3672 lines
113 KiB
C
3672 lines
113 KiB
C
/*
|
|
* Generic vector operation expansion
|
|
*
|
|
* Copyright (c) 2018 Linaro
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "tcg/tcg.h"
|
|
#include "tcg/tcg-op.h"
|
|
#include "tcg/tcg-op-gvec.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "tcg/tcg-gvec-desc.h"
|
|
|
|
#define MAX_UNROLL 4
|
|
|
|
#ifdef CONFIG_DEBUG_TCG
|
|
static const TCGOpcode vecop_list_empty[1] = { 0 };
|
|
#else
|
|
#define vecop_list_empty NULL
|
|
#endif
|
|
|
|
|
|
/* Verify vector size and alignment rules. OFS should be the OR of all
|
|
of the operand offsets so that we can check them all at once. */
|
|
static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
|
|
{
|
|
uint32_t max_align;
|
|
|
|
switch (oprsz) {
|
|
case 8:
|
|
case 16:
|
|
case 32:
|
|
tcg_debug_assert(oprsz <= maxsz);
|
|
break;
|
|
default:
|
|
tcg_debug_assert(oprsz == maxsz);
|
|
break;
|
|
}
|
|
tcg_debug_assert(maxsz <= (8 << SIMD_MAXSZ_BITS));
|
|
|
|
max_align = maxsz >= 16 ? 15 : 7;
|
|
tcg_debug_assert((maxsz & max_align) == 0);
|
|
tcg_debug_assert((ofs & max_align) == 0);
|
|
}
|
|
|
|
/* Verify vector overlap rules for two operands. */
|
|
static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
|
|
{
|
|
tcg_debug_assert(d == a || d + s <= a || a + s <= d);
|
|
}
|
|
|
|
/* Verify vector overlap rules for three operands. */
|
|
static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
|
|
{
|
|
check_overlap_2(d, a, s);
|
|
check_overlap_2(d, b, s);
|
|
check_overlap_2(a, b, s);
|
|
}
|
|
|
|
/* Verify vector overlap rules for four operands. */
|
|
static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
|
|
uint32_t c, uint32_t s)
|
|
{
|
|
check_overlap_2(d, a, s);
|
|
check_overlap_2(d, b, s);
|
|
check_overlap_2(d, c, s);
|
|
check_overlap_2(a, b, s);
|
|
check_overlap_2(a, c, s);
|
|
check_overlap_2(b, c, s);
|
|
}
|
|
|
|
/* Create a descriptor from components. */
|
|
uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
|
|
{
|
|
uint32_t desc = 0;
|
|
|
|
check_size_align(oprsz, maxsz, 0);
|
|
tcg_debug_assert(data == sextract32(data, 0, SIMD_DATA_BITS));
|
|
|
|
oprsz = (oprsz / 8) - 1;
|
|
maxsz = (maxsz / 8) - 1;
|
|
|
|
/*
|
|
* We have just asserted in check_size_align that either
|
|
* oprsz is {8,16,32} or matches maxsz. Encode the final
|
|
* case with '2', as that would otherwise map to 24.
|
|
*/
|
|
if (oprsz == maxsz) {
|
|
oprsz = 2;
|
|
}
|
|
|
|
desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
|
|
desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
|
|
desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
|
|
|
|
return desc;
|
|
}
|
|
|
|
/* Generate a call to a gvec-style helper with two vector operands. */
|
|
void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
|
|
uint32_t oprsz, uint32_t maxsz, int32_t data,
|
|
gen_helper_gvec_2 *fn)
|
|
{
|
|
TCGv_ptr a0, a1;
|
|
TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
|
|
|
|
a0 = tcg_temp_new_ptr();
|
|
a1 = tcg_temp_new_ptr();
|
|
|
|
tcg_gen_addi_ptr(a0, cpu_env, dofs);
|
|
tcg_gen_addi_ptr(a1, cpu_env, aofs);
|
|
|
|
fn(a0, a1, desc);
|
|
|
|
tcg_temp_free_ptr(a0);
|
|
tcg_temp_free_ptr(a1);
|
|
}
|
|
|
|
/* Generate a call to a gvec-style helper with two vector operands
|
|
and one scalar operand. */
|
|
void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
|
|
uint32_t oprsz, uint32_t maxsz, int32_t data,
|
|
gen_helper_gvec_2i *fn)
|
|
{
|
|
TCGv_ptr a0, a1;
|
|
TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
|
|
|
|
a0 = tcg_temp_new_ptr();
|
|
a1 = tcg_temp_new_ptr();
|
|
|
|
tcg_gen_addi_ptr(a0, cpu_env, dofs);
|
|
tcg_gen_addi_ptr(a1, cpu_env, aofs);
|
|
|
|
fn(a0, a1, c, desc);
|
|
|
|
tcg_temp_free_ptr(a0);
|
|
tcg_temp_free_ptr(a1);
|
|
}
|
|
|
|
/* Generate a call to a gvec-style helper with three vector operands. */
|
|
void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
|
|
uint32_t oprsz, uint32_t maxsz, int32_t data,
|
|
gen_helper_gvec_3 *fn)
|
|
{
|
|
TCGv_ptr a0, a1, a2;
|
|
TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
|
|
|
|
a0 = tcg_temp_new_ptr();
|
|
a1 = tcg_temp_new_ptr();
|
|
a2 = tcg_temp_new_ptr();
|
|
|
|
tcg_gen_addi_ptr(a0, cpu_env, dofs);
|
|
tcg_gen_addi_ptr(a1, cpu_env, aofs);
|
|
tcg_gen_addi_ptr(a2, cpu_env, bofs);
|
|
|
|
fn(a0, a1, a2, desc);
|
|
|
|
tcg_temp_free_ptr(a0);
|
|
tcg_temp_free_ptr(a1);
|
|
tcg_temp_free_ptr(a2);
|
|
}
|
|
|
|
/* Generate a call to a gvec-style helper with four vector operands. */
|
|
void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
|
|
uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
|
|
int32_t data, gen_helper_gvec_4 *fn)
|
|
{
|
|
TCGv_ptr a0, a1, a2, a3;
|
|
TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
|
|
|
|
a0 = tcg_temp_new_ptr();
|
|
a1 = tcg_temp_new_ptr();
|
|
a2 = tcg_temp_new_ptr();
|
|
a3 = tcg_temp_new_ptr();
|
|
|
|
tcg_gen_addi_ptr(a0, cpu_env, dofs);
|
|
tcg_gen_addi_ptr(a1, cpu_env, aofs);
|
|
tcg_gen_addi_ptr(a2, cpu_env, bofs);
|
|
tcg_gen_addi_ptr(a3, cpu_env, cofs);
|
|
|
|
fn(a0, a1, a2, a3, desc);
|
|
|
|
tcg_temp_free_ptr(a0);
|
|
tcg_temp_free_ptr(a1);
|
|
tcg_temp_free_ptr(a2);
|
|
tcg_temp_free_ptr(a3);
|
|
}
|
|
|
|
/* Generate a call to a gvec-style helper with five vector operands. */
|
|
void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
|
|
uint32_t cofs, uint32_t xofs, uint32_t oprsz,
|
|
uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
|
|
{
|
|
TCGv_ptr a0, a1, a2, a3, a4;
|
|
TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
|
|
|
|
a0 = tcg_temp_new_ptr();
|
|
a1 = tcg_temp_new_ptr();
|
|
a2 = tcg_temp_new_ptr();
|
|
a3 = tcg_temp_new_ptr();
|
|
a4 = tcg_temp_new_ptr();
|
|
|
|
tcg_gen_addi_ptr(a0, cpu_env, dofs);
|
|
tcg_gen_addi_ptr(a1, cpu_env, aofs);
|
|
tcg_gen_addi_ptr(a2, cpu_env, bofs);
|
|
tcg_gen_addi_ptr(a3, cpu_env, cofs);
|
|
tcg_gen_addi_ptr(a4, cpu_env, xofs);
|
|
|
|
fn(a0, a1, a2, a3, a4, desc);
|
|
|
|
tcg_temp_free_ptr(a0);
|
|
tcg_temp_free_ptr(a1);
|
|
tcg_temp_free_ptr(a2);
|
|
tcg_temp_free_ptr(a3);
|
|
tcg_temp_free_ptr(a4);
|
|
}
|
|
|
|
/* Generate a call to a gvec-style helper with three vector operands
|
|
and an extra pointer operand. */
|
|
void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
|
|
TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
|
|
int32_t data, gen_helper_gvec_2_ptr *fn)
|
|
{
|
|
TCGv_ptr a0, a1;
|
|
TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
|
|
|
|
a0 = tcg_temp_new_ptr();
|
|
a1 = tcg_temp_new_ptr();
|
|
|
|
tcg_gen_addi_ptr(a0, cpu_env, dofs);
|
|
tcg_gen_addi_ptr(a1, cpu_env, aofs);
|
|
|
|
fn(a0, a1, ptr, desc);
|
|
|
|
tcg_temp_free_ptr(a0);
|
|
tcg_temp_free_ptr(a1);
|
|
}
|
|
|
|
/* Generate a call to a gvec-style helper with three vector operands
|
|
and an extra pointer operand. */
|
|
void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
|
|
TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
|
|
int32_t data, gen_helper_gvec_3_ptr *fn)
|
|
{
|
|
TCGv_ptr a0, a1, a2;
|
|
TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
|
|
|
|
a0 = tcg_temp_new_ptr();
|
|
a1 = tcg_temp_new_ptr();
|
|
a2 = tcg_temp_new_ptr();
|
|
|
|
tcg_gen_addi_ptr(a0, cpu_env, dofs);
|
|
tcg_gen_addi_ptr(a1, cpu_env, aofs);
|
|
tcg_gen_addi_ptr(a2, cpu_env, bofs);
|
|
|
|
fn(a0, a1, a2, ptr, desc);
|
|
|
|
tcg_temp_free_ptr(a0);
|
|
tcg_temp_free_ptr(a1);
|
|
tcg_temp_free_ptr(a2);
|
|
}
|
|
|
|
/* Generate a call to a gvec-style helper with four vector operands
|
|
and an extra pointer operand. */
|
|
void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
|
|
uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
|
|
uint32_t maxsz, int32_t data,
|
|
gen_helper_gvec_4_ptr *fn)
|
|
{
|
|
TCGv_ptr a0, a1, a2, a3;
|
|
TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
|
|
|
|
a0 = tcg_temp_new_ptr();
|
|
a1 = tcg_temp_new_ptr();
|
|
a2 = tcg_temp_new_ptr();
|
|
a3 = tcg_temp_new_ptr();
|
|
|
|
tcg_gen_addi_ptr(a0, cpu_env, dofs);
|
|
tcg_gen_addi_ptr(a1, cpu_env, aofs);
|
|
tcg_gen_addi_ptr(a2, cpu_env, bofs);
|
|
tcg_gen_addi_ptr(a3, cpu_env, cofs);
|
|
|
|
fn(a0, a1, a2, a3, ptr, desc);
|
|
|
|
tcg_temp_free_ptr(a0);
|
|
tcg_temp_free_ptr(a1);
|
|
tcg_temp_free_ptr(a2);
|
|
tcg_temp_free_ptr(a3);
|
|
}
|
|
|
|
/* Generate a call to a gvec-style helper with five vector operands
|
|
and an extra pointer operand. */
|
|
void tcg_gen_gvec_5_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
|
|
uint32_t cofs, uint32_t eofs, TCGv_ptr ptr,
|
|
uint32_t oprsz, uint32_t maxsz, int32_t data,
|
|
gen_helper_gvec_5_ptr *fn)
|
|
{
|
|
TCGv_ptr a0, a1, a2, a3, a4;
|
|
TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
|
|
|
|
a0 = tcg_temp_new_ptr();
|
|
a1 = tcg_temp_new_ptr();
|
|
a2 = tcg_temp_new_ptr();
|
|
a3 = tcg_temp_new_ptr();
|
|
a4 = tcg_temp_new_ptr();
|
|
|
|
tcg_gen_addi_ptr(a0, cpu_env, dofs);
|
|
tcg_gen_addi_ptr(a1, cpu_env, aofs);
|
|
tcg_gen_addi_ptr(a2, cpu_env, bofs);
|
|
tcg_gen_addi_ptr(a3, cpu_env, cofs);
|
|
tcg_gen_addi_ptr(a4, cpu_env, eofs);
|
|
|
|
fn(a0, a1, a2, a3, a4, ptr, desc);
|
|
|
|
tcg_temp_free_ptr(a0);
|
|
tcg_temp_free_ptr(a1);
|
|
tcg_temp_free_ptr(a2);
|
|
tcg_temp_free_ptr(a3);
|
|
tcg_temp_free_ptr(a4);
|
|
}
|
|
|
|
/* Return true if we want to implement something of OPRSZ bytes
|
|
in units of LNSZ. This limits the expansion of inline code. */
|
|
static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
|
|
{
|
|
uint32_t q, r;
|
|
|
|
if (oprsz < lnsz) {
|
|
return false;
|
|
}
|
|
|
|
q = oprsz / lnsz;
|
|
r = oprsz % lnsz;
|
|
tcg_debug_assert((r & 7) == 0);
|
|
|
|
if (lnsz < 16) {
|
|
/* For sizes below 16, accept no remainder. */
|
|
if (r != 0) {
|
|
return false;
|
|
}
|
|
} else {
|
|
/*
|
|
* Recall that ARM SVE allows vector sizes that are not a
|
|
* power of 2, but always a multiple of 16. The intent is
|
|
* that e.g. size == 80 would be expanded with 2x32 + 1x16.
|
|
* In addition, expand_clr needs to handle a multiple of 8.
|
|
* Thus we can handle the tail with one more operation per
|
|
* diminishing power of 2.
