return mr->rom_device && mr->romd_mode;
}
/**
* memory_region_is_iommu: check whether a memory region is an iommu
*
* Returns %true is a memory region is an iommu.
*
* @mr: the memory region being queried
*/
static inline bool memory_region_is_iommu(MemoryRegion *mr)
{
if (mr->alias) {
return memory_region_is_iommu(mr->alias);
}
return mr->iommu_ops;
}
/**
* memory_region_iommu_get_min_page_size: get minimum supported page size
* for an iommu
*
* Returns minimum supported page size for an iommu.
*
* @mr: the memory region being queried
*/
uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
/**
* memory_region_notify_iommu: notify a change in an IOMMU translation entry.
*
* The notification type will be decided by entry.perm bits:
*
* - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
* - For MAP (newly added entry) notifies: set entry.perm to the
* permission of the page (which is definitely !IOMMU_NONE).
*
* Note: for any IOMMU implementation, an in-place mapping change
* should be notified with an UNMAP followed by a MAP.
*
* @mr: the memory region that was changed
* @entry: the new entry in the IOMMU translation table. The entry
* replaces all old entries for the same virtual I/O address range.
* Deleted entries have .@perm == 0.
*/
void memory_region_notify_iommu(MemoryRegion *mr,
IOMMUTLBEntry entry);
/**
* memory_region_notify_one: notify a change in an IOMMU translation
* entry to a single notifier
*
* This works just like memory_region_notify_iommu(), but it only
* notifies a specific notifier, not all of them.
*
* @notifier: the notifier to be notified
* @entry: the new entry in the IOMMU translation table. The entry
* replaces all old entries for the same virtual I/O address range.
* Deleted entries have .@perm == 0.
*/
void memory_region_notify_one(IOMMUNotifier *notifier,
IOMMUTLBEntry *entry);
/**
* memory_region_register_iommu_notifier: register a notifier for changes to
* IOMMU translation entries.
*
* @mr: the memory region to observe
* @n: the IOMMUNotifier to be added; the notify callback receives a
* pointer to an #IOMMUTLBEntry as the opaque value; the pointer
* ceases to be valid on exit from the notifier.
*/
void memory_region_register_iommu_notifier(MemoryRegion *mr,
IOMMUNotifier *n);
/**
* memory_region_iommu_replay: replay existing IOMMU translations to
* a notifier with the minimum page granularity returned by
* mr->iommu_ops->get_page_size().
*
* @mr: the memory region to observe
* @n: the notifier to which to replay iommu mappings
* @is_write: Whether to treat the replay as a translate "write"
* through the iommu
*/
void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n,
bool is_write);
/**
* memory_region_iommu_replay_all: replay existing IOMMU translations
* to all the notifiers registered.
*
* @mr: the memory region to observe
*/
void memory_region_iommu_replay_all(MemoryRegion *mr);
/**
* memory_region_unregister_iommu_notifier: unregister a notifier for
* changes to IOMMU translation entries.
*
* @mr: the memory region which was observed and for which notity_stopped()
* needs to be called
* @n: the notifier to be removed.
*/
void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
IOMMUNotifier *n);
/**
* memory_region_name: get a memory region's name
*
* Returns the string that was used to initialize the memory region.
*
* @mr: the memory region being queried
*/
const char *memory_region_name(const MemoryRegion *mr);
/**
* memory_region_is_logging: return whether a memory region is logging writes
*
* Returns %true if the memory region is logging writes for the given client
*
* @mr: the memory region being queried
* @client: the client being queried
*/
bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
/**
* memory_region_get_dirty_log_mask: return the clients for which a
* memory region is logging writes.
*
* Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
* are the bit indices.
*
* @mr: the memory region being queried
*/
uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
/**
* memory_region_is_rom: check whether a memory region is ROM
*
* Returns %true is a memory region is read-only memory.
*
* @mr: the memory region being queried
*/
static inline bool memory_region_is_rom(MemoryRegion *mr)
{
return mr->ram && mr->readonly;
}
/**
* memory_region_get_fd: Get a file descriptor backing a RAM memory region.
*
* Returns a file descriptor backing a file-based RAM memory region,
* or -1 if the region is not a file-based RAM memory region.
*
* @mr: the RAM or alias memory region being queried.
*/
int memory_region_get_fd(MemoryRegion *mr);
/**
* memory_region_set_fd: Mark a RAM memory region as backed by a
* file descriptor.
