David Gibson b4ba67d9a7 libqos: Change PCI accessors to take opaque BAR handle
The usual use model for the libqos PCI functions is to map a specific PCI
BAR using qpci_iomap() then pass the returned token into IO accessor
functions.  This, and the fact that iomap() returns a (void *) which
actually contains a PCI space address, kind of suggests that the return
value from iomap is supposed to be an opaque token.

..except that the callers expect to be able to add offsets to it.  Which
also assumes the compiler will support pointer arithmetic on a (void *),
and treat it as working with byte offsets.

To clarify this situation change iomap() and the IO accessors to take
a definitely opaque BAR handle (enforced with a wrapper struct) along with
an offset within the BAR.  This changes both the functions and all the
callers.

There were a number of places that checked if iomap() returned non-NULL,
and or initialized it to NULL before hand.  Since iomap() already assert()s
if it fails to map the BAR, these tests were mostly pointless and are
removed.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
2016-10-28 09:38:27 +11:00

415 lines
11 KiB
C

/*
* libqos PCI bindings
*
* Copyright IBM, Corp. 2012-2013
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "libqos/pci.h"
#include "hw/pci/pci_regs.h"
#include "qemu/host-utils.h"
void qpci_device_foreach(QPCIBus *bus, int vendor_id, int device_id,
void (*func)(QPCIDevice *dev, int devfn, void *data),
void *data)
{
int slot;
for (slot = 0; slot < 32; slot++) {
int fn;
for (fn = 0; fn < 8; fn++) {
QPCIDevice *dev;
dev = qpci_device_find(bus, QPCI_DEVFN(slot, fn));
if (!dev) {
continue;
}
if (vendor_id != -1 &&
qpci_config_readw(dev, PCI_VENDOR_ID) != vendor_id) {
g_free(dev);
continue;
}
if (device_id != -1 &&
qpci_config_readw(dev, PCI_DEVICE_ID) != device_id) {
g_free(dev);
continue;
}
func(dev, QPCI_DEVFN(slot, fn), data);
}
}
}
QPCIDevice *qpci_device_find(QPCIBus *bus, int devfn)
{
QPCIDevice *dev;
dev = g_malloc0(sizeof(*dev));
dev->bus = bus;
dev->devfn = devfn;
if (qpci_config_readw(dev, PCI_VENDOR_ID) == 0xFFFF) {
g_free(dev);
return NULL;
}
return dev;
}
void qpci_device_enable(QPCIDevice *dev)
{
uint16_t cmd;
/* FIXME -- does this need to be a bus callout? */
cmd = qpci_config_readw(dev, PCI_COMMAND);
cmd |= PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
qpci_config_writew(dev, PCI_COMMAND, cmd);
/* Verify the bits are now set. */
cmd = qpci_config_readw(dev, PCI_COMMAND);
g_assert_cmphex(cmd & PCI_COMMAND_IO, ==, PCI_COMMAND_IO);
g_assert_cmphex(cmd & PCI_COMMAND_MEMORY, ==, PCI_COMMAND_MEMORY);
g_assert_cmphex(cmd & PCI_COMMAND_MASTER, ==, PCI_COMMAND_MASTER);
}
uint8_t qpci_find_capability(QPCIDevice *dev, uint8_t id)
{
uint8_t cap;
uint8_t addr = qpci_config_readb(dev, PCI_CAPABILITY_LIST);
do {
cap = qpci_config_readb(dev, addr);
if (cap != id) {
addr = qpci_config_readb(dev, addr + PCI_CAP_LIST_NEXT);
}
} while (cap != id && addr != 0);
return addr;
}
void qpci_msix_enable(QPCIDevice *dev)
{
uint8_t addr;
uint16_t val;
uint32_t table;
uint8_t bir_table;
uint8_t bir_pba;
addr = qpci_find_capability(dev, PCI_CAP_ID_MSIX);
g_assert_cmphex(addr, !=, 0);
val = qpci_config_readw(dev, addr + PCI_MSIX_FLAGS);
qpci_config_writew(dev, addr + PCI_MSIX_FLAGS, val | PCI_MSIX_FLAGS_ENABLE);
table = qpci_config_readl(dev, addr + PCI_MSIX_TABLE);