|
|
*/
|
|
q += ctpop32(r);
|
|
}
|
|
|
|
return q <= MAX_UNROLL;
|
|
}
|
|
|
|
static void expand_clr(uint32_t dofs, uint32_t maxsz);
|
|
|
|
/* Duplicate C as per VECE. */
|
|
uint64_t (dup_const)(unsigned vece, uint64_t c)
|
|
{
|
|
switch (vece) {
|
|
case MO_8:
|
|
return 0x0101010101010101ull * (uint8_t)c;
|
|
case MO_16:
|
|
return 0x0001000100010001ull * (uint16_t)c;
|
|
case MO_32:
|
|
return 0x0000000100000001ull * (uint32_t)c;
|
|
case MO_64:
|
|
return c;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Duplicate IN into OUT as per VECE. */
|
|
void tcg_gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
|
|
{
|
|
switch (vece) {
|
|
case MO_8:
|
|
tcg_gen_ext8u_i32(out, in);
|
|
tcg_gen_muli_i32(out, out, 0x01010101);
|
|
break;
|
|
case MO_16:
|
|
tcg_gen_deposit_i32(out, in, in, 16, 16);
|
|
break;
|
|
case MO_32:
|
|
tcg_gen_mov_i32(out, in);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
void tcg_gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
|
|
{
|
|
switch (vece) {
|
|
case MO_8:
|
|
tcg_gen_ext8u_i64(out, in);
|
|
tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
|
|
break;
|
|
case MO_16:
|
|
tcg_gen_ext16u_i64(out, in);
|
|
tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
|
|
break;
|
|
case MO_32:
|
|
tcg_gen_deposit_i64(out, in, in, 32, 32);
|
|
break;
|
|
case MO_64:
|
|
tcg_gen_mov_i64(out, in);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Select a supported vector type for implementing an operation on SIZE
|
|
* bytes. If OP is 0, assume that the real operation to be performed is
|
|
* required by all backends. Otherwise, make sure than OP can be performed
|
|
* on elements of size VECE in the selected type. Do not select V64 if
|
|
* PREFER_I64 is true. Return 0 if no vector type is selected.
|
|
*/
|
|
static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece,
|
|
uint32_t size, bool prefer_i64)
|
|
{
|
|
/*
|
|
* Recall that ARM SVE allows vector sizes that are not a
|
|
* power of 2, but always a multiple of 16. The intent is
|
|
* that e.g. size == 80 would be expanded with 2x32 + 1x16.
|
|
* It is hard to imagine a case in which v256 is supported
|
|
* but v128 is not, but check anyway.
|
|
* In addition, expand_clr needs to handle a multiple of 8.
|
|
*/
|
|
if (TCG_TARGET_HAS_v256 &&
|
|
check_size_impl(size, 32) &&
|
|
tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece) &&
|
|
(!(size & 16) ||
|
|
(TCG_TARGET_HAS_v128 &&
|
|
tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) &&
|
|
(!(size & 8) ||
|
|
(TCG_TARGET_HAS_v64 &&
|
|
tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
|
|
return TCG_TYPE_V256;
|
|
}
|
|
if (TCG_TARGET_HAS_v128 &&
|
|
check_size_impl(size, 16) &&
|
|
tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece) &&
|
|
(!(size & 8) ||
|
|
(TCG_TARGET_HAS_v64 &&
|
|
tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
|
|
return TCG_TYPE_V128;
|
|
}
|
|
if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8)
|
|
&& tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) {
|
|
return TCG_TYPE_V64;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz,
|
|
uint32_t maxsz, TCGv_vec t_vec)
|
|
{
|
|
uint32_t i = 0;
|
|
|
|
tcg_debug_assert(oprsz >= 8);
|
|
|
|
/*
|
|
* This may be expand_clr for the tail of an operation, e.g.
|
|
* oprsz == 8 && maxsz == 64. The first 8 bytes of this store
|
|
* are misaligned wrt the maximum vector size, so do that first.
|
|
*/
|
|
if (dofs & 8) {
|
|
tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
|
|
i += 8;
|
|
}
|
|
|
|
switch (type) {
|
|
case TCG_TYPE_V256:
|
|
/*
|
|
* Recall that ARM SVE allows vector sizes that are not a
|
|
* power of 2, but always a multiple of 16. The intent is
|
|
* that e.g. size == 80 would be expanded with 2x32 + 1x16.
|
|
*/
|
|
for (; i + 32 <= oprsz; i += 32) {
|
|
tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256);
|
|
}
|
|
/* fallthru */
|
|
case TCG_TYPE_V128:
|
|
for (; i + 16 <= oprsz; i += 16) {
|
|
tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128);
|
|
}
|
|
break;
|
|
case TCG_TYPE_V64:
|
|
for (; i < oprsz; i += 8) {
|
|
tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (oprsz < maxsz) {
|
|
expand_clr(dofs + oprsz, maxsz - oprsz);
|
|
}
|
|
}
|
|
|
|
/* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
|
|
* Only one of IN_32 or IN_64 may be set;
|
|
* IN_C is used if IN_32 and IN_64 are unset.
|
|
*/
|
|
static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
|
|
uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
|
|
uint64_t in_c)
|
|
{
|
|
TCGType type;
|
|
TCGv_i64 t_64;
|
|
TCGv_i32 t_32, t_desc;
|
|
TCGv_ptr t_ptr;
|
|
uint32_t i;
|
|
|
|
assert(vece <= (in_32 ? MO_32 : MO_64));
|
|
assert(in_32 == NULL || in_64 == NULL);
|
|
|
|
/* If we're storing 0, expand oprsz to maxsz. */
|
|
if (in_32 == NULL && in_64 == NULL) {
|
|
in_c = dup_const(vece, in_c);
|
|
if (in_c == 0) {
|
|
oprsz = maxsz;
|
|
vece = MO_8;
|
|
} else if (in_c == dup_const(MO_8, in_c)) {
|
|
vece = MO_8;
|
|
}
|
|
}
|
|
|
|
/* Implement inline with a vector type, if possible.
|
|
* Prefer integer when 64-bit host and no variable dup.
|
|
*/
|
|
type = choose_vector_type(NULL, vece, oprsz,
|
|
(TCG_TARGET_REG_BITS == 64 && in_32 == NULL
|
|
&& (in_64 == NULL || vece == MO_64)));
|
|
if (type != 0) {
|
|
TCGv_vec t_vec = tcg_temp_new_vec(type);
|
|
|
|
if (in_32) {
|
|
tcg_gen_dup_i32_vec(vece, t_vec, in_32);
|
|
} else if (in_64) {
|
|
tcg_gen_dup_i64_vec(vece, t_vec, in_64);
|
|
} else {
|
|
tcg_gen_dupi_vec(vece, t_vec, in_c);
|
|
}
|
|
do_dup_store(type, dofs, oprsz, maxsz, t_vec);
|
|
tcg_temp_free_vec(t_vec);
|
|
return;
|
|
}
|
|
|
|
/* Otherwise, inline with an integer type, unless "large". */
|
|
if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
|
|
t_64 = NULL;
|
|
t_32 = NULL;
|
|
|
|
if (in_32) {
|
|
/* We are given a 32-bit variable input. For a 64-bit host,
|
|
use a 64-bit operation unless the 32-bit operation would
|
|
be simple enough. */
|
|
if (TCG_TARGET_REG_BITS == 64
|
|
&& (vece != MO_32 || !check_size_impl(oprsz, 4))) {
|
|
t_64 = tcg_temp_new_i64();
|
|
tcg_gen_extu_i32_i64(t_64, in_32);
|
|
tcg_gen_dup_i64(vece, t_64, t_64);
|
|
} else {
|
|
t_32 = tcg_temp_new_i32();
|
|
tcg_gen_dup_i32(vece, t_32, in_32);
|
|
}
|
|
} else if (in_64) {
|
|
/* We are given a 64-bit variable input. */
|
|
t_64 = tcg_temp_new_i64();
|
|
tcg_gen_dup_i64(vece, t_64, in_64);
|
|
} else {
|
|
/* We are given a constant input. */
|
|
/* For 64-bit hosts, use 64-bit constants for "simple" constants
|
|
or when we'd need too many 32-bit stores, or when a 64-bit
|
|
constant is really required. */
|
|
if (vece == MO_64
|
|
|| (TCG_TARGET_REG_BITS == 64
|
|
&& (in_c == 0 || in_c == -1
|
|
|| !check_size_impl(oprsz, 4)))) {
|
|
t_64 = tcg_constant_i64(in_c);
|
|
} else {
|
|
t_32 = tcg_constant_i32(in_c);
|
|
}
|
|
}
|
|
|
|
/* Implement inline if we picked an implementation size above. */
|
|
if (t_32) {
|
|
for (i = 0; i < oprsz; i += 4) {
|
|
tcg_gen_st_i32(t_32, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_i32(t_32);
|
|
goto done;
|
|
}
|
|
if (t_64) {
|
|
for (i = 0; i < oprsz; i += 8) {
|
|
tcg_gen_st_i64(t_64, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_i64(t_64);
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/* Otherwise implement out of line. */
|
|
t_ptr = tcg_temp_new_ptr();
|
|
tcg_gen_addi_ptr(t_ptr, cpu_env, dofs);
|
|
|
|
/*
|
|
* This may be expand_clr for the tail of an operation, e.g.
|
|
* oprsz == 8 && maxsz == 64. The size of the clear is misaligned
|
|
* wrt simd_desc and will assert. Simply pass all replicated byte
|
|
* stores through to memset.
|
|
*/
|
|
if (oprsz == maxsz && vece == MO_8) {
|
|
TCGv_ptr t_size = tcg_const_ptr(oprsz);
|
|
TCGv_i32 t_val;
|
|
|
|
if (in_32) {
|
|
t_val = in_32;
|
|
} else if (in_64) {
|
|
t_val = tcg_temp_new_i32();
|
|
tcg_gen_extrl_i64_i32(t_val, in_64);
|
|
} else {
|
|
t_val = tcg_constant_i32(in_c);
|
|
}
|
|
gen_helper_memset(t_ptr, t_ptr, t_val, t_size);
|
|
|
|
if (in_64) {
|
|
tcg_temp_free_i32(t_val);
|
|
}
|
|
tcg_temp_free_ptr(t_size);
|
|
tcg_temp_free_ptr(t_ptr);
|
|
return;
|
|
}
|
|
|
|
t_desc = tcg_constant_i32(simd_desc(oprsz, maxsz, 0));
|
|
|
|
if (vece == MO_64) {
|
|
if (in_64) {
|
|
gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
|
|
} else {
|
|
t_64 = tcg_constant_i64(in_c);
|
|
gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
|
|
}
|
|
} else {
|
|
typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
|
|
static dup_fn * const fns[3] = {
|
|
gen_helper_gvec_dup8,
|
|
gen_helper_gvec_dup16,
|
|
gen_helper_gvec_dup32
|
|
};
|
|
|
|
if (in_32) {
|
|
fns[vece](t_ptr, t_desc, in_32);
|
|
} else if (in_64) {
|
|
t_32 = tcg_temp_new_i32();
|
|
tcg_gen_extrl_i64_i32(t_32, in_64);
|
|
fns[vece](t_ptr, t_desc, t_32);
|
|
tcg_temp_free_i32(t_32);
|
|
} else {
|
|
if (vece == MO_8) {
|
|
in_c &= 0xff;
|
|
} else if (vece == MO_16) {
|
|
in_c &= 0xffff;
|
|
}
|
|
t_32 = tcg_constant_i32(in_c);
|
|
fns[vece](t_ptr, t_desc, t_32);
|
|
}
|
|
}
|
|
|
|
tcg_temp_free_ptr(t_ptr);
|
|
return;
|
|
|
|
done:
|
|
if (oprsz < maxsz) {
|
|
expand_clr(dofs + oprsz, maxsz - oprsz);
|
|
}
|
|
}
|
|
|
|
/* Likewise, but with zero. */
|
|
static void expand_clr(uint32_t dofs, uint32_t maxsz)
|
|
{
|
|
do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
|
|
}
|
|
|
|
/* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
|
|
static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
|
|
bool load_dest, void (*fni)(TCGv_i32, TCGv_i32))
|
|
{
|
|
TCGv_i32 t0 = tcg_temp_new_i32();
|
|
TCGv_i32 t1 = tcg_temp_new_i32();
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += 4) {
|
|
tcg_gen_ld_i32(t0, cpu_env, aofs + i);
|
|
if (load_dest) {
|
|
tcg_gen_ld_i32(t1, cpu_env, dofs + i);
|
|
}
|
|
fni(t1, t0);
|
|
tcg_gen_st_i32(t1, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_i32(t0);
|
|
tcg_temp_free_i32(t1);
|
|
}
|
|
|
|
static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
|
|
int32_t c, bool load_dest,
|
|
void (*fni)(TCGv_i32, TCGv_i32, int32_t))
|
|
{
|
|
TCGv_i32 t0 = tcg_temp_new_i32();
|
|
TCGv_i32 t1 = tcg_temp_new_i32();
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += 4) {
|
|
tcg_gen_ld_i32(t0, cpu_env, aofs + i);
|
|
if (load_dest) {
|
|
tcg_gen_ld_i32(t1, cpu_env, dofs + i);
|
|
}
|
|
fni(t1, t0, c);
|
|
tcg_gen_st_i32(t1, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_i32(t0);
|
|
tcg_temp_free_i32(t1);
|
|
}
|
|
|
|
static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
|
|
TCGv_i32 c, bool scalar_first,
|
|
void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
|
|
{
|
|
TCGv_i32 t0 = tcg_temp_new_i32();
|
|
TCGv_i32 t1 = tcg_temp_new_i32();
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += 4) {
|
|
tcg_gen_ld_i32(t0, cpu_env, aofs + i);
|
|
if (scalar_first) {
|
|
fni(t1, c, t0);
|
|
} else {
|
|
fni(t1, t0, c);
|
|
}
|
|
tcg_gen_st_i32(t1, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_i32(t0);
|
|
tcg_temp_free_i32(t1);
|
|
}
|
|
|
|
/* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
|
|
static void expand_3_i32(uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, bool load_dest,
|
|
void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
|
|
{
|
|
TCGv_i32 t0 = tcg_temp_new_i32();
|
|
TCGv_i32 t1 = tcg_temp_new_i32();
|
|
TCGv_i32 t2 = tcg_temp_new_i32();
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += 4) {
|
|
tcg_gen_ld_i32(t0, cpu_env, aofs + i);
|
|
tcg_gen_ld_i32(t1, cpu_env, bofs + i);
|
|
if (load_dest) {
|
|
tcg_gen_ld_i32(t2, cpu_env, dofs + i);
|
|
}
|
|
fni(t2, t0, t1);
|
|
tcg_gen_st_i32(t2, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_i32(t2);
|
|
tcg_temp_free_i32(t1);
|
|
tcg_temp_free_i32(t0);
|
|
}
|
|
|
|
static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
|
|
uint32_t oprsz, int32_t c, bool load_dest,
|
|
void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t))
|
|
{
|
|
TCGv_i32 t0 = tcg_temp_new_i32();
|
|
TCGv_i32 t1 = tcg_temp_new_i32();
|
|
TCGv_i32 t2 = tcg_temp_new_i32();
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += 4) {
|
|
tcg_gen_ld_i32(t0, cpu_env, aofs + i);
|
|
tcg_gen_ld_i32(t1, cpu_env, bofs + i);