*
* This function is typically used after memory_region_init_ram_ptr().
*
* @mr: the memory region being queried.
* @fd: the file descriptor that backs @mr.
*/
void memory_region_set_fd(MemoryRegion *mr, int fd);
/**
* memory_region_from_host: Convert a pointer into a RAM memory region
* and an offset within it.
*
* Given a host pointer inside a RAM memory region (created with
* memory_region_init_ram() or memory_region_init_ram_ptr()), return
* the MemoryRegion and the offset within it.
*
* Use with care; by the time this function returns, the returned pointer is
* not protected by RCU anymore. If the caller is not within an RCU critical
* section and does not hold the iothread lock, it must have other means of
* protecting the pointer, such as a reference to the region that includes
* the incoming ram_addr_t.
*
* @mr: the memory region being queried.
*/
MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
/**
* memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
*
* Returns a host pointer to a RAM memory region (created with
* memory_region_init_ram() or memory_region_init_ram_ptr()).
*
* Use with care; by the time this function returns, the returned pointer is
* not protected by RCU anymore. If the caller is not within an RCU critical
* section and does not hold the iothread lock, it must have other means of
* protecting the pointer, such as a reference to the region that includes
* the incoming ram_addr_t.
*
* @mr: the memory region being queried.
*/
void *memory_region_get_ram_ptr(MemoryRegion *mr);
/* memory_region_ram_resize: Resize a RAM region.
*
* Only legal before guest might have detected the memory size: e.g. on
* incoming migration, or right after reset.
*
* @mr: a memory region created with @memory_region_init_resizeable_ram.
* @newsize: the new size the region
* @errp: pointer to Error*, to store an error if it happens.
*/
void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
Error **errp);
/**
* memory_region_set_log: Turn dirty logging on or off for a region.
*
* Turns dirty logging on or off for a specified client (display, migration).
* Only meaningful for RAM regions.
*
* @mr: the memory region being updated.
* @log: whether dirty logging is to be enabled or disabled.
* @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
*/
void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
/**
* memory_region_get_dirty: Check whether a range of bytes is dirty
* for a specified client.
*
* Checks whether a range of bytes has been written to since the last
* call to memory_region_reset_dirty() with the same @client. Dirty logging
* must be enabled.
*
* @mr: the memory region being queried.
* @addr: the address (relative to the start of the region) being queried.
* @size: the size of the range being queried.
* @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
* %DIRTY_MEMORY_VGA.
*/
bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
hwaddr size, unsigned client);
/**
* memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
*
* Marks a range of bytes as dirty, after it has been dirtied outside
* guest code.
*
* @mr: the memory region being dirtied.
* @addr: the address (relative to the start of the region) being dirtied.
* @size: size of the range being dirtied.
*/
void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
hwaddr size);
/**
* memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
* for a specified client. It clears them.
*
* Checks whether a range of bytes has been written to since the last
* call to memory_region_reset_dirty() with the same @client. Dirty logging
* must be enabled.
*
* @mr: the memory region being queried.
* @addr: the address (relative to the start of the region) being queried.
* @size: the size of the range being queried.
* @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
* %DIRTY_MEMORY_VGA.
*/
bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
hwaddr size, unsigned client);
/**
* memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
* bitmap and clear it.
*
* Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
* returns the snapshot. The snapshot can then be used to query dirty
* status, using memory_region_snapshot_get_dirty. Unlike
* memory_region_test_and_clear_dirty this allows to query the same
* page multiple times, which is especially useful for display updates
* where the scanlines often are not page aligned.
*
* The dirty bitmap region which gets copyed into the snapshot (and
* cleared afterwards) can be larger than requested. The boundaries
* are rounded up/down so complete bitmap longs (covering 64 pages on
* 64bit hosts) can be copied over into the bitmap snapshot. Which
* isn't a problem for display updates as the extra pages are outside
* the visible area, and in case the visible area changes a full
* display redraw is due anyway. Should other use cases for this
* function emerge we might have to revisit this implementation
* detail.
*
* Use g_free to release DirtyBitmapSnapshot.
*
* @mr: the memory region being queried.
* @addr: the address (relative to the start of the region) being queried.
* @size: the size of the range being queried.
* @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
*/
DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
hwaddr addr,
hwaddr size,
unsigned client);
/**
* memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
* in the specified dirty bitmap snapshot.