bir_table = table & PCI_MSIX_FLAGS_BIRMASK;
dev->msix_table_bar = qpci_iomap(dev, bir_table, NULL);
dev->msix_table_off = table & ~PCI_MSIX_FLAGS_BIRMASK;
table = qpci_config_readl(dev, addr + PCI_MSIX_PBA);
bir_pba = table & PCI_MSIX_FLAGS_BIRMASK;
if (bir_pba != bir_table) {
dev->msix_pba_bar = qpci_iomap(dev, bir_pba, NULL);
}
dev->msix_pba_off = table & ~PCI_MSIX_FLAGS_BIRMASK;
dev->msix_enabled = true;
}
void qpci_msix_disable(QPCIDevice *dev)
{
uint8_t addr;
uint16_t val;
g_assert(dev->msix_enabled);
addr = qpci_find_capability(dev, PCI_CAP_ID_MSIX);
g_assert_cmphex(addr, !=, 0);
val = qpci_config_readw(dev, addr + PCI_MSIX_FLAGS);
qpci_config_writew(dev, addr + PCI_MSIX_FLAGS,
val & ~PCI_MSIX_FLAGS_ENABLE);
qpci_iounmap(dev, dev->msix_table_bar);
qpci_iounmap(dev, dev->msix_pba_bar);
dev->msix_enabled = 0;
dev->msix_table_off = 0;
dev->msix_pba_off = 0;
}
bool qpci_msix_pending(QPCIDevice *dev, uint16_t entry)
{
uint32_t pba_entry;
uint8_t bit_n = entry % 32;
uint64_t off = (entry / 32) * PCI_MSIX_ENTRY_SIZE / 4;
g_assert(dev->msix_enabled);
pba_entry = qpci_io_readl(dev, dev->msix_pba_bar, dev->msix_pba_off + off);
qpci_io_writel(dev, dev->msix_pba_bar, dev->msix_pba_off + off,
pba_entry & ~(1 << bit_n));
return (pba_entry & (1 << bit_n)) != 0;
}
bool qpci_msix_masked(QPCIDevice *dev, uint16_t entry)
{
uint8_t addr;
uint16_t val;
uint64_t vector_off = dev->msix_table_off + entry * PCI_MSIX_ENTRY_SIZE;
g_assert(dev->msix_enabled);
addr = qpci_find_capability(dev, PCI_CAP_ID_MSIX);
g_assert_cmphex(addr, !=, 0);
val = qpci_config_readw(dev, addr + PCI_MSIX_FLAGS);
if (val & PCI_MSIX_FLAGS_MASKALL) {
return true;
} else {
return (qpci_io_readl(dev, dev->msix_table_bar,
vector_off + PCI_MSIX_ENTRY_VECTOR_CTRL)
& PCI_MSIX_ENTRY_CTRL_MASKBIT) != 0;
}
}
uint16_t qpci_msix_table_size(QPCIDevice *dev)
{
uint8_t addr;
uint16_t control;
addr = qpci_find_capability(dev, PCI_CAP_ID_MSIX);
g_assert_cmphex(addr, !=, 0);
control = qpci_config_readw(dev, addr + PCI_MSIX_FLAGS);
return (control & PCI_MSIX_FLAGS_QSIZE) + 1;
}
uint8_t qpci_config_readb(QPCIDevice *dev, uint8_t offset)
{
return dev->bus->config_readb(dev->bus, dev->devfn, offset);
}
uint16_t qpci_config_readw(QPCIDevice *dev, uint8_t offset)
{
return dev->bus->config_readw(dev->bus, dev->devfn, offset);
}
uint32_t qpci_config_readl(QPCIDevice *dev, uint8_t offset)
{
return dev->bus->config_readl(dev->bus, dev->devfn, offset);
}
void qpci_config_writeb(QPCIDevice *dev, uint8_t offset, uint8_t value)
{
dev->bus->config_writeb(dev->bus, dev->devfn, offset, value);
}
void qpci_config_writew(QPCIDevice *dev, uint8_t offset, uint16_t value)
{
dev->bus->config_writew(dev->bus, dev->devfn, offset, value);
}
void qpci_config_writel(QPCIDevice *dev, uint8_t offset, uint32_t value)
{
dev->bus->config_writel(dev->bus, dev->devfn, offset, value);
}
uint8_t qpci_io_readb(QPCIDevice *dev, QPCIBar token, uint64_t off)
{
if (token.addr < QPCI_PIO_LIMIT) {
return dev->bus->pio_readb(dev->bus, token.addr + off);
} else {
uint8_t val;
dev->bus->memread(dev->bus, token.addr + off, &val, sizeof(val));
return val;
}
}
uint16_t qpci_io_readw(QPCIDevice *dev, QPCIBar token, uint64_t off)
{
if (token.addr < QPCI_PIO_LIMIT) {
return dev->bus->pio_readw(dev->bus, token.addr + off);
} else {
uint16_t val;
dev->bus->memread(dev->bus, token.addr + off, &val, sizeof(val));