|
|
if (load_dest) {
|
|
tcg_gen_ld_i32(t2, cpu_env, dofs + i);
|
|
}
|
|
fni(t2, t0, t1, c);
|
|
tcg_gen_st_i32(t2, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_i32(t0);
|
|
tcg_temp_free_i32(t1);
|
|
tcg_temp_free_i32(t2);
|
|
}
|
|
|
|
/* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
|
|
static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
|
|
uint32_t cofs, uint32_t oprsz, bool write_aofs,
|
|
void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
|
|
{
|
|
TCGv_i32 t0 = tcg_temp_new_i32();
|
|
TCGv_i32 t1 = tcg_temp_new_i32();
|
|
TCGv_i32 t2 = tcg_temp_new_i32();
|
|
TCGv_i32 t3 = tcg_temp_new_i32();
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += 4) {
|
|
tcg_gen_ld_i32(t1, cpu_env, aofs + i);
|
|
tcg_gen_ld_i32(t2, cpu_env, bofs + i);
|
|
tcg_gen_ld_i32(t3, cpu_env, cofs + i);
|
|
fni(t0, t1, t2, t3);
|
|
tcg_gen_st_i32(t0, cpu_env, dofs + i);
|
|
if (write_aofs) {
|
|
tcg_gen_st_i32(t1, cpu_env, aofs + i);
|
|
}
|
|
}
|
|
tcg_temp_free_i32(t3);
|
|
tcg_temp_free_i32(t2);
|
|
tcg_temp_free_i32(t1);
|
|
tcg_temp_free_i32(t0);
|
|
}
|
|
|
|
/* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
|
|
static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
|
|
bool load_dest, void (*fni)(TCGv_i64, TCGv_i64))
|
|
{
|
|
TCGv_i64 t0 = tcg_temp_new_i64();
|
|
TCGv_i64 t1 = tcg_temp_new_i64();
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += 8) {
|
|
tcg_gen_ld_i64(t0, cpu_env, aofs + i);
|
|
if (load_dest) {
|
|
tcg_gen_ld_i64(t1, cpu_env, dofs + i);
|
|
}
|
|
fni(t1, t0);
|
|
tcg_gen_st_i64(t1, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_i64(t0);
|
|
tcg_temp_free_i64(t1);
|
|
}
|
|
|
|
static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
|
|
int64_t c, bool load_dest,
|
|
void (*fni)(TCGv_i64, TCGv_i64, int64_t))
|
|
{
|
|
TCGv_i64 t0 = tcg_temp_new_i64();
|
|
TCGv_i64 t1 = tcg_temp_new_i64();
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += 8) {
|
|
tcg_gen_ld_i64(t0, cpu_env, aofs + i);
|
|
if (load_dest) {
|
|
tcg_gen_ld_i64(t1, cpu_env, dofs + i);
|
|
}
|
|
fni(t1, t0, c);
|
|
tcg_gen_st_i64(t1, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_i64(t0);
|
|
tcg_temp_free_i64(t1);
|
|
}
|
|
|
|
static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
|
|
TCGv_i64 c, bool scalar_first,
|
|
void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
|
|
{
|
|
TCGv_i64 t0 = tcg_temp_new_i64();
|
|
TCGv_i64 t1 = tcg_temp_new_i64();
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += 8) {
|
|
tcg_gen_ld_i64(t0, cpu_env, aofs + i);
|
|
if (scalar_first) {
|
|
fni(t1, c, t0);
|
|
} else {
|
|
fni(t1, t0, c);
|
|
}
|
|
tcg_gen_st_i64(t1, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_i64(t0);
|
|
tcg_temp_free_i64(t1);
|
|
}
|
|
|
|
/* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
|
|
static void expand_3_i64(uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, bool load_dest,
|
|
void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
|
|
{
|
|
TCGv_i64 t0 = tcg_temp_new_i64();
|
|
TCGv_i64 t1 = tcg_temp_new_i64();
|
|
TCGv_i64 t2 = tcg_temp_new_i64();
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += 8) {
|
|
tcg_gen_ld_i64(t0, cpu_env, aofs + i);
|
|
tcg_gen_ld_i64(t1, cpu_env, bofs + i);
|
|
if (load_dest) {
|
|
tcg_gen_ld_i64(t2, cpu_env, dofs + i);
|
|
}
|
|
fni(t2, t0, t1);
|
|
tcg_gen_st_i64(t2, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_i64(t2);
|
|
tcg_temp_free_i64(t1);
|
|
tcg_temp_free_i64(t0);
|
|
}
|
|
|
|
static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
|
|
uint32_t oprsz, int64_t c, bool load_dest,
|
|
void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t))
|
|
{
|
|
TCGv_i64 t0 = tcg_temp_new_i64();
|
|
TCGv_i64 t1 = tcg_temp_new_i64();
|
|
TCGv_i64 t2 = tcg_temp_new_i64();
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += 8) {
|
|
tcg_gen_ld_i64(t0, cpu_env, aofs + i);
|
|
tcg_gen_ld_i64(t1, cpu_env, bofs + i);
|
|
if (load_dest) {
|
|
tcg_gen_ld_i64(t2, cpu_env, dofs + i);
|
|
}
|
|
fni(t2, t0, t1, c);
|
|
tcg_gen_st_i64(t2, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_i64(t0);
|
|
tcg_temp_free_i64(t1);
|
|
tcg_temp_free_i64(t2);
|
|
}
|
|
|
|
/* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
|
|
static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
|
|
uint32_t cofs, uint32_t oprsz, bool write_aofs,
|
|
void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
|
|
{
|
|
TCGv_i64 t0 = tcg_temp_new_i64();
|
|
TCGv_i64 t1 = tcg_temp_new_i64();
|
|
TCGv_i64 t2 = tcg_temp_new_i64();
|
|
TCGv_i64 t3 = tcg_temp_new_i64();
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += 8) {
|
|
tcg_gen_ld_i64(t1, cpu_env, aofs + i);
|
|
tcg_gen_ld_i64(t2, cpu_env, bofs + i);
|
|
tcg_gen_ld_i64(t3, cpu_env, cofs + i);
|
|
fni(t0, t1, t2, t3);
|
|
tcg_gen_st_i64(t0, cpu_env, dofs + i);
|
|
if (write_aofs) {
|
|
tcg_gen_st_i64(t1, cpu_env, aofs + i);
|
|
}
|
|
}
|
|
tcg_temp_free_i64(t3);
|
|
tcg_temp_free_i64(t2);
|
|
tcg_temp_free_i64(t1);
|
|
tcg_temp_free_i64(t0);
|
|
}
|
|
|
|
/* Expand OPSZ bytes worth of two-operand operations using host vectors. */
|
|
static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t oprsz, uint32_t tysz, TCGType type,
|
|
bool load_dest,
|
|
void (*fni)(unsigned, TCGv_vec, TCGv_vec))
|
|
{
|
|
TCGv_vec t0 = tcg_temp_new_vec(type);
|
|
TCGv_vec t1 = tcg_temp_new_vec(type);
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += tysz) {
|
|
tcg_gen_ld_vec(t0, cpu_env, aofs + i);
|
|
if (load_dest) {
|
|
tcg_gen_ld_vec(t1, cpu_env, dofs + i);
|
|
}
|
|
fni(vece, t1, t0);
|
|
tcg_gen_st_vec(t1, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_vec(t0);
|
|
tcg_temp_free_vec(t1);
|
|
}
|
|
|
|
/* Expand OPSZ bytes worth of two-vector operands and an immediate operand
|
|
using host vectors. */
|
|
static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t oprsz, uint32_t tysz, TCGType type,
|
|
int64_t c, bool load_dest,
|
|
void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
|
|
{
|
|
TCGv_vec t0 = tcg_temp_new_vec(type);
|
|
TCGv_vec t1 = tcg_temp_new_vec(type);
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += tysz) {
|
|
tcg_gen_ld_vec(t0, cpu_env, aofs + i);
|
|
if (load_dest) {
|
|
tcg_gen_ld_vec(t1, cpu_env, dofs + i);
|
|
}
|
|
fni(vece, t1, t0, c);
|
|
tcg_gen_st_vec(t1, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_vec(t0);
|
|
tcg_temp_free_vec(t1);
|
|
}
|
|
|
|
static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t oprsz, uint32_t tysz, TCGType type,
|
|
TCGv_vec c, bool scalar_first,
|
|
void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
|
|
{
|
|
TCGv_vec t0 = tcg_temp_new_vec(type);
|
|
TCGv_vec t1 = tcg_temp_new_vec(type);
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += tysz) {
|
|
tcg_gen_ld_vec(t0, cpu_env, aofs + i);
|
|
if (scalar_first) {
|
|
fni(vece, t1, c, t0);
|
|
} else {
|
|
fni(vece, t1, t0, c);
|
|
}
|
|
tcg_gen_st_vec(t1, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_vec(t0);
|
|
tcg_temp_free_vec(t1);
|
|
}
|
|
|
|
/* Expand OPSZ bytes worth of three-operand operations using host vectors. */
|
|
static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz,
|
|
uint32_t tysz, TCGType type, bool load_dest,
|
|
void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
|
|
{
|
|
TCGv_vec t0 = tcg_temp_new_vec(type);
|
|
TCGv_vec t1 = tcg_temp_new_vec(type);
|
|
TCGv_vec t2 = tcg_temp_new_vec(type);
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += tysz) {
|
|
tcg_gen_ld_vec(t0, cpu_env, aofs + i);
|
|
tcg_gen_ld_vec(t1, cpu_env, bofs + i);
|
|
if (load_dest) {
|
|
tcg_gen_ld_vec(t2, cpu_env, dofs + i);
|
|
}
|
|
fni(vece, t2, t0, t1);
|
|
tcg_gen_st_vec(t2, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_vec(t2);
|
|
tcg_temp_free_vec(t1);
|
|
tcg_temp_free_vec(t0);
|
|
}
|
|
|
|
/*
|
|
* Expand OPSZ bytes worth of three-vector operands and an immediate operand
|
|
* using host vectors.
|
|
*/
|
|
static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t tysz,
|
|
TCGType type, int64_t c, bool load_dest,
|
|
void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec,
|
|
int64_t))
|
|
{
|
|
TCGv_vec t0 = tcg_temp_new_vec(type);
|
|
TCGv_vec t1 = tcg_temp_new_vec(type);
|
|
TCGv_vec t2 = tcg_temp_new_vec(type);
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += tysz) {
|
|
tcg_gen_ld_vec(t0, cpu_env, aofs + i);
|
|
tcg_gen_ld_vec(t1, cpu_env, bofs + i);
|
|
if (load_dest) {
|
|
tcg_gen_ld_vec(t2, cpu_env, dofs + i);
|
|
}
|
|
fni(vece, t2, t0, t1, c);
|
|
tcg_gen_st_vec(t2, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_vec(t0);
|
|
tcg_temp_free_vec(t1);
|
|
tcg_temp_free_vec(t2);
|
|
}
|
|
|
|
/* Expand OPSZ bytes worth of four-operand operations using host vectors. */
|
|
static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t cofs, uint32_t oprsz,
|
|
uint32_t tysz, TCGType type, bool write_aofs,
|
|
void (*fni)(unsigned, TCGv_vec, TCGv_vec,
|
|
TCGv_vec, TCGv_vec))
|
|
{
|
|
TCGv_vec t0 = tcg_temp_new_vec(type);
|
|
TCGv_vec t1 = tcg_temp_new_vec(type);
|
|
TCGv_vec t2 = tcg_temp_new_vec(type);
|
|
TCGv_vec t3 = tcg_temp_new_vec(type);
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += tysz) {
|
|
tcg_gen_ld_vec(t1, cpu_env, aofs + i);
|
|
tcg_gen_ld_vec(t2, cpu_env, bofs + i);
|
|
tcg_gen_ld_vec(t3, cpu_env, cofs + i);
|
|
fni(vece, t0, t1, t2, t3);
|
|
tcg_gen_st_vec(t0, cpu_env, dofs + i);
|
|
if (write_aofs) {
|
|
tcg_gen_st_vec(t1, cpu_env, aofs + i);
|
|
}
|
|
}
|
|
tcg_temp_free_vec(t3);
|
|
tcg_temp_free_vec(t2);
|
|
tcg_temp_free_vec(t1);
|
|
tcg_temp_free_vec(t0);
|
|
}
|
|
|
|
/* Expand a vector two-operand operation. */
|
|
void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
|
|
uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
|
|
{
|
|
const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
|
|
const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
|
|
TCGType type;
|
|
uint32_t some;
|
|
|
|
check_size_align(oprsz, maxsz, dofs | aofs);
|
|
check_overlap_2(dofs, aofs, maxsz);
|
|
|
|
type = 0;
|
|
if (g->fniv) {
|
|
type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
|
|
}
|
|
switch (type) {
|
|
case TCG_TYPE_V256:
|
|
/* Recall that ARM SVE allows vector sizes that are not a
|
|
* power of 2, but always a multiple of 16. The intent is
|
|
* that e.g. size == 80 would be expanded with 2x32 + 1x16.
|
|
*/
|
|
some = QEMU_ALIGN_DOWN(oprsz, 32);
|
|
expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
|
|
g->load_dest, g->fniv);
|
|
if (some == oprsz) {
|
|
break;
|
|
}
|
|
dofs += some;
|
|
aofs += some;
|
|
oprsz -= some;
|
|
maxsz -= some;
|
|
/* fallthru */
|
|
case TCG_TYPE_V128:
|
|
expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
|
|
g->load_dest, g->fniv);
|
|
break;
|
|
case TCG_TYPE_V64:
|
|
expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
|
|
g->load_dest, g->fniv);
|
|
break;
|
|
|
|
case 0:
|
|
if (g->fni8 && check_size_impl(oprsz, 8)) {
|
|
expand_2_i64(dofs, aofs, oprsz, g->load_dest, g->fni8);
|
|
} else if (g->fni4 && check_size_impl(oprsz, 4)) {
|
|
expand_2_i32(dofs, aofs, oprsz, g->load_dest, g->fni4);
|
|
} else {
|
|
assert(g->fno != NULL);
|
|
tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
|
|
oprsz = maxsz;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
tcg_swap_vecop_list(hold_list);
|
|
|
|
if (oprsz < maxsz) {
|
|
expand_clr(dofs + oprsz, maxsz - oprsz);
|
|
}
|
|
}
|
|
|
|
/* Expand a vector operation with two vectors and an immediate. */
|
|
void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
|
|
uint32_t maxsz, int64_t c, const GVecGen2i *g)
|
|
{
|
|
const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
|
|
const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
|
|
TCGType type;
|
|
uint32_t some;
|
|
|
|
check_size_align(oprsz, maxsz, dofs | aofs);
|
|
check_overlap_2(dofs, aofs, maxsz);
|
|
|
|
type = 0;
|
|
if (g->fniv) {
|
|
type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
|
|
}
|
|
switch (type) {
|
|
case TCG_TYPE_V256:
|
|
/* Recall that ARM SVE allows vector sizes that are not a
|
|
* power of 2, but always a multiple of 16. The intent is
|
|
* that e.g. size == 80 would be expanded with 2x32 + 1x16.