*
* @mr: the memory region being queried.
* @snap: the dirty bitmap snapshot
* @addr: the address (relative to the start of the region) being queried.
* @size: the size of the range being queried.
*/
bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
DirtyBitmapSnapshot *snap,
hwaddr addr, hwaddr size);
/**
* memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
* any external TLBs (e.g. kvm)
*
* Flushes dirty information from accelerators such as kvm and vhost-net
* and makes it available to users of the memory API.
*
* @mr: the region being flushed.
*/
void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
/**
* memory_region_reset_dirty: Mark a range of pages as clean, for a specified
* client.
*
* Marks a range of pages as no longer dirty.
*
* @mr: the region being updated.
* @addr: the start of the subrange being cleaned.
* @size: the size of the subrange being cleaned.
* @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
* %DIRTY_MEMORY_VGA.
*/
void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
hwaddr size, unsigned client);
/**
* memory_region_set_readonly: Turn a memory region read-only (or read-write)
*
* Allows a memory region to be marked as read-only (turning it into a ROM).
* only useful on RAM regions.
*
* @mr: the region being updated.
* @readonly: whether rhe region is to be ROM or RAM.
*/
void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
/**
* memory_region_rom_device_set_romd: enable/disable ROMD mode
*
* Allows a ROM device (initialized with memory_region_init_rom_device() to
* set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
* device is mapped to guest memory and satisfies read access directly.
* When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
* Writes are always handled by the #MemoryRegion.write function.
*
* @mr: the memory region to be updated
* @romd_mode: %true to put the region into ROMD mode
*/
void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
/**
* memory_region_set_coalescing: Enable memory coalescing for the region.
*
* Enabled writes to a region to be queued for later processing. MMIO ->write
* callbacks may be delayed until a non-coalesced MMIO is issued.
* Only useful for IO regions. Roughly similar to write-combining hardware.
*
* @mr: the memory region to be write coalesced
*/
void memory_region_set_coalescing(MemoryRegion *mr);
/**
* memory_region_add_coalescing: Enable memory coalescing for a sub-range of
* a region.
*
* Like memory_region_set_coalescing(), but works on a sub-range of a region.
* Multiple calls can be issued coalesced disjoint ranges.
*
* @mr: the memory region to be updated.
* @offset: the start of the range within the region to be coalesced.
* @size: the size of the subrange to be coalesced.
*/
void memory_region_add_coalescing(MemoryRegion *mr,
hwaddr offset,
uint64_t size);
/**
* memory_region_clear_coalescing: Disable MMIO coalescing for the region.
*
* Disables any coalescing caused by memory_region_set_coalescing() or
* memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
* hardware.
*
* @mr: the memory region to be updated.
*/
void memory_region_clear_coalescing(MemoryRegion *mr);
/**
* memory_region_set_flush_coalesced: Enforce memory coalescing flush before
* accesses.
*
* Ensure that pending coalesced MMIO request are flushed before the memory
* region is accessed. This property is automatically enabled for all regions
* passed to memory_region_set_coalescing() and memory_region_add_coalescing().
*
* @mr: the memory region to be updated.
*/
void memory_region_set_flush_coalesced(MemoryRegion *mr);
/**
* memory_region_clear_flush_coalesced: Disable memory coalescing flush before
* accesses.
*
* Clear the automatic coalesced MMIO flushing enabled via
* memory_region_set_flush_coalesced. Note that this service has no effect on
* memory regions that have MMIO coalescing enabled for themselves. For them,
* automatic flushing will stop once coalescing is disabled.
*
* @mr: the memory region to be updated.
*/
void memory_region_clear_flush_coalesced(MemoryRegion *mr);
/**
* memory_region_set_global_locking: Declares the access processing requires
* QEMU's global lock.
*
* When this is invoked, accesses to the memory region will be processed while
* holding the global lock of QEMU. This is the default behavior of memory
* regions.
*
* @mr: the memory region to be updated.
*/
void memory_region_set_global_locking(MemoryRegion *mr);
/**
* memory_region_clear_global_locking: Declares that access processing does
* not depend on the QEMU global lock.
*
* By clearing this property, accesses to the memory region will be processed
* outside of QEMU's global lock (unless the lock is held on when issuing the
* access request). In this case, the device model implementing the access
* handlers is responsible for synchronization of concurrency.