return le16_to_cpu(val);
}
}
uint32_t qpci_io_readl(QPCIDevice *dev, QPCIBar token, uint64_t off)
{
if (token.addr < QPCI_PIO_LIMIT) {
return dev->bus->pio_readl(dev->bus, token.addr + off);
} else {
uint32_t val;
dev->bus->memread(dev->bus, token.addr + off, &val, sizeof(val));
return le32_to_cpu(val);
}
}
uint64_t qpci_io_readq(QPCIDevice *dev, QPCIBar token, uint64_t off)
{
if (token.addr < QPCI_PIO_LIMIT) {
return dev->bus->pio_readq(dev->bus, token.addr + off);
} else {
uint64_t val;
dev->bus->memread(dev->bus, token.addr + off, &val, sizeof(val));
return le64_to_cpu(val);
}
}
void qpci_io_writeb(QPCIDevice *dev, QPCIBar token, uint64_t off,
uint8_t value)
{
if (token.addr < QPCI_PIO_LIMIT) {
dev->bus->pio_writeb(dev->bus, token.addr + off, value);
} else {
dev->bus->memwrite(dev->bus, token.addr + off, &value, sizeof(value));
}
}
void qpci_io_writew(QPCIDevice *dev, QPCIBar token, uint64_t off,
uint16_t value)
{
if (token.addr < QPCI_PIO_LIMIT) {
dev->bus->pio_writew(dev->bus, token.addr + off, value);
} else {
value = cpu_to_le16(value);
dev->bus->memwrite(dev->bus, token.addr + off, &value, sizeof(value));
}
}
void qpci_io_writel(QPCIDevice *dev, QPCIBar token, uint64_t off,
uint32_t value)
{
if (token.addr < QPCI_PIO_LIMIT) {
dev->bus->pio_writel(dev->bus, token.addr + off, value);
} else {
value = cpu_to_le32(value);
dev->bus->memwrite(dev->bus, token.addr + off, &value, sizeof(value));
}
}
void qpci_io_writeq(QPCIDevice *dev, QPCIBar token, uint64_t off,
uint64_t value)
{
if (token.addr < QPCI_PIO_LIMIT) {
dev->bus->pio_writeq(dev->bus, token.addr + off, value);
} else {
value = cpu_to_le64(value);
dev->bus->memwrite(dev->bus, token.addr + off, &value, sizeof(value));
}
}
void qpci_memread(QPCIDevice *dev, QPCIBar token, uint64_t off,
void *buf, size_t len)
{
g_assert(token.addr >= QPCI_PIO_LIMIT);
dev->bus->memread(dev->bus, token.addr + off, buf, len);
}
void qpci_memwrite(QPCIDevice *dev, QPCIBar token, uint64_t off,
const void *buf, size_t len)
{
g_assert(token.addr >= QPCI_PIO_LIMIT);
dev->bus->memwrite(dev->bus, token.addr + off, buf, len);
}
QPCIBar qpci_iomap(QPCIDevice *dev, int barno, uint64_t *sizeptr)
{
QPCIBus *bus = dev->bus;
static const int bar_reg_map[] = {
PCI_BASE_ADDRESS_0, PCI_BASE_ADDRESS_1, PCI_BASE_ADDRESS_2,
PCI_BASE_ADDRESS_3, PCI_BASE_ADDRESS_4, PCI_BASE_ADDRESS_5,
};
QPCIBar bar;
int bar_reg;
uint32_t addr, size;
uint32_t io_type;
uint64_t loc;
g_assert(barno >= 0 && barno <= 5);
bar_reg = bar_reg_map[barno];
qpci_config_writel(dev, bar_reg, 0xFFFFFFFF);
addr = qpci_config_readl(dev, bar_reg);
io_type = addr & PCI_BASE_ADDRESS_SPACE;
if (io_type == PCI_BASE_ADDRESS_SPACE_IO) {
addr &= PCI_BASE_ADDRESS_IO_MASK;
} else {
addr &= PCI_BASE_ADDRESS_MEM_MASK;
}
g_assert(addr); /* Must have *some* size bits */
size = 1U << ctz32(addr);
if (sizeptr) {
*sizeptr = size;
}
if (io_type == PCI_BASE_ADDRESS_SPACE_IO) {
loc = QEMU_ALIGN_UP(bus->pio_alloc_ptr, size);
g_assert(loc >= bus->pio_alloc_ptr);
g_assert(loc + size <= QPCI_PIO_LIMIT); /* Keep PIO below 64kiB */
bus->pio_alloc_ptr = loc + size;
qpci_config_writel(dev, bar_reg, loc | PCI_BASE_ADDRESS_SPACE_IO);
} else {
loc = QEMU_ALIGN_UP(bus->mmio_alloc_ptr, size);
/* Check for space */
g_assert(loc >= bus->mmio_alloc_ptr);
g_assert(loc + size <= bus->mmio_limit);
bus->mmio_