|
|
*/
|
|
some = QEMU_ALIGN_DOWN(oprsz, 32);
|
|
expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
|
|
c, g->load_dest, g->fniv);
|
|
if (some == oprsz) {
|
|
break;
|
|
}
|
|
dofs += some;
|
|
aofs += some;
|
|
oprsz -= some;
|
|
maxsz -= some;
|
|
/* fallthru */
|
|
case TCG_TYPE_V128:
|
|
expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
|
|
c, g->load_dest, g->fniv);
|
|
break;
|
|
case TCG_TYPE_V64:
|
|
expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
|
|
c, g->load_dest, g->fniv);
|
|
break;
|
|
|
|
case 0:
|
|
if (g->fni8 && check_size_impl(oprsz, 8)) {
|
|
expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
|
|
} else if (g->fni4 && check_size_impl(oprsz, 4)) {
|
|
expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
|
|
} else {
|
|
if (g->fno) {
|
|
tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
|
|
} else {
|
|
TCGv_i64 tcg_c = tcg_constant_i64(c);
|
|
tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz,
|
|
maxsz, c, g->fnoi);
|
|
}
|
|
oprsz = maxsz;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
tcg_swap_vecop_list(hold_list);
|
|
|
|
if (oprsz < maxsz) {
|
|
expand_clr(dofs + oprsz, maxsz - oprsz);
|
|
}
|
|
}
|
|
|
|
/* Expand a vector operation with two vectors and a scalar. */
|
|
void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
|
|
uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
|
|
{
|
|
TCGType type;
|
|
|
|
check_size_align(oprsz, maxsz, dofs | aofs);
|
|
check_overlap_2(dofs, aofs, maxsz);
|
|
|
|
type = 0;
|
|
if (g->fniv) {
|
|
type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
|
|
}
|
|
if (type != 0) {
|
|
const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
|
|
const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
|
|
TCGv_vec t_vec = tcg_temp_new_vec(type);
|
|
uint32_t some;
|
|
|
|
tcg_gen_dup_i64_vec(g->vece, t_vec, c);
|
|
|
|
switch (type) {
|
|
case TCG_TYPE_V256:
|
|
/* Recall that ARM SVE allows vector sizes that are not a
|
|
* power of 2, but always a multiple of 16. The intent is
|
|
* that e.g. size == 80 would be expanded with 2x32 + 1x16.
|
|
*/
|
|
some = QEMU_ALIGN_DOWN(oprsz, 32);
|
|
expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
|
|
t_vec, g->scalar_first, g->fniv);
|
|
if (some == oprsz) {
|
|
break;
|
|
}
|
|
dofs += some;
|
|
aofs += some;
|
|
oprsz -= some;
|
|
maxsz -= some;
|
|
/* fallthru */
|
|
|
|
case TCG_TYPE_V128:
|
|
expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
|
|
t_vec, g->scalar_first, g->fniv);
|
|
break;
|
|
|
|
case TCG_TYPE_V64:
|
|
expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
|
|
t_vec, g->scalar_first, g->fniv);
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
tcg_temp_free_vec(t_vec);
|
|
tcg_swap_vecop_list(hold_list);
|
|
} else if (g->fni8 && check_size_impl(oprsz, 8)) {
|
|
TCGv_i64 t64 = tcg_temp_new_i64();
|
|
|
|
tcg_gen_dup_i64(g->vece, t64, c);
|
|
expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
|
|
tcg_temp_free_i64(t64);
|
|
} else if (g->fni4 && check_size_impl(oprsz, 4)) {
|
|
TCGv_i32 t32 = tcg_temp_new_i32();
|
|
|
|
tcg_gen_extrl_i64_i32(t32, c);
|
|
tcg_gen_dup_i32(g->vece, t32, t32);
|
|
expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
|
|
tcg_temp_free_i32(t32);
|
|
} else {
|
|
tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
|
|
return;
|
|
}
|
|
|
|
if (oprsz < maxsz) {
|
|
expand_clr(dofs + oprsz, maxsz - oprsz);
|
|
}
|
|
}
|
|
|
|
/* Expand a vector three-operand operation. */
|
|
void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
|
|
uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
|
|
{
|
|
const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
|
|
const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
|
|
TCGType type;
|
|
uint32_t some;
|
|
|
|
check_size_align(oprsz, maxsz, dofs | aofs | bofs);
|
|
check_overlap_3(dofs, aofs, bofs, maxsz);
|
|
|
|
type = 0;
|
|
if (g->fniv) {
|
|
type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
|
|
}
|
|
switch (type) {
|
|
case TCG_TYPE_V256:
|
|
/* Recall that ARM SVE allows vector sizes that are not a
|
|
* power of 2, but always a multiple of 16. The intent is
|
|
* that e.g. size == 80 would be expanded with 2x32 + 1x16.
|
|
*/
|
|
some = QEMU_ALIGN_DOWN(oprsz, 32);
|
|
expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
|
|
g->load_dest, g->fniv);
|
|
if (some == oprsz) {
|
|
break;
|
|
}
|
|
dofs += some;
|
|
aofs += some;
|
|
bofs += some;
|
|
oprsz -= some;
|
|
maxsz -= some;
|
|
/* fallthru */
|
|
case TCG_TYPE_V128:
|
|
expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
|
|
g->load_dest, g->fniv);
|
|
break;
|
|
case TCG_TYPE_V64:
|
|
expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
|
|
g->load_dest, g->fniv);
|
|
break;
|
|
|
|
case 0:
|
|
if (g->fni8 && check_size_impl(oprsz, 8)) {
|
|
expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
|
|
} else if (g->fni4 && check_size_impl(oprsz, 4)) {
|
|
expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
|
|
} else {
|
|
assert(g->fno != NULL);
|
|
tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz,
|
|
maxsz, g->data, g->fno);
|
|
oprsz = maxsz;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
tcg_swap_vecop_list(hold_list);
|
|
|
|
if (oprsz < maxsz) {
|
|
expand_clr(dofs + oprsz, maxsz - oprsz);
|
|
}
|
|
}
|
|
|
|
/* Expand a vector operation with three vectors and an immediate. */
|
|
void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs,
|
|
uint32_t oprsz, uint32_t maxsz, int64_t c,
|
|
const GVecGen3i *g)
|
|
{
|
|
const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
|
|
const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
|
|
TCGType type;
|
|
uint32_t some;
|
|
|
|
check_size_align(oprsz, maxsz, dofs | aofs | bofs);
|
|
check_overlap_3(dofs, aofs, bofs, maxsz);
|
|
|
|
type = 0;
|
|
if (g->fniv) {
|
|
type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
|
|
}
|
|
switch (type) {
|
|
case TCG_TYPE_V256:
|
|
/*
|
|
* Recall that ARM SVE allows vector sizes that are not a
|
|
* power of 2, but always a multiple of 16. The intent is
|
|
* that e.g. size == 80 would be expanded with 2x32 + 1x16.
|
|
*/
|
|
some = QEMU_ALIGN_DOWN(oprsz, 32);
|
|
expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
|
|
c, g->load_dest, g->fniv);
|
|
if (some == oprsz) {
|
|
break;
|
|
}
|
|
dofs += some;
|
|
aofs += some;
|
|
bofs += some;
|
|
oprsz -= some;
|
|
maxsz -= some;
|
|
/* fallthru */
|
|
case TCG_TYPE_V128:
|
|
expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
|
|
c, g->load_dest, g->fniv);
|
|
break;
|
|
case TCG_TYPE_V64:
|
|
expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
|
|
c, g->load_dest, g->fniv);
|
|
break;
|
|
|
|
case 0:
|
|
if (g->fni8 && check_size_impl(oprsz, 8)) {
|
|
expand_3i_i64(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni8);
|
|
} else if (g->fni4 && check_size_impl(oprsz, 4)) {
|
|
expand_3i_i32(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni4);
|
|
} else {
|
|
assert(g->fno != NULL);
|
|
tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno);
|
|
oprsz = maxsz;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
tcg_swap_vecop_list(hold_list);
|
|
|
|
if (oprsz < maxsz) {
|
|
expand_clr(dofs + oprsz, maxsz - oprsz);
|
|
}
|
|
}
|
|
|
|
/* Expand a vector four-operand operation. */
|
|
void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
|
|
uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
|
|
{
|
|
const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
|
|
const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
|
|
TCGType type;
|
|
uint32_t some;
|
|
|
|
check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
|
|
check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
|
|
|
|
type = 0;
|
|
if (g->fniv) {
|
|
type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
|
|
}
|
|
switch (type) {
|
|
case TCG_TYPE_V256:
|
|
/* Recall that ARM SVE allows vector sizes that are not a
|
|
* power of 2, but always a multiple of 16. The intent is
|
|
* that e.g. size == 80 would be expanded with 2x32 + 1x16.
|
|
*/
|
|
some = QEMU_ALIGN_DOWN(oprsz, 32);
|
|
expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
|
|
32, TCG_TYPE_V256, g->write_aofs, g->fniv);
|
|
if (some == oprsz) {
|
|
break;
|
|
}
|
|
dofs += some;
|
|
aofs += some;
|
|
bofs += some;
|
|
cofs += some;
|
|
oprsz -= some;
|
|
maxsz -= some;
|
|
/* fallthru */
|
|
case TCG_TYPE_V128:
|
|
expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
|
|
16, TCG_TYPE_V128, g->write_aofs, g->fniv);
|
|
break;
|
|
case TCG_TYPE_V64:
|
|
expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
|
|
8, TCG_TYPE_V64, g->write_aofs, g->fniv);
|
|
break;
|
|
|
|
case 0:
|
|
if (g->fni8 && check_size_impl(oprsz, 8)) {
|
|
expand_4_i64(dofs, aofs, bofs, cofs, oprsz,
|
|
g->write_aofs, g->fni8);
|
|
} else if (g->fni4 && check_size_impl(oprsz, 4)) {
|
|
expand_4_i32(dofs, aofs, bofs, cofs, oprsz,
|
|
g->write_aofs, g->fni4);
|
|
} else {
|
|
assert(g->fno != NULL);
|
|
tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
|
|
oprsz, maxsz, g->data, g->fno);
|
|
oprsz = maxsz;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
tcg_swap_vecop_list(hold_list);
|
|
|
|
if (oprsz < maxsz) {
|
|
expand_clr(dofs + oprsz, maxsz - oprsz);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Expand specific vector operations.