*
* @mr: the memory region to be updated.
*/
void memory_region_clear_global_locking(MemoryRegion *mr);
/**
* memory_region_add_eventfd: Request an eventfd to be triggered when a word
* is written to a location.
*
* Marks a word in an IO region (initialized with memory_region_init_io())
* as a trigger for an eventfd event. The I/O callback will not be called.
* The caller must be prepared to handle failure (that is, take the required
* action if the callback _is_ called).
*
* @mr: the memory region being updated.
* @addr: the address within @mr that is to be monitored
* @size: the size of the access to trigger the eventfd
* @match_data: whether to match against @data, instead of just @addr
* @data: the data to match against the guest write
* @fd: the eventfd to be triggered when @addr, @size, and @data all match.
**/
void memory_region_add_eventfd(MemoryRegion *mr,
hwaddr addr,
unsigned size,
bool match_data,
uint64_t data,
EventNotifier *e);
/**
* memory_region_del_eventfd: Cancel an eventfd.
*
* Cancels an eventfd trigger requested by a previous
* memory_region_add_eventfd() call.
*
* @mr: the memory region being updated.
* @addr: the address within @mr that is to be monitored
* @size: the size of the access to trigger the eventfd
* @match_data: whether to match against @data, instead of just @addr
* @data: the data to match against the guest write
* @fd: the eventfd to be triggered when @addr, @size, and @data all match.
*/
void memory_region_del_eventfd(MemoryRegion *mr,
hwaddr addr,
unsigned size,
bool match_data,
uint64_t data,
EventNotifier *e);
/**
* memory_region_add_subregion: Add a subregion to a container.
*
* Adds a subregion at @offset. The subregion may not overlap with other
* subregions (except for those explicitly marked as overlapping). A region
* may only be added once as a subregion (unless removed with
* memory_region_del_subregion()); use memory_region_init_alias() if you
* want a region to be a subregion in multiple locations.
*
* @mr: the region to contain the new subregion; must be a container
* initialized with memory_region_init().
* @offset: the offset relative to @mr where @subregion is added.
* @subregion: the subregion to be added.
*/
void memory_region_add_subregion(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion);
/**
* memory_region_add_subregion_overlap: Add a subregion to a container
* with overlap.
*
* Adds a subregion at @offset. The subregion may overlap with other
* subregions. Conflicts are resolved by having a higher @priority hide a
* lower @priority. Subregions without priority are taken as @priority 0.
* A region may only be added once as a subregion (unless removed with
* memory_region_del_subregion()); use memory_region_init_alias() if you
* want a region to be a subregion in multiple locations.
*
* @mr: the region to contain the new subregion; must be a container
* initialized with memory_region_init().
* @offset: the offset relative to @mr where @subregion is added.
* @subregion: the subregion to be added.
* @priority: used for resolving overlaps; highest priority wins.
*/
void memory_region_add_subregion_overlap(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion,
int priority);
/**
* memory_region_get_ram_addr: Get the ram address associated with a memory
* region
*/
ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
uint64_t memory_region_get_alignment(const MemoryRegion *mr);
/**
* memory_region_del_subregion: Remove a subregion.
*
* Removes a subregion from its container.
*
* @mr: the container to be updated.
* @subregion: the region being removed; must be a current subregion of @mr.
*/
void memory_region_del_subregion(MemoryRegion *mr,
MemoryRegion *subregion);
/*
* memory_region_set_enabled: dynamically enable or disable a region
*
* Enables or disables a memory region. A disabled memory region
* ignores all accesses to itself and its subregions. It does not
* obscure sibling subregions with lower priority - it simply behaves as
* if it was removed from the hierarchy.
*
* Regions default to being enabled.
*
* @mr: the region to be updated
* @enabled: whether to enable or disable the region
*/
void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
/*
* memory_region_set_address: dynamically update the address of a region
*
* Dynamically updates the address of a region, relative to its container.
* May be used on regions are currently part of a memory hierarchy.
*
* @mr: the region to be updated
* @addr: new address, relative to container region
*/
void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
/*
* memory_region_set_size: dynamically update the size of a region.
*
* Dynamically updates the size of a region.
*
* @mr: the region to be updated
* @size: used size of the region.