|
|
*/
|
|
|
|
static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
|
|
{
|
|
tcg_gen_mov_vec(a, b);
|
|
}
|
|
|
|
void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen2 g = {
|
|
.fni8 = tcg_gen_mov_i64,
|
|
.fniv = vec_mov2,
|
|
.fno = gen_helper_gvec_mov,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
};
|
|
if (dofs != aofs) {
|
|
tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
|
|
} else {
|
|
check_size_align(oprsz, maxsz, dofs);
|
|
if (oprsz < maxsz) {
|
|
expand_clr(dofs + oprsz, maxsz - oprsz);
|
|
}
|
|
}
|
|
}
|
|
|
|
void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
|
|
uint32_t maxsz, TCGv_i32 in)
|
|
{
|
|
check_size_align(oprsz, maxsz, dofs);
|
|
tcg_debug_assert(vece <= MO_32);
|
|
do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
|
|
}
|
|
|
|
void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
|
|
uint32_t maxsz, TCGv_i64 in)
|
|
{
|
|
check_size_align(oprsz, maxsz, dofs);
|
|
tcg_debug_assert(vece <= MO_64);
|
|
do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
|
|
}
|
|
|
|
void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
check_size_align(oprsz, maxsz, dofs);
|
|
if (vece <= MO_64) {
|
|
TCGType type = choose_vector_type(NULL, vece, oprsz, 0);
|
|
if (type != 0) {
|
|
TCGv_vec t_vec = tcg_temp_new_vec(type);
|
|
tcg_gen_dup_mem_vec(vece, t_vec, cpu_env, aofs);
|
|
do_dup_store(type, dofs, oprsz, maxsz, t_vec);
|
|
tcg_temp_free_vec(t_vec);
|
|
} else if (vece <= MO_32) {
|
|
TCGv_i32 in = tcg_temp_new_i32();
|
|
switch (vece) {
|
|
case MO_8:
|
|
tcg_gen_ld8u_i32(in, cpu_env, aofs);
|
|
break;
|
|
case MO_16:
|
|
tcg_gen_ld16u_i32(in, cpu_env, aofs);
|
|
break;
|
|
default:
|
|
tcg_gen_ld_i32(in, cpu_env, aofs);
|
|
break;
|
|
}
|
|
do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
|
|
tcg_temp_free_i32(in);
|
|
} else {
|
|
TCGv_i64 in = tcg_temp_new_i64();
|
|
tcg_gen_ld_i64(in, cpu_env, aofs);
|
|
do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
|
|
tcg_temp_free_i64(in);
|
|
}
|
|
} else if (vece == 4) {
|
|
/* 128-bit duplicate. */
|
|
int i;
|
|
|
|
tcg_debug_assert(oprsz >= 16);
|
|
if (TCG_TARGET_HAS_v128) {
|
|
TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
|
|
|
|
tcg_gen_ld_vec(in, cpu_env, aofs);
|
|
for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
|
|
tcg_gen_st_vec(in, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_vec(in);
|
|
} else {
|
|
TCGv_i64 in0 = tcg_temp_new_i64();
|
|
TCGv_i64 in1 = tcg_temp_new_i64();
|
|
|
|
tcg_gen_ld_i64(in0, cpu_env, aofs);
|
|
tcg_gen_ld_i64(in1, cpu_env, aofs + 8);
|
|
for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
|
|
tcg_gen_st_i64(in0, cpu_env, dofs + i);
|
|
tcg_gen_st_i64(in1, cpu_env, dofs + i + 8);
|
|
}
|
|
tcg_temp_free_i64(in0);
|
|
tcg_temp_free_i64(in1);
|
|
}
|
|
if (oprsz < maxsz) {
|
|
expand_clr(dofs + oprsz, maxsz - oprsz);
|
|
}
|
|
} else if (vece == 5) {
|
|
/* 256-bit duplicate. */
|
|
int i;
|
|
|
|
tcg_debug_assert(oprsz >= 32);
|
|
tcg_debug_assert(oprsz % 32 == 0);
|
|
if (TCG_TARGET_HAS_v256) {
|
|
TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V256);
|
|
|
|
tcg_gen_ld_vec(in, cpu_env, aofs);
|
|
for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
|
|
tcg_gen_st_vec(in, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_vec(in);
|
|
} else if (TCG_TARGET_HAS_v128) {
|
|
TCGv_vec in0 = tcg_temp_new_vec(TCG_TYPE_V128);
|
|
TCGv_vec in1 = tcg_temp_new_vec(TCG_TYPE_V128);
|
|
|
|
tcg_gen_ld_vec(in0, cpu_env, aofs);
|
|
tcg_gen_ld_vec(in1, cpu_env, aofs + 16);
|
|
for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
|
|
tcg_gen_st_vec(in0, cpu_env, dofs + i);
|
|
tcg_gen_st_vec(in1, cpu_env, dofs + i + 16);
|
|
}
|
|
tcg_temp_free_vec(in0);
|
|
tcg_temp_free_vec(in1);
|
|
} else {
|
|
TCGv_i64 in[4];
|
|
int j;
|
|
|
|
for (j = 0; j < 4; ++j) {
|
|
in[j] = tcg_temp_new_i64();
|
|
tcg_gen_ld_i64(in[j], cpu_env, aofs + j * 8);
|
|
}
|
|
for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
|
|
for (j = 0; j < 4; ++j) {
|
|
tcg_gen_st_i64(in[j], cpu_env, dofs + i + j * 8);
|
|
}
|
|
}
|
|
for (j = 0; j < 4; ++j) {
|
|
tcg_temp_free_i64(in[j]);
|
|
}
|
|
}
|
|
if (oprsz < maxsz) {
|
|
expand_clr(dofs + oprsz, maxsz - oprsz);
|
|
}
|
|
} else {
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
void tcg_gen_gvec_dup_imm(unsigned vece, uint32_t dofs, uint32_t oprsz,
|
|
uint32_t maxsz, uint64_t x)
|
|
{
|
|
check_size_align(oprsz, maxsz, dofs);
|
|
do_dup(vece, dofs, oprsz, maxsz, NULL, NULL, x);
|
|
}
|
|
|
|
void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen2 g = {
|
|
.fni8 = tcg_gen_not_i64,
|
|
.fniv = tcg_gen_not_vec,
|
|
.fno = gen_helper_gvec_not,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
};
|
|
tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
|
|
}
|
|
|
|
/* Perform a vector addition using normal addition and a mask. The mask
|
|
should be the sign bit of each lane. This 6-operation form is more
|
|
efficient than separate additions when there are 4 or more lanes in
|
|
the 64-bit operation. */
|
|
static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
|
|
{
|
|
TCGv_i64 t1 = tcg_temp_new_i64();
|
|
TCGv_i64 t2 = tcg_temp_new_i64();
|
|
TCGv_i64 t3 = tcg_temp_new_i64();
|
|
|
|
tcg_gen_andc_i64(t1, a, m);
|
|
tcg_gen_andc_i64(t2, b, m);
|
|
tcg_gen_xor_i64(t3, a, b);
|
|
tcg_gen_add_i64(d, t1, t2);
|
|
tcg_gen_and_i64(t3, t3, m);
|
|
tcg_gen_xor_i64(d, d, t3);
|
|
|
|
tcg_temp_free_i64(t1);
|
|
tcg_temp_free_i64(t2);
|
|
tcg_temp_free_i64(t3);
|
|
}
|
|
|
|
void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
|
|
gen_addv_mask(d, a, b, m);
|
|
}
|
|
|
|
void tcg_gen_vec_add8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80));
|
|
TCGv_i32 t1 = tcg_temp_new_i32();
|
|
TCGv_i32 t2 = tcg_temp_new_i32();
|
|
TCGv_i32 t3 = tcg_temp_new_i32();
|
|
|
|
tcg_gen_andc_i32(t1, a, m);
|
|
tcg_gen_andc_i32(t2, b, m);
|
|
tcg_gen_xor_i32(t3, a, b);
|
|
tcg_gen_add_i32(d, t1, t2);
|
|
tcg_gen_and_i32(t3, t3, m);
|
|
tcg_gen_xor_i32(d, d, t3);
|
|
|
|
tcg_temp_free_i32(t1);
|
|
tcg_temp_free_i32(t2);
|
|
tcg_temp_free_i32(t3);
|
|
}
|
|
|
|
void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
|
|
gen_addv_mask(d, a, b, m);
|
|
}
|
|
|
|
void tcg_gen_vec_add16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 t1 = tcg_temp_new_i32();
|
|
TCGv_i32 t2 = tcg_temp_new_i32();
|
|
|
|
tcg_gen_andi_i32(t1, a, ~0xffff);
|
|
tcg_gen_add_i32(t2, a, b);
|
|
tcg_gen_add_i32(t1, t1, b);
|
|
tcg_gen_deposit_i32(d, t1, t2, 0, 16);
|
|
|
|
tcg_temp_free_i32(t1);
|
|
tcg_temp_free_i32(t2);
|
|
}
|
|
|
|
void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 t1 = tcg_temp_new_i64();
|
|
TCGv_i64 t2 = tcg_temp_new_i64();
|
|
|
|
tcg_gen_andi_i64(t1, a, ~0xffffffffull);
|
|
tcg_gen_add_i64(t2, a, b);
|
|
tcg_gen_add_i64(t1, t1, b);
|
|
tcg_gen_deposit_i64(d, t1, t2, 0, 32);
|
|
|
|
tcg_temp_free_i64(t1);
|
|
tcg_temp_free_i64(t2);
|
|
}
|
|
|
|
static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 };
|
|
|
|
void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen3 g[4] = {
|
|
{ .fni8 = tcg_gen_vec_add8_i64,
|
|
.fniv = tcg_gen_add_vec,
|
|
.fno = gen_helper_gvec_add8,
|
|
.opt_opc = vecop_list_add,
|
|
.vece = MO_8 },
|
|
{ .fni8 = tcg_gen_vec_add16_i64,
|
|
.fniv = tcg_gen_add_vec,
|
|
.fno = gen_helper_gvec_add16,
|
|
.opt_opc = vecop_list_add,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_add_i32,
|
|
.fniv = tcg_gen_add_vec,
|
|
.fno = gen_helper_gvec_add32,
|
|
.opt_opc = vecop_list_add,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_add_i64,
|
|
.fniv = tcg_gen_add_vec,
|
|
.fno = gen_helper_gvec_add64,
|
|
.opt_opc = vecop_list_add,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen2s g[4] = {
|
|
{ .fni8 = tcg_gen_vec_add8_i64,
|
|
.fniv = tcg_gen_add_vec,
|
|
.fno = gen_helper_gvec_adds8,
|
|
.opt_opc = vecop_list_add,
|
|
.vece = MO_8 },
|
|
{ .fni8 = tcg_gen_vec_add16_i64,
|
|
.fniv = tcg_gen_add_vec,
|
|
.fno = gen_helper_gvec_adds16,
|
|
.opt_opc = vecop_list_add,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_add_i32,
|
|
.fniv = tcg_gen_add_vec,
|
|
.fno = gen_helper_gvec_adds32,
|
|
.opt_opc = vecop_list_add,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_add_i64,
|
|
.fniv = tcg_gen_add_vec,
|
|
.fno = gen_helper_gvec_adds64,
|
|
.opt_opc = vecop_list_add,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
|
|
}
|
|
|
|
void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
int64_t c, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
TCGv_i64 tmp = tcg_constant_i64(c);
|
|
tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
|
|
}
|
|
|
|
static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 };
|
|
|
|
void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen2s g[4] = {
|
|
{ .fni8 = tcg_gen_vec_sub8_i64,
|
|
.fniv = tcg_gen_sub_vec,
|
|
.fno = gen_helper_gvec_subs8,
|
|
.opt_opc = vecop_list_sub,
|
|
.vece = MO_8 },
|
|
{ .fni8 = tcg_gen_vec_sub16_i64,
|
|
.fniv = tcg_gen_sub_vec,
|
|
.fno = gen_helper_gvec_subs16,
|
|
.opt_opc = vecop_list_sub,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_sub_i32,
|
|
.fniv = tcg_gen_sub_vec,
|
|
.fno = gen_helper_gvec_subs32,
|
|
.opt_opc = vecop_list_sub,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_sub_i64,
|
|
.fniv = tcg_gen_sub_vec,
|
|
.fno = gen_helper_gvec_subs64,
|
|
.opt_opc = vecop_list_sub,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
|
|
}
|
|
|
|
/* Perform a vector subtraction using normal subtraction and a mask.
|
|
Compare gen_addv_mask above. */
|
|
static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
|
|
{
|
|
TCGv_i64 t1 = tcg_temp_new_i64();
|
|
TCGv_i64 t2 = tcg_temp_new_i64();
|
|
TCGv_i64 t3 = tcg_temp_new_i64();
|
|
|
|
tcg_gen_or_i64(t1, a, m);
|
|
tcg_gen_andc_i64(t2, b, m);
|
|
tcg_gen_eqv_i64(t3, a, b);
|
|
tcg_gen_sub_i64(d, t1, t2);
|
|
tcg_gen_and_i64(t3, t3, m);
|
|
tcg_gen_xor_i64(d, d, t3);
|
|
|
|
tcg_temp_free_i64(t1);
|
|
tcg_temp_free_i64(t2);
|
|
tcg_temp_free_i64(t3);
|
|
}
|
|
|
|
void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
|
|
gen_subv_mask(d, a, b, m);
|
|
}
|
|
|
|
void tcg_gen_vec_sub8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80));
|
|
TCGv_i32 t1 = tcg_temp_new_i32();
|
|
TCGv_i32 t2 = tcg_temp_new_i32();
|
|
TCGv_i32 t3 = tcg_temp_new_i32();
|
|
|
|
tcg_gen_or_i32(t1, a, m);
|
|
tcg_gen_andc_i32(t2, b, m);
|
|
tcg_gen_eqv_i32(t3, a, b);
|
|
tcg_gen_sub_i32(d, t1, t2);
|
|
tcg_gen_and_i32(t3, t3, m);
|
|
tcg_gen_xor_i32(d, d, t3);
|
|
|
|
tcg_temp_free_i32(t1);
|
|
tcg_temp_free_i32(t2);
|
|
tcg_temp_free_i32(t3);
|
|
}
|
|
|
|
void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
|
|
gen_subv_mask(d, a, b, m);
|
|
}
|
|
|
|
void tcg_gen_vec_sub16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 t1 = tcg_temp_new_i32();
|
|
TCGv_i32 t2 = tcg_temp_new_i32();
|
|
|
|
tcg_gen_andi_i32(t1, b, ~0xffff);
|
|
tcg_gen_sub_i32(t2, a, b);
|
|
tcg_gen_sub_i32(t1, a, t1);
|
|
tcg_gen_deposit_i32(d, t1, t2, 0, 16);
|
|
|
|
tcg_temp_free_i32(t1);
|
|
tcg_temp_free_i32(t2);
|
|
}
|
|
|
|
void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 t1 = tcg_temp_new_i64();
|
|
TCGv_i64 t2 = tcg_temp_new_i64();
|
|
|
|
tcg_gen_andi_i64(t1, b, ~0xffffffffull);
|
|
tcg_gen_sub_i64(t2, a, b);
|
|
tcg_gen_sub_i64(t1, a, t1);
|
|
tcg_gen_deposit_i64(d, t1, t2, 0, 32);
|
|
|
|
tcg_temp_free_i64(t1);
|
|
tcg_temp_free_i64(t2);
|
|
}
|
|
|
|
void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen3 g[4] = {
|
|
{ .fni8 = tcg_gen_vec_sub8_i64,
|
|
.fniv = tcg_gen_sub_vec,
|
|
.fno = gen_helper_gvec_sub8,
|
|
.opt_opc = vecop_list_sub,
|
|
.vece = MO_8 },
|
|
{ .fni8 = tcg_gen_vec_sub16_i64,
|
|
.fniv = tcg_gen_sub_vec,
|
|
.fno = gen_helper_gvec_sub16,
|
|
.opt_opc = vecop_list_sub,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_sub_i32,
|
|
.fniv = tcg_gen_sub_vec,
|
|
.fno = gen_helper_gvec_sub32,
|
|
.opt_opc = vecop_list_sub,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_sub_i64,
|
|
.fniv = tcg_gen_sub_vec,
|
|
.fno = gen_helper_gvec_sub64,
|
|
.opt_opc = vecop_list_sub,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 };
|
|
|
|
void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen3 g[4] = {
|
|
{ .fniv = tcg_gen_mul_vec,
|
|
.fno = gen_helper_gvec_mul8,
|
|
.opt_opc = vecop_list_mul,
|
|
.vece = MO_8 },
|
|
{ .fniv = tcg_gen_mul_vec,
|
|
.fno = gen_helper_gvec_mul16,
|
|
.opt_opc = vecop_list_mul,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_mul_i32,
|
|
.fniv = tcg_gen_mul_vec,
|
|
.fno = gen_helper_gvec_mul32,
|
|
.opt_opc = vecop_list_mul,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_mul_i64,
|
|
.fniv = tcg_gen_mul_vec,
|
|
.fno = gen_helper_gvec_mul64,
|
|
.opt_opc = vecop_list_mul,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen2s g[4] = {
|
|
{ .fniv = tcg_gen_mul_vec,
|
|
.fno = gen_helper_gvec_muls8,
|
|
.opt_opc = vecop_list_mul,
|
|
.vece = MO_8 },
|
|
{ .fniv = tcg_gen_mul_vec,
|
|
.fno = gen_helper_gvec_muls16,
|
|
.opt_opc = vecop_list_mul,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_mul_i32,
|
|
.fniv = tcg_gen_mul_vec,
|
|
.fno = gen_helper_gvec_muls32,
|
|
.opt_opc = vecop_list_mul,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_mul_i64,
|
|
.fniv = tcg_gen_mul_vec,
|
|
.fno = gen_helper_gvec_muls64,
|
|
.opt_opc = vecop_list_mul,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
|
|
}
|
|
|
|
void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
int64_t c, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
TCGv_i64 tmp = tcg_constant_i64(c);
|
|
tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
|
|
}
|
|
|
|
void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 };
|
|
static const GVecGen3 g[4] = {
|
|
{ .fniv = tcg_gen_ssadd_vec,
|
|
.fno = gen_helper_gvec_ssadd8,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = tcg_gen_ssadd_vec,
|
|
.fno = gen_helper_gvec_ssadd16,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fniv = tcg_gen_ssadd_vec,
|
|
.fno = gen_helper_gvec_ssadd32,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fniv = tcg_gen_ssadd_vec,
|
|
.fno = gen_helper_gvec_ssadd64,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 },
|
|
};
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 };
|
|
static const GVecGen3 g[4] = {
|
|
{ .fniv = tcg_gen_sssub_vec,
|
|
.fno = gen_helper_gvec_sssub8,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = tcg_gen_sssub_vec,
|
|
.fno = gen_helper_gvec_sssub16,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fniv = tcg_gen_sssub_vec,
|
|
.fno = gen_helper_gvec_sssub32,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fniv = tcg_gen_sssub_vec,
|
|
.fno = gen_helper_gvec_sssub64,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 },
|
|
};
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 max = tcg_constant_i32(-1);
|
|
tcg_gen_add_i32(d, a, b);
|
|
tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
|
|
}
|
|
|
|
static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 max = tcg_constant_i64(-1);
|
|
tcg_gen_add_i64(d, a, b);
|
|
tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
|
|
}
|
|
|
|
void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 };
|
|
static const GVecGen3 g[4] = {
|
|
{ .fniv = tcg_gen_usadd_vec,
|
|
.fno = gen_helper_gvec_usadd8,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = tcg_gen_usadd_vec,
|
|
.fno = gen_helper_gvec_usadd16,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_usadd_i32,
|
|
.fniv = tcg_gen_usadd_vec,
|
|
.fno = gen_helper_gvec_usadd32,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_usadd_i64,
|
|
.fniv = tcg_gen_usadd_vec,
|
|
.fno = gen_helper_gvec_usadd64,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 }
|
|
};
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 min = tcg_constant_i32(0);
|
|
tcg_gen_sub_i32(d, a, b);
|
|
tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
|
|
}
|
|
|
|
static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 min = tcg_constant_i64(0);
|
|
tcg_gen_sub_i64(d, a, b);
|
|
tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
|
|
}
|
|
|
|
void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 };
|
|
static const GVecGen3 g[4] = {
|
|
{ .fniv = tcg_gen_ussub_vec,
|
|
.fno = gen_helper_gvec_ussub8,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = tcg_gen_ussub_vec,
|
|
.fno = gen_helper_gvec_ussub16,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_ussub_i32,
|
|
.fniv = tcg_gen_ussub_vec,
|
|
.fno = gen_helper_gvec_ussub32,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_ussub_i64,
|
|
.fniv = tcg_gen_ussub_vec,
|
|
.fno = gen_helper_gvec_ussub64,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 }
|
|
};
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 };
|
|
static const GVecGen3 g[4] = {
|
|
{ .fniv = tcg_gen_smin_vec,
|
|
.fno = gen_helper_gvec_smin8,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = tcg_gen_smin_vec,
|
|
.fno = gen_helper_gvec_smin16,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_smin_i32,
|
|
.fniv = tcg_gen_smin_vec,
|
|
.fno = gen_helper_gvec_smin32,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_smin_i64,
|
|
.fniv = tcg_gen_smin_vec,
|
|
.fno = gen_helper_gvec_smin64,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 }
|
|
};
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 };
|
|
static const GVecGen3 g[4] = {
|
|
{ .fniv = tcg_gen_umin_vec,
|
|
.fno = gen_helper_gvec_umin8,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = tcg_gen_umin_vec,
|
|
.fno = gen_helper_gvec_umin16,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_umin_i32,
|
|
.fniv = tcg_gen_umin_vec,
|
|
.fno = gen_helper_gvec_umin32,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_umin_i64,
|
|
.fniv = tcg_gen_umin_vec,
|
|
.fno = gen_helper_gvec_umin64,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 }
|
|
};
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 };
|
|
static const GVecGen3 g[4] = {
|
|
{ .fniv = tcg_gen_smax_vec,
|
|
.fno = gen_helper_gvec_smax8,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = tcg_gen_smax_vec,
|
|
.fno = gen_helper_gvec_smax16,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_smax_i32,
|
|
.fniv = tcg_gen_smax_vec,
|
|
.fno = gen_helper_gvec_smax32,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_smax_i64,
|
|
.fniv = tcg_gen_smax_vec,
|
|
.fno = gen_helper_gvec_smax64,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 }
|
|
};
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 };
|
|
static const GVecGen3 g[4] = {
|
|
{ .fniv = tcg_gen_umax_vec,
|
|
.fno = gen_helper_gvec_umax8,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = tcg_gen_umax_vec,
|
|
.fno = gen_helper_gvec_umax16,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_umax_i32,
|
|
.fniv = tcg_gen_umax_vec,
|
|
.fno = gen_helper_gvec_umax32,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_umax_i64,
|
|
.fniv = tcg_gen_umax_vec,
|
|
.fno = gen_helper_gvec_umax64,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 }
|
|
};
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
/* Perform a vector negation using normal negation and a mask.
|
|
Compare gen_subv_mask above. */
|
|
static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
|
|
{
|
|
TCGv_i64 t2 = tcg_temp_new_i64();
|
|
TCGv_i64 t3 = tcg_temp_new_i64();
|
|
|
|
tcg_gen_andc_i64(t3, m, b);
|
|
tcg_gen_andc_i64(t2, b, m);
|
|
tcg_gen_sub_i64(d, m, t2);
|
|
tcg_gen_xor_i64(d, d, t3);
|
|
|
|
tcg_temp_free_i64(t2);
|
|
tcg_temp_free_i64(t3);
|
|
}
|
|
|
|
void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
|
|
gen_negv_mask(d, b, m);
|
|
}
|
|
|
|
void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
|
|
gen_negv_mask(d, b, m);
|
|
}
|
|
|
|
void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 t1 = tcg_temp_new_i64();
|
|
TCGv_i64 t2 = tcg_temp_new_i64();
|
|
|
|
tcg_gen_andi_i64(t1, b, ~0xffffffffull);
|
|
tcg_gen_neg_i64(t2, b);
|
|
tcg_gen_neg_i64(t1, t1);
|
|
tcg_gen_deposit_i64(d, t1, t2, 0, 32);
|
|
|
|
tcg_temp_free_i64(t1);
|
|
tcg_temp_free_i64(t2);
|
|
}
|
|
|
|
void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 };
|
|
static const GVecGen2 g[4] = {
|
|
{ .fni8 = tcg_gen_vec_neg8_i64,
|
|
.fniv = tcg_gen_neg_vec,
|
|
.fno = gen_helper_gvec_neg8,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fni8 = tcg_gen_vec_neg16_i64,
|
|
.fniv = tcg_gen_neg_vec,
|
|
.fno = gen_helper_gvec_neg16,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_neg_i32,
|
|
.fniv = tcg_gen_neg_vec,
|
|
.fno = gen_helper_gvec_neg32,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_neg_i64,
|
|
.fniv = tcg_gen_neg_vec,
|
|
.fno = gen_helper_gvec_neg64,
|
|
.opt_opc = vecop_list,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
int nbit = 8 << vece;
|
|
|
|
/* Create -1 for each negative element. */
|
|
tcg_gen_shri_i64(t, b, nbit - 1);
|
|
tcg_gen_andi_i64(t, t, dup_const(vece, 1));
|
|
tcg_gen_muli_i64(t, t, (1 << nbit) - 1);
|
|
|
|
/*
|
|
* Invert (via xor -1) and add one.
|
|
* Because of the ordering the msb is cleared,
|
|
* so we never have carry into the next element.
|
|
*/
|
|
tcg_gen_xor_i64(d, b, t);
|
|
tcg_gen_andi_i64(t, t, dup_const(vece, 1));
|
|
tcg_gen_add_i64(d, d, t);
|
|
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b)
|
|
{
|
|
gen_absv_mask(d, b, MO_8);
|
|
}
|
|
|
|
static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b)
|
|
{
|
|
gen_absv_mask(d, b, MO_16);
|
|
}
|
|
|
|
void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 };
|
|
static const GVecGen2 g[4] = {
|
|
{ .fni8 = tcg_gen_vec_abs8_i64,
|
|
.fniv = tcg_gen_abs_vec,
|
|
.fno = gen_helper_gvec_abs8,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fni8 = tcg_gen_vec_abs16_i64,
|
|
.fniv = tcg_gen_abs_vec,
|
|
.fno = gen_helper_gvec_abs16,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_abs_i32,
|
|
.fniv = tcg_gen_abs_vec,
|
|
.fno = gen_helper_gvec_abs32,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_abs_i64,
|
|
.fniv = tcg_gen_abs_vec,
|
|
.fno = gen_helper_gvec_abs64,
|
|
.opt_opc = vecop_list,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen3 g = {
|
|
.fni8 = tcg_gen_and_i64,
|
|
.fniv = tcg_gen_and_vec,
|
|
.fno = gen_helper_gvec_and,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
};
|
|
|
|
if (aofs == bofs) {
|
|
tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
|
|
} else {
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
|
|
}
|
|
}
|
|
|
|
void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen3 g = {
|
|
.fni8 = tcg_gen_or_i64,
|
|
.fniv = tcg_gen_or_vec,
|
|
.fno = gen_helper_gvec_or,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
};
|
|
|
|
if (aofs == bofs) {
|
|
tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
|
|
} else {
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
|
|
}
|
|
}
|
|
|
|
void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen3 g = {
|
|
.fni8 = tcg_gen_xor_i64,
|
|
.fniv = tcg_gen_xor_vec,
|
|
.fno = gen_helper_gvec_xor,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
};
|
|
|
|
if (aofs == bofs) {
|
|
tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
|
|
} else {
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
|
|
}
|
|
}
|
|
|
|
void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen3 g = {
|
|
.fni8 = tcg_gen_andc_i64,
|
|
.fniv = tcg_gen_andc_vec,
|
|
.fno = gen_helper_gvec_andc,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
};
|
|
|
|
if (aofs == bofs) {
|
|
tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
|
|
} else {
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
|
|
}
|
|
}
|
|
|
|
void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen3 g = {
|
|
.fni8 = tcg_gen_orc_i64,
|
|
.fniv = tcg_gen_orc_vec,
|
|
.fno = gen_helper_gvec_orc,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
};
|
|
|
|
if (aofs == bofs) {
|
|
tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
|
|
} else {
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
|
|
}
|
|
}
|
|
|
|
void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen3 g = {
|
|
.fni8 = tcg_gen_nand_i64,
|
|
.fniv = tcg_gen_nand_vec,
|
|
.fno = gen_helper_gvec_nand,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
};
|
|
|
|
if (aofs == bofs) {
|
|
tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
|
|
} else {
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
|
|
}
|
|
}
|
|
|
|
void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen3 g = {
|
|
.fni8 = tcg_gen_nor_i64,
|
|
.fniv = tcg_gen_nor_vec,
|
|
.fno = gen_helper_gvec_nor,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
};
|
|
|
|
if (aofs == bofs) {
|
|
tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
|
|
} else {
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
|
|
}
|
|
}
|
|
|
|
void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen3 g = {
|
|
.fni8 = tcg_gen_eqv_i64,
|
|
.fniv = tcg_gen_eqv_vec,
|
|
.fno = gen_helper_gvec_eqv,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
};
|
|
|
|
if (aofs == bofs) {
|
|
tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
|
|
} else {
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
|
|
}
|
|
}
|
|
|
|
static const GVecGen2s gop_ands = {
|
|
.fni8 = tcg_gen_and_i64,
|
|
.fniv = tcg_gen_and_vec,
|
|
.fno = gen_helper_gvec_ands,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64
|
|
};
|
|
|
|
void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
TCGv_i64 tmp = tcg_temp_new_i64();
|
|
tcg_gen_dup_i64(vece, tmp, c);
|
|
tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
|
|
tcg_temp_free_i64(tmp);
|
|
}
|
|
|
|
void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
int64_t c, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
|
|
tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
|
|
}
|
|
|
|
static const GVecGen2s gop_xors = {
|
|
.fni8 = tcg_gen_xor_i64,
|
|
.fniv = tcg_gen_xor_vec,
|
|
.fno = gen_helper_gvec_xors,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64
|
|
};
|
|
|
|
void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
TCGv_i64 tmp = tcg_temp_new_i64();
|
|
tcg_gen_dup_i64(vece, tmp, c);
|
|
tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
|
|
tcg_temp_free_i64(tmp);
|
|
}
|
|
|
|
void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
int64_t c, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
|
|
tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
|
|
}
|
|
|
|
static const GVecGen2s gop_ors = {
|
|
.fni8 = tcg_gen_or_i64,
|
|
.fniv = tcg_gen_or_vec,
|
|
.fno = gen_helper_gvec_ors,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64
|
|
};
|
|
|
|
void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
TCGv_i64 tmp = tcg_temp_new_i64();
|
|
tcg_gen_dup_i64(vece, tmp, c);
|
|
tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
|
|
tcg_temp_free_i64(tmp);
|
|
}
|
|
|
|
void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
int64_t c, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
|
|
tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
|
|
}
|
|
|
|
void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
|
|
{
|
|
uint64_t mask = dup_const(MO_8, 0xff << c);
|
|
tcg_gen_shli_i64(d, a, c);
|
|
tcg_gen_andi_i64(d, d, mask);
|
|
}
|
|
|
|
void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
|
|
{
|
|
uint64_t mask = dup_const(MO_16, 0xffff << c);
|
|
tcg_gen_shli_i64(d, a, c);
|
|
tcg_gen_andi_i64(d, d, mask);
|
|
}
|
|
|
|
void tcg_gen_vec_shl16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
|
|
{
|
|
uint32_t mask = dup_const(MO_16, 0xffff << c);