*/
void memory_region_set_size(MemoryRegion *mr, uint64_t size);
/*
* memory_region_set_alias_offset: dynamically update a memory alias's offset
*
* Dynamically updates the offset into the target region that an alias points
* to, as if the fourth argument to memory_region_init_alias() has changed.
*
* @mr: the #MemoryRegion to be updated; should be an alias.
* @offset: the new offset into the target memory region
*/
void memory_region_set_alias_offset(MemoryRegion *mr,
hwaddr offset);
/**
* memory_region_present: checks if an address relative to a @container
* translates into #MemoryRegion within @container
*
* Answer whether a #MemoryRegion within @container covers the address
* @addr.
*
* @container: a #MemoryRegion within which @addr is a relative address
* @addr: the area within @container to be searched
*/
bool memory_region_present(MemoryRegion *container, hwaddr addr);
/**
* memory_region_is_mapped: returns true if #MemoryRegion is mapped
* into any address space.
*
* @mr: a #MemoryRegion which should be checked if it's mapped
*/
bool memory_region_is_mapped(MemoryRegion *mr);
/**
* memory_region_find: translate an address/size relative to a
* MemoryRegion into a #MemoryRegionSection.
*
* Locates the first #MemoryRegion within @mr that overlaps the range
* given by @addr and @size.
*
* Returns a #MemoryRegionSection that describes a contiguous overlap.
* It will have the following characteristics:
* .@size = 0 iff no overlap was found
* .@mr is non-%NULL iff an overlap was found
*
* Remember that in the return value the @offset_within_region is
* relative to the returned region (in the .@mr field), not to the
* @mr argument.
*
* Similarly, the .@offset_within_address_space is relative to the
* address space that contains both regions, the passed and the
* returned one. However, in the special case where the @mr argument
* has no container (and thus is the root of the address space), the
* following will hold:
* .@offset_within_address_space >= @addr
* .@offset_within_address_space + .@size <= @addr + @size
*
* @mr: a MemoryRegion within which @addr is a relative address
* @addr: start of the area within @as to be searched
* @size: size of the area to be searched
*/
MemoryRegionSection memory_region_find(MemoryRegion *mr,
hwaddr addr, uint64_t size);
/**
* memory_global_dirty_log_sync: synchronize the dirty log for all memory
*
* Synchronizes the dirty page log for all address spaces.
*/
void memory_global_dirty_log_sync(void);
/**
* memory_region_transaction_begin: Start a transaction.
*
* During a transaction, changes will be accumulated and made visible
* only when the transaction ends (is committed).
*/
void memory_region_transaction_begin(void);
/**
* memory_region_transaction_commit: Commit a transaction and make changes
* visible to the guest.
*/
void memory_region_transaction_commit(void);
/**
* memory_listener_register: register callbacks to be called when memory
* sections are mapped or unmapped into an address
* space
*
* @listener: an object containing the callbacks to be called
* @filter: if non-%NULL, only regions in this address space will be observed
*/
void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
/**
* memory_listener_unregister: undo the effect of memory_listener_register()
*
* @listener: an object containing the callbacks to be removed
*/
void memory_listener_unregister(MemoryListener *listener);
/**
* memory_global_dirty_log_start: begin dirty logging for all regions
*/
void memory_global_dirty_log_start(void);
/**
* memory_global_dirty_log_stop: end dirty logging for all regions
*/
void memory_global_dirty_log_stop(void);
void mtree_info(fprintf_function mon_printf, void *f, bool flatview);
/**
* memory_region_dispatch_read: perform a read directly to the specified
* MemoryRegion.
*
* @mr: #MemoryRegion to access
* @addr: address within that region
* @pval: pointer to uint64_t which the data is written to
* @size: size of the access in bytes
* @attrs: memory transaction attributes to use for the access
*/
MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
hwaddr addr,
uint64_t *pval,
unsigned size,
MemTxAttrs attrs);
/**
* memory_region_dispatch_write: perform a write directly to the specified
* MemoryRegion.
*
* @mr: #MemoryRegion to access
* @addr: address within that region
* @data: data to write
* @size: size of the access in bytes
* @attrs: memory transaction attributes to use for the access
*/
MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
hwaddr addr,
uint64_t data,
unsigned size,
MemTxAttrs attrs);
/**
* address_space_init: initializes an address space
*
* @as: an uninitialized #AddressSpace
* @root: a #MemoryRegion that routes addresses for the address space
* @name: an address space name. The name is only used for debugging
* output.