|
|
tcg_gen_shli_i32(d, a, c);
|
|
tcg_gen_andi_i32(d, d, mask);
|
|
}
|
|
|
|
void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
int64_t shift, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
|
|
static const GVecGen2i g[4] = {
|
|
{ .fni8 = tcg_gen_vec_shl8i_i64,
|
|
.fniv = tcg_gen_shli_vec,
|
|
.fno = gen_helper_gvec_shl8i,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fni8 = tcg_gen_vec_shl16i_i64,
|
|
.fniv = tcg_gen_shli_vec,
|
|
.fno = gen_helper_gvec_shl16i,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_shli_i32,
|
|
.fniv = tcg_gen_shli_vec,
|
|
.fno = gen_helper_gvec_shl32i,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_shli_i64,
|
|
.fniv = tcg_gen_shli_vec,
|
|
.fno = gen_helper_gvec_shl64i,
|
|
.opt_opc = vecop_list,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_debug_assert(shift >= 0 && shift < (8 << vece));
|
|
if (shift == 0) {
|
|
tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
|
|
} else {
|
|
tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
|
|
}
|
|
}
|
|
|
|
void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
|
|
{
|
|
uint64_t mask = dup_const(MO_8, 0xff >> c);
|
|
tcg_gen_shri_i64(d, a, c);
|
|
tcg_gen_andi_i64(d, d, mask);
|
|
}
|
|
|
|
void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
|
|
{
|
|
uint64_t mask = dup_const(MO_16, 0xffff >> c);
|
|
tcg_gen_shri_i64(d, a, c);
|
|
tcg_gen_andi_i64(d, d, mask);
|
|
}
|
|
|
|
void tcg_gen_vec_shr16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
|
|
{
|
|
uint32_t mask = dup_const(MO_16, 0xffff >> c);
|
|
tcg_gen_shri_i32(d, a, c);
|
|
tcg_gen_andi_i32(d, d, mask);
|
|
}
|
|
|
|
void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
int64_t shift, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 };
|
|
static const GVecGen2i g[4] = {
|
|
{ .fni8 = tcg_gen_vec_shr8i_i64,
|
|
.fniv = tcg_gen_shri_vec,
|
|
.fno = gen_helper_gvec_shr8i,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fni8 = tcg_gen_vec_shr16i_i64,
|
|
.fniv = tcg_gen_shri_vec,
|
|
.fno = gen_helper_gvec_shr16i,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_shri_i32,
|
|
.fniv = tcg_gen_shri_vec,
|
|
.fno = gen_helper_gvec_shr32i,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_shri_i64,
|
|
.fniv = tcg_gen_shri_vec,
|
|
.fno = gen_helper_gvec_shr64i,
|
|
.opt_opc = vecop_list,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_debug_assert(shift >= 0 && shift < (8 << vece));
|
|
if (shift == 0) {
|
|
tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
|
|
} else {
|
|
tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
|
|
}
|
|
}
|
|
|
|
void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
|
|
{
|
|
uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
|
|
uint64_t c_mask = dup_const(MO_8, 0xff >> c);
|
|
TCGv_i64 s = tcg_temp_new_i64();
|
|
|
|
tcg_gen_shri_i64(d, a, c);
|
|
tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
|
|
tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
|
|
tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
|
|
tcg_gen_or_i64(d, d, s); /* include sign extension */
|
|
tcg_temp_free_i64(s);
|
|
}
|
|
|
|
void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
|
|
{
|
|
uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
|
|
uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
|
|
TCGv_i64 s = tcg_temp_new_i64();
|
|
|
|
tcg_gen_shri_i64(d, a, c);
|
|
tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
|
|
tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
|
|
tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
|
|
tcg_gen_or_i64(d, d, s); /* include sign extension */
|
|
tcg_temp_free_i64(s);
|
|
}
|
|
|
|
void tcg_gen_vec_sar16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
|
|
{
|
|
uint32_t s_mask = dup_const(MO_16, 0x8000 >> c);
|
|
uint32_t c_mask = dup_const(MO_16, 0xffff >> c);
|
|
TCGv_i32 s = tcg_temp_new_i32();
|
|
|
|
tcg_gen_shri_i32(d, a, c);
|
|
tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */
|
|
tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */
|
|
tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */
|
|
tcg_gen_or_i32(d, d, s); /* include sign extension */
|
|
tcg_temp_free_i32(s);
|
|
}
|
|
|
|
void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
int64_t shift, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 };
|
|
static const GVecGen2i g[4] = {
|
|
{ .fni8 = tcg_gen_vec_sar8i_i64,
|
|
.fniv = tcg_gen_sari_vec,
|
|
.fno = gen_helper_gvec_sar8i,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fni8 = tcg_gen_vec_sar16i_i64,
|
|
.fniv = tcg_gen_sari_vec,
|
|
.fno = gen_helper_gvec_sar16i,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_sari_i32,
|
|
.fniv = tcg_gen_sari_vec,
|
|
.fno = gen_helper_gvec_sar32i,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_sari_i64,
|
|
.fniv = tcg_gen_sari_vec,
|
|
.fno = gen_helper_gvec_sar64i,
|
|
.opt_opc = vecop_list,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_debug_assert(shift >= 0 && shift < (8 << vece));
|
|
if (shift == 0) {
|
|
tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
|
|
} else {
|
|
tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
|
|
}
|
|
}
|
|
|
|
void tcg_gen_vec_rotl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
|
|
{
|
|
uint64_t mask = dup_const(MO_8, 0xff << c);
|
|
|
|
tcg_gen_shli_i64(d, a, c);
|
|
tcg_gen_shri_i64(a, a, 8 - c);
|
|
tcg_gen_andi_i64(d, d, mask);
|
|
tcg_gen_andi_i64(a, a, ~mask);
|
|
tcg_gen_or_i64(d, d, a);
|
|
}
|
|
|
|
void tcg_gen_vec_rotl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
|
|
{
|
|
uint64_t mask = dup_const(MO_16, 0xffff << c);
|
|
|
|
tcg_gen_shli_i64(d, a, c);
|
|
tcg_gen_shri_i64(a, a, 16 - c);
|
|
tcg_gen_andi_i64(d, d, mask);
|
|
tcg_gen_andi_i64(a, a, ~mask);
|
|
tcg_gen_or_i64(d, d, a);
|
|
}
|
|
|
|
void tcg_gen_gvec_rotli(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
int64_t shift, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
|
|
static const GVecGen2i g[4] = {
|
|
{ .fni8 = tcg_gen_vec_rotl8i_i64,
|
|
.fniv = tcg_gen_rotli_vec,
|
|
.fno = gen_helper_gvec_rotl8i,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fni8 = tcg_gen_vec_rotl16i_i64,
|
|
.fniv = tcg_gen_rotli_vec,
|
|
.fno = gen_helper_gvec_rotl16i,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_rotli_i32,
|
|
.fniv = tcg_gen_rotli_vec,
|
|
.fno = gen_helper_gvec_rotl32i,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_rotli_i64,
|
|
.fniv = tcg_gen_rotli_vec,
|
|
.fno = gen_helper_gvec_rotl64i,
|
|
.opt_opc = vecop_list,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_debug_assert(shift >= 0 && shift < (8 << vece));
|
|
if (shift == 0) {
|
|
tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
|
|
} else {
|
|
tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
|
|
}
|
|
}
|
|
|
|
void tcg_gen_gvec_rotri(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
int64_t shift, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_debug_assert(shift >= 0 && shift < (8 << vece));
|
|
tcg_gen_gvec_rotli(vece, dofs, aofs, -shift & ((8 << vece) - 1),
|
|
oprsz, maxsz);
|
|
}
|
|
|
|
/*
|
|
* Specialized generation vector shifts by a non-constant scalar.
|
|
*/
|
|
|
|
typedef struct {
|
|
void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32);
|
|
void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64);
|
|
void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32);
|
|
void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec);
|
|
gen_helper_gvec_2 *fno[4];
|
|
TCGOpcode s_list[2];
|
|
TCGOpcode v_list[2];
|
|
} GVecGen2sh;
|
|
|
|
static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t oprsz, uint32_t tysz, TCGType type,
|
|
TCGv_i32 shift,
|
|
void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32))
|
|
{
|
|
TCGv_vec t0 = tcg_temp_new_vec(type);
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += tysz) {
|
|
tcg_gen_ld_vec(t0, cpu_env, aofs + i);
|
|
fni(vece, t0, t0, shift);
|
|
tcg_gen_st_vec(t0, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_vec(t0);
|
|
}
|
|
|
|
static void
|
|
do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift,
|
|
uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g)
|
|
{
|
|
TCGType type;
|
|
uint32_t some;
|
|
|
|
check_size_align(oprsz, maxsz, dofs | aofs);
|
|
check_overlap_2(dofs, aofs, maxsz);
|
|
|
|
/* If the backend has a scalar expansion, great. */
|
|
type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64);
|
|
if (type) {
|
|
const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
|
|
switch (type) {
|
|
case TCG_TYPE_V256:
|
|
some = QEMU_ALIGN_DOWN(oprsz, 32);
|
|
expand_2sh_vec(vece, dofs, aofs, some, 32,
|
|
TCG_TYPE_V256, shift, g->fniv_s);
|
|
if (some == oprsz) {
|
|
break;
|
|
}
|
|
dofs += some;
|
|
aofs += some;
|
|
oprsz -= some;
|
|
maxsz -= some;
|
|
/* fallthru */
|
|
case TCG_TYPE_V128:
|
|
expand_2sh_vec(vece, dofs, aofs, oprsz, 16,
|
|
TCG_TYPE_V128, shift, g->fniv_s);
|
|
break;
|
|
case TCG_TYPE_V64:
|
|
expand_2sh_vec(vece, dofs, aofs, oprsz, 8,
|
|
TCG_TYPE_V64, shift, g->fniv_s);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
tcg_swap_vecop_list(hold_list);
|
|
goto clear_tail;
|
|
}
|
|
|
|
/* If the backend supports variable vector shifts, also cool. */
|
|
type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64);
|
|
if (type) {
|
|
const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
|
|
TCGv_vec v_shift = tcg_temp_new_vec(type);
|
|
|
|
if (vece == MO_64) {
|
|
TCGv_i64 sh64 = tcg_temp_new_i64();
|
|
tcg_gen_extu_i32_i64(sh64, shift);
|
|
tcg_gen_dup_i64_vec(MO_64, v_shift, sh64);
|
|
tcg_temp_free_i64(sh64);
|
|
} else {
|
|
tcg_gen_dup_i32_vec(vece, v_shift, shift);
|
|
}
|
|
|
|
switch (type) {
|
|
case TCG_TYPE_V256:
|
|
some = QEMU_ALIGN_DOWN(oprsz, 32);
|
|
expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256,
|
|
v_shift, false, g->fniv_v);
|
|
if (some == oprsz) {
|
|
break;
|
|
}
|
|
dofs += some;
|
|
aofs += some;
|
|
oprsz -= some;
|
|
maxsz -= some;
|
|
/* fallthru */
|
|
case TCG_TYPE_V128:
|
|
expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
|
|
v_shift, false, g->fniv_v);
|
|
break;
|
|
case TCG_TYPE_V64:
|
|
expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
|
|
v_shift, false, g->fniv_v);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
tcg_temp_free_vec(v_shift);
|
|
tcg_swap_vecop_list(hold_list);
|
|
goto clear_tail;
|
|
}
|
|
|
|
/* Otherwise fall back to integral... */
|
|
if (vece == MO_32 && check_size_impl(oprsz, 4)) {
|
|
expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4);
|
|
} else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
|
|
TCGv_i64 sh64 = tcg_temp_new_i64();
|
|
tcg_gen_extu_i32_i64(sh64, shift);
|
|
expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8);
|
|
tcg_temp_free_i64(sh64);
|
|
} else {
|
|
TCGv_ptr a0 = tcg_temp_new_ptr();
|
|
TCGv_ptr a1 = tcg_temp_new_ptr();
|
|
TCGv_i32 desc = tcg_temp_new_i32();
|
|
|
|
tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT);
|
|
tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0));
|
|
tcg_gen_addi_ptr(a0, cpu_env, dofs);
|
|
tcg_gen_addi_ptr(a1, cpu_env, aofs);
|
|
|
|
g->fno[vece](a0, a1, desc);
|
|
|
|
tcg_temp_free_ptr(a0);
|
|
tcg_temp_free_ptr(a1);
|
|
tcg_temp_free_i32(desc);
|
|
return;
|
|
}
|
|
|
|
clear_tail:
|
|
if (oprsz < maxsz) {
|
|
expand_clr(dofs + oprsz, maxsz - oprsz);
|
|
}
|
|
}
|
|
|
|
void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen2sh g = {
|
|
.fni4 = tcg_gen_shl_i32,
|
|
.fni8 = tcg_gen_shl_i64,
|
|
.fniv_s = tcg_gen_shls_vec,
|
|
.fniv_v = tcg_gen_shlv_vec,
|
|
.fno = {
|
|
gen_helper_gvec_shl8i,
|
|
gen_helper_gvec_shl16i,
|
|
gen_helper_gvec_shl32i,
|
|
gen_helper_gvec_shl64i,
|
|
},
|
|
.s_list = { INDEX_op_shls_vec, 0 },
|
|
.v_list = { INDEX_op_shlv_vec, 0 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
|
|
}
|
|
|
|
void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen2sh g = {
|
|
.fni4 = tcg_gen_shr_i32,
|
|
.fni8 = tcg_gen_shr_i64,
|
|
.fniv_s = tcg_gen_shrs_vec,
|
|
.fniv_v = tcg_gen_shrv_vec,
|
|
.fno = {
|
|
gen_helper_gvec_shr8i,
|
|
gen_helper_gvec_shr16i,
|
|
gen_helper_gvec_shr32i,
|
|
gen_helper_gvec_shr64i,
|
|
},
|
|
.s_list = { INDEX_op_shrs_vec, 0 },
|
|
.v_list = { INDEX_op_shrv_vec, 0 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
|
|
}
|
|
|
|
void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen2sh g = {
|
|
.fni4 = tcg_gen_sar_i32,
|
|
.fni8 = tcg_gen_sar_i64,
|
|
.fniv_s = tcg_gen_sars_vec,
|
|
.fniv_v = tcg_gen_sarv_vec,
|
|
.fno = {
|
|
gen_helper_gvec_sar8i,
|
|
gen_helper_gvec_sar16i,
|
|
gen_helper_gvec_sar32i,
|
|
gen_helper_gvec_sar64i,
|
|
},
|
|
.s_list = { INDEX_op_sars_vec, 0 },
|
|
.v_list = { INDEX_op_sarv_vec, 0 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
|
|
}
|
|
|
|
void tcg_gen_gvec_rotls(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen2sh g = {
|
|
.fni4 = tcg_gen_rotl_i32,
|
|
.fni8 = tcg_gen_rotl_i64,
|
|
.fniv_s = tcg_gen_rotls_vec,
|
|
.fniv_v = tcg_gen_rotlv_vec,
|
|
.fno = {
|
|
gen_helper_gvec_rotl8i,
|
|
gen_helper_gvec_rotl16i,
|
|
gen_helper_gvec_rotl32i,
|
|
gen_helper_gvec_rotl64i,
|
|
},
|
|
.s_list = { INDEX_op_rotls_vec, 0 },
|
|
.v_list = { INDEX_op_rotlv_vec, 0 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
|
|
}
|
|
|
|
/*
|
|
* Expand D = A << (B % element bits)
|
|
*
|
|
* Unlike scalar shifts, where it is easy for the target front end
|
|
* to include the modulo as part of the expansion. If the target
|
|
* naturally includes the modulo as part of the operation, great!
|
|
* If the target has some other behaviour from out-of-range shifts,
|
|
* then it could not use this function anyway, and would need to
|
|
* do it's own expansion with custom functions.
|
|
*/
|
|
static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d,
|
|
TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
|
|
|
|
tcg_gen_and_vec(vece, t, b, m);
|
|
tcg_gen_shlv_vec(vece, d, a, t);
|
|
tcg_temp_free_vec(t);
|
|
}
|
|
|
|
static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 t = tcg_temp_new_i32();
|
|
|
|
tcg_gen_andi_i32(t, b, 31);
|
|
tcg_gen_shl_i32(d, a, t);
|
|
tcg_temp_free_i32(t);
|
|
}
|
|
|
|
static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_andi_i64(t, b, 63);
|
|
tcg_gen_shl_i64(d, a, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 };
|
|
static const GVecGen3 g[4] = {
|
|
{ .fniv = tcg_gen_shlv_mod_vec,
|
|
.fno = gen_helper_gvec_shl8v,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = tcg_gen_shlv_mod_vec,
|
|
.fno = gen_helper_gvec_shl16v,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_shl_mod_i32,
|
|
.fniv = tcg_gen_shlv_mod_vec,
|
|
.fno = gen_helper_gvec_shl32v,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_shl_mod_i64,
|
|
.fniv = tcg_gen_shlv_mod_vec,
|
|
.fno = gen_helper_gvec_shl64v,
|
|
.opt_opc = vecop_list,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
/*
|
|
* Similarly for logical right shifts.
|
|
*/
|
|
|
|
static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d,
|
|
TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
|
|
|
|
tcg_gen_and_vec(vece, t, b, m);
|
|
tcg_gen_shrv_vec(vece, d, a, t);
|
|
tcg_temp_free_vec(t);
|
|
}
|
|
|
|
static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 t = tcg_temp_new_i32();
|
|
|
|
tcg_gen_andi_i32(t, b, 31);
|
|
tcg_gen_shr_i32(d, a, t);
|
|
tcg_temp_free_i32(t);
|
|
}
|
|
|
|
static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_andi_i64(t, b, 63);
|
|
tcg_gen_shr_i64(d, a, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 };
|
|
static const GVecGen3 g[4] = {
|
|
{ .fniv = tcg_gen_shrv_mod_vec,
|
|
.fno = gen_helper_gvec_shr8v,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = tcg_gen_shrv_mod_vec,
|
|
.fno = gen_helper_gvec_shr16v,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_shr_mod_i32,
|
|
.fniv = tcg_gen_shrv_mod_vec,
|
|
.fno = gen_helper_gvec_shr32v,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_shr_mod_i64,
|
|
.fniv = tcg_gen_shrv_mod_vec,
|
|
.fno = gen_helper_gvec_shr64v,
|
|
.opt_opc = vecop_list,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
/*
|
|
* Similarly for arithmetic right shifts.
|
|
*/
|
|
|
|
static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d,
|
|
TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
|
|
|
|
tcg_gen_and_vec(vece, t, b, m);
|
|
tcg_gen_sarv_vec(vece, d, a, t);
|
|
tcg_temp_free_vec(t);
|
|
}
|
|
|
|
static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 t = tcg_temp_new_i32();
|
|
|
|
tcg_gen_andi_i32(t, b, 31);
|
|
tcg_gen_sar_i32(d, a, t);
|
|
tcg_temp_free_i32(t);
|
|
}
|
|
|
|
static void tcg_gen_sar_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_andi_i64(t, b, 63);
|
|
tcg_gen_sar_i64(d, a, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
void tcg_gen_gvec_sarv(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_sarv_vec, 0 };
|
|
static const GVecGen3 g[4] = {
|
|
{ .fniv = tcg_gen_sarv_mod_vec,
|
|
.fno = gen_helper_gvec_sar8v,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = tcg_gen_sarv_mod_vec,
|
|
.fno = gen_helper_gvec_sar16v,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_sar_mod_i32,
|
|
.fniv = tcg_gen_sarv_mod_vec,
|
|
.fno = gen_helper_gvec_sar32v,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_sar_mod_i64,
|
|
.fniv = tcg_gen_sarv_mod_vec,
|
|
.fno = gen_helper_gvec_sar64v,
|
|
.opt_opc = vecop_list,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
/*
|
|
* Similarly for rotates.
|
|
*/
|
|
|
|
static void tcg_gen_rotlv_mod_vec(unsigned vece, TCGv_vec d,
|
|
TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
|
|
|
|
tcg_gen_and_vec(vece, t, b, m);
|
|
tcg_gen_rotlv_vec(vece, d, a, t);
|
|
tcg_temp_free_vec(t);
|
|
}
|
|
|
|
static void tcg_gen_rotl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 t = tcg_temp_new_i32();
|
|
|
|
tcg_gen_andi_i32(t, b, 31);
|
|
tcg_gen_rotl_i32(d, a, t);
|
|
tcg_temp_free_i32(t);
|
|
}
|
|
|
|
static void tcg_gen_rotl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_andi_i64(t, b, 63);
|
|
tcg_gen_rotl_i64(d, a, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
void tcg_gen_gvec_rotlv(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_rotlv_vec, 0 };
|
|
static const GVecGen3 g[4] = {
|
|
{ .fniv = tcg_gen_rotlv_mod_vec,
|
|
.fno = gen_helper_gvec_rotl8v,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = tcg_gen_rotlv_mod_vec,
|
|
.fno = gen_helper_gvec_rotl16v,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_rotl_mod_i32,
|
|
.fniv = tcg_gen_rotlv_mod_vec,
|
|
.fno = gen_helper_gvec_rotl32v,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_rotl_mod_i64,
|
|
.fniv = tcg_gen_rotlv_mod_vec,
|
|
.fno = gen_helper_gvec_rotl64v,
|
|
.opt_opc = vecop_list,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
static void tcg_gen_rotrv_mod_vec(unsigned vece, TCGv_vec d,
|
|
TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
|
|
|
|
tcg_gen_and_vec(vece, t, b, m);
|
|
tcg_gen_rotrv_vec(vece, d, a, t);
|
|
tcg_temp_free_vec(t);
|
|
}
|
|
|
|
static void tcg_gen_rotr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 t = tcg_temp_new_i32();
|
|
|
|
tcg_gen_andi_i32(t, b, 31);
|
|
tcg_gen_rotr_i32(d, a, t);
|
|
tcg_temp_free_i32(t);
|
|
}
|
|
|
|
static void tcg_gen_rotr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_andi_i64(t, b, 63);
|
|
tcg_gen_rotr_i64(d, a, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
void tcg_gen_gvec_rotrv(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_rotrv_vec, 0 };
|
|
static const GVecGen3 g[4] = {
|
|
{ .fniv = tcg_gen_rotrv_mod_vec,
|
|
.fno = gen_helper_gvec_rotr8v,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = tcg_gen_rotrv_mod_vec,
|
|
.fno = gen_helper_gvec_rotr16v,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = tcg_gen_rotr_mod_i32,
|
|
.fniv = tcg_gen_rotrv_mod_vec,
|
|
.fno = gen_helper_gvec_rotr32v,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = tcg_gen_rotr_mod_i64,
|
|
.fniv = tcg_gen_rotrv_mod_vec,
|
|
.fno = gen_helper_gvec_rotr64v,
|
|
.opt_opc = vecop_list,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
tcg_debug_assert(vece <= MO_64);
|
|
tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
|
|
}
|
|
|
|
/* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
|
|
static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
|
|
uint32_t oprsz, TCGCond cond)
|
|
{
|
|
TCGv_i32 t0 = tcg_temp_new_i32();
|
|
TCGv_i32 t1 = tcg_temp_new_i32();
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += 4) {
|
|
tcg_gen_ld_i32(t0, cpu_env, aofs + i);
|
|
tcg_gen_ld_i32(t1, cpu_env, bofs + i);
|
|
tcg_gen_setcond_i32(cond, t0, t0, t1);
|
|
tcg_gen_neg_i32(t0, t0);
|
|
tcg_gen_st_i32(t0, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_i32(t1);
|
|
tcg_temp_free_i32(t0);
|
|
}
|
|
|
|
static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
|
|
uint32_t oprsz, TCGCond cond)
|
|
{
|
|
TCGv_i64 t0 = tcg_temp_new_i64();
|
|
TCGv_i64 t1 = tcg_temp_new_i64();
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += 8) {
|
|
tcg_gen_ld_i64(t0, cpu_env, aofs + i);
|
|
tcg_gen_ld_i64(t1, cpu_env, bofs + i);
|
|
tcg_gen_setcond_i64(cond, t0, t0, t1);
|
|
tcg_gen_neg_i64(t0, t0);
|
|
tcg_gen_st_i64(t0, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_i64(t1);
|
|
tcg_temp_free_i64(t0);
|
|
}
|
|
|
|
static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t oprsz, uint32_t tysz,
|
|
TCGType type, TCGCond cond)
|
|
{
|
|
TCGv_vec t0 = tcg_temp_new_vec(type);
|
|
TCGv_vec t1 = tcg_temp_new_vec(type);
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < oprsz; i += tysz) {
|
|
tcg_gen_ld_vec(t0, cpu_env, aofs + i);
|
|
tcg_gen_ld_vec(t1, cpu_env, bofs + i);
|
|
tcg_gen_cmp_vec(cond, vece, t0, t0, t1);
|
|
tcg_gen_st_vec(t0, cpu_env, dofs + i);
|
|
}
|
|
tcg_temp_free_vec(t1);
|
|
tcg_temp_free_vec(t0);
|
|
}
|
|
|
|
void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs,
|
|
uint32_t aofs, uint32_t bofs,
|
|
uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 };
|
|
static gen_helper_gvec_3 * const eq_fn[4] = {
|
|
gen_helper_gvec_eq8, gen_helper_gvec_eq16,
|
|
gen_helper_gvec_eq32, gen_helper_gvec_eq64
|
|
};
|
|
static gen_helper_gvec_3 * const ne_fn[4] = {
|
|
gen_helper_gvec_ne8, gen_helper_gvec_ne16,
|
|
gen_helper_gvec_ne32, gen_helper_gvec_ne64
|
|
};
|
|
static gen_helper_gvec_3 * const lt_fn[4] = {
|
|
gen_helper_gvec_lt8, gen_helper_gvec_lt16,
|
|
gen_helper_gvec_lt32, gen_helper_gvec_lt64
|
|
};
|
|
static gen_helper_gvec_3 * const le_fn[4] = {
|
|
gen_helper_gvec_le8, gen_helper_gvec_le16,
|
|
gen_helper_gvec_le32, gen_helper_gvec_le64
|
|
};
|
|
static gen_helper_gvec_3 * const ltu_fn[4] = {
|
|
gen_helper_gvec_ltu8, gen_helper_gvec_ltu16,
|
|
gen_helper_gvec_ltu32, gen_helper_gvec_ltu64
|
|
};
|
|
static gen_helper_gvec_3 * const leu_fn[4] = {
|
|
gen_helper_gvec_leu8, gen_helper_gvec_leu16,
|
|
gen_helper_gvec_leu32, gen_helper_gvec_leu64
|
|
};
|
|
static gen_helper_gvec_3 * const * const fns[16] = {
|
|
[TCG_COND_EQ] = eq_fn,
|
|
[TCG_COND_NE] = ne_fn,
|
|
[TCG_COND_LT] = lt_fn,
|
|
[TCG_COND_LE] = le_fn,
|
|
[TCG_COND_LTU] = ltu_fn,
|
|
[TCG_COND_LEU] = leu_fn,
|
|
};
|
|
|
|
const TCGOpcode *hold_list;
|
|
TCGType type;
|
|
uint32_t some;
|
|
|
|
check_size_align(oprsz, maxsz, dofs | aofs | bofs);
|
|
check_overlap_3(dofs, aofs, bofs, maxsz);
|
|
|
|
if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
|
|
do_dup(MO_8, dofs, oprsz, maxsz,
|
|
NULL, NULL, -(cond == TCG_COND_ALWAYS));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Implement inline with a vector type, if possible.
|
|
* Prefer integer when 64-bit host and 64-bit comparison.
|
|
*/
|
|
hold_list = tcg_swap_vecop_list(cmp_list);
|
|
type = choose_vector_type(cmp_list, vece, oprsz,
|
|
TCG_TARGET_REG_BITS == 64 && vece == MO_64);
|
|
switch (type) {
|
|
case TCG_TYPE_V256:
|
|
/* Recall that ARM SVE allows vector sizes that are not a
|
|
* power of 2, but always a multiple of 16. The intent is
|
|
* that e.g. size == 80 would be expanded with 2x32 + 1x16.
|
|
*/
|
|
some = QEMU_ALIGN_DOWN(oprsz, 32);
|
|
expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond);
|
|
if (some == oprsz) {
|
|
break;
|
|
}
|
|
dofs += some;
|
|
aofs += some;
|
|
bofs += some;
|
|
oprsz -= some;
|
|
maxsz -= some;
|
|
/* fallthru */
|
|
case TCG_TYPE_V128:
|
|
expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond);
|
|
break;
|
|
case TCG_TYPE_V64:
|
|
expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond);
|
|
break;
|
|
|
|
case 0:
|
|
if (vece == MO_64 && check_size_impl(oprsz, 8)) {
|
|
expand_cmp_i64(dofs, aofs, bofs, oprsz, cond);
|
|
} else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
|
|
expand_cmp_i32(dofs, aofs, bofs, oprsz, cond);
|
|
} else {
|
|
gen_helper_gvec_3 * const *fn = fns[cond];
|
|
|
|
if (fn == NULL) {
|
|
uint32_t tmp;
|
|
tmp = aofs, aofs = bofs, bofs = tmp;
|
|
cond = tcg_swap_cond(cond);
|
|
fn = fns[cond];
|
|
assert(fn != NULL);
|
|
}
|
|
tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]);
|
|
oprsz = maxsz;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
tcg_swap_vecop_list(hold_list);
|
|
|
|
if (oprsz < maxsz) {
|
|
expand_clr(dofs + oprsz, maxsz - oprsz);
|
|
}
|
|
}
|
|
|
|
static void tcg_gen_bitsel_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 c)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_and_i64(t, b, a);
|
|
tcg_gen_andc_i64(d, c, a);
|
|
tcg_gen_or_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
void tcg_gen_gvec_bitsel(unsigned vece, uint32_t dofs, uint32_t aofs,
|
|
uint32_t bofs, uint32_t cofs,
|
|
uint32_t oprsz, uint32_t maxsz)
|
|
{
|
|
static const GVecGen4 g = {
|
|
.fni8 = tcg_gen_bitsel_i64,
|
|
.fniv = tcg_gen_bitsel_vec,
|
|
.fno = gen_helper_gvec_bitsel,
|
|
};
|
|
|
|
tcg_gen_gvec_4(dofs, aofs, bofs, cofs, oprsz, maxsz, &g);
|
|
}
|