*/
void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
/**
* address_space_init_shareable: return an address space for a memory region,
* creating it if it does not already exist
*
* @root: a #MemoryRegion that routes addresses for the address space
* @name: an address space name. The name is only used for debugging
* output.
*
* This function will return a pointer to an existing AddressSpace
* which was initialized with the specified MemoryRegion, or it will
* create and initialize one if it does not already exist. The ASes
* are reference-counted, so the memory will be freed automatically
* when the AddressSpace is destroyed via address_space_destroy.
*/
AddressSpace *address_space_init_shareable(MemoryRegion *root,
const char *name);
/**
* address_space_destroy: destroy an address space
*
* Releases all resources associated with an address space. After an address space
* is destroyed, its root memory region (given by address_space_init()) may be destroyed
* as well.
*
* @as: address space to be destroyed
*/
void address_space_destroy(AddressSpace *as);
/**
* address_space_rw: read from or write to an address space.
*
* Return a MemTxResult indicating whether the operation succeeded
* or failed (eg unassigned memory, device rejected the transaction,
* IOMMU fault).
*
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @attrs: memory transaction attributes
* @buf: buffer with the data transferred
* @is_write: indicates the transfer direction
*/
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs, uint8_t *buf,
int len, bool is_write);
/**
* address_space_write: write to address space.
*
* Return a MemTxResult indicating whether the operation succeeded
* or failed (eg unassigned memory, device rejected the transaction,
* IOMMU fault).
*
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @attrs: memory transaction attributes
* @buf: buffer with the data transferred
*/
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs,
const uint8_t *buf, int len);
/* address_space_ld*: load from an address space
* address_space_st*: store to an address space
*
* These functions perform a load or store of the byte, word,
* longword or quad to the specified address within the AddressSpace.
* The _le suffixed functions treat the data as little endian;
* _be indicates big endian; no suffix indicates "same endianness
* as guest CPU".
*
* The "guest CPU endianness" accessors are deprecated for use outside
* target-* code; devices should be CPU-agnostic and use either the LE
* or the BE accessors.
*
* @as #AddressSpace to be accessed
* @addr: address within that address space
* @val: data value, for stores
* @attrs: memory transaction attributes
* @result: location to write the success/failure of the transaction;
* if NULL, this information is discarded
*/
uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
MemTxAttrs attrs, MemTxResult *result);
uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
struct MemoryRegionCache {
hwaddr xlat;
hwaddr len;
AddressSpace *as;
};
#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
/* address_space_cache_init: prepare for repeated access to a physical
* memory region
*
* @cache: #MemoryRegionCache to be filled
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @len: length of buffer
* @is_write: indicates the transfer direction
*
* Will only work with RAM, and may map a subset of the requested range by
* returning a value that is less than @len. On failure, return a negative
* errno value.
*
* Because it only works with RAM, this function can be used for
* read-modify-write operations. In this case, is_write should be %true.
*
* Note that addresses passed to the address_space_*_cached functions
* are relative to @addr.
*/
int64_t address_space_cache_init(MemoryRegionCache *cache,
AddressSpace *as,
hwaddr addr,
hwaddr len,
bool is_write);
/**
* address_space_cache_invalidate: complete a write to a #MemoryRegionCache
*
* @cache: The #MemoryRegionCache to operate on.
* @addr: The first physical address that was written, relative to the
* address that was passed to @address_space_cache_init.
* @access_len: The number of bytes that were written starting at @addr.
*/
void address_space_cache_invalidate(MemoryRegionCache *cache,
hwaddr addr,
hwaddr access_len);
/**
* address_space_cache_destroy: free a #MemoryRegionCache
*
* @cache: The #MemoryRegionCache whose memory should be released.
*/
void address_space_cache_destroy(MemoryRegionCache *cache);
/* address_space_ld*_cached: load from a cached #MemoryRegion
* address_space_st*_cached: store into a cached #MemoryRegion
*
* These functions perform a load or store of the byte, word,
* longword or quad to the specified address. The address is
* a physical address in the AddressSpace, but it must lie within
* a #MemoryRegion that was mapped with address_space_cache_init.
*
* The _le suffixed functions treat the data as little endian;
* _be indicates big endian; no suffix indicates "same endianness
* as guest CPU".
*
* The "guest CPU endianness" accessors are deprecated for use outside
* target-* code; devices should be CPU-agnostic and use either the LE
* or the BE accessors.
*
* @cache: previously initialized #MemoryRegionCache to be accessed
* @addr: address within the address space
* @val: data value, for stores
* @attrs: memory transaction attributes
* @result: location to write the success/failure of the transaction;
* if NULL, this information is discarded
*/
uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
MemTxAttrs attrs, MemTxResult *result);
uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
/* address_space_get_iotlb_entry: translate an address into an IOTLB
* entry. Should be called from an RCU critical section.
*/
IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
bool is_write);
/* address_space_translate: translate an address range into an address space
* into a MemoryRegion and an address range into that section. Should be
* called from an RCU critical section, to avoid that the last reference
* to the returned region disappears after address_space_translate returns.
*
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @xlat: pointer to address within the returned memory region section's
* #MemoryRegion.
* @len: pointer to length
* @is_write: indicates the transfer direction
*/
MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
hwaddr *xlat, hwaddr *len,
bool is_write);
/* address_space_access_valid: check for validity of accessing an address
* space range
*
* Check whether memory is assigned to the given address space range, and
* access is permitted by any IOMMU regions that are active for the address
* space.
*
* For now, addr and len should be aligned to a page size. This limitation
* will be lifted in the future.
*
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @len: length of the area to be checked
* @is_write: indicates the transfer direction
*/
bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
/* address_space_map: map a physical memory region into a host virtual address
*
* May map a subset of the requested range, given by and returned in @plen.
* May return %NULL if resources needed to perform the mapping are exhausted.
* Use only for reads OR writes - not for read-modify-write operations.
* Use cpu_register_map_client() to know when retrying the map operation is
* likely to succeed.
*
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @plen: pointer to length of buffer; updated on return
* @is_write: indicates the transfer direction
*/
void *address_space_map(AddressSpace *as, hwaddr addr,
hwaddr *plen, bool is_write);
/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
*
* Will also mark the memory as dirty if @is_write == %true. @access_len gives
* the amount of memory that was actually read or written by the caller.
*
* @as: #AddressSpace used
* @addr: address within that address space
* @len: buffer length as returned by address_space_map()
* @access_len: amount of data actually transferred
* @is_write: indicates the transfer direction
*/
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
int is_write, hwaddr access_len);
/* Internal functions, part of the implementation of address_space_read. */
MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs, uint8_t *buf,
int len, hwaddr addr1, hwaddr l,
MemoryRegion *mr);
MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs, uint8_t *buf, int len);
void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
{
if (is_write) {
return memory_region_is_ram(mr) &&
!mr->readonly && !memory_region_is_ram_device(mr);
} else {
return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
memory_region_is_romd(mr);
}
}
/**
* address_space_read: read from an address space.
*
* Return a MemTxResult indicating whether the operation succeeded
* or failed (eg unassigned memory, device rejected the transaction,
* IOMMU fault).
*
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @attrs: memory transaction attributes
* @buf: buffer with the data transferred
*/
static inline __attribute__((__always_inline__))
MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
uint8_t *buf, int len)
{
MemTxResult result = MEMTX_OK;
hwaddr l, addr1;
void *ptr;
MemoryRegion *mr;
if (__builtin_constant_p(len)) {
if (len) {
rcu_read_lock();
l = len;
mr = address_space_translate(as, addr, &addr1, &l, false);
if (len == l && memory_access_is_direct(mr, false)) {
ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
memcpy(buf, ptr, len);
} else {
result = address_space_read_continue(as, addr, attrs, buf, len,
addr1, l, mr);
}
rcu_read_unlock();
}
} else {
result = address_space_read_full(as, addr, attrs, buf, len);
}
return result;
}
/**
* address_space_read_cached: read from a cached RAM region
*
* @cache: Cached region to be addressed
* @addr: address relative to the base of the RAM region
* @buf: buffer with the data transferred
* @len: length of the data transferred
*/
static inline void
address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
void *buf, int len)
{
assert(addr < cache->len && len <= cache->len - addr);
address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
}
/**
* address_space_write_cached: write to a cached RAM region
*
* @cache: Cached region to be addressed
* @addr: address relative to the base of the RAM region
* @buf: buffer with the data transferred
* @len: length of the data transferred
*/
static inline void
address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
void *buf, int len)
{
assert(addr < cache->len && len <= cache->len - addr);
address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
}
#endif
#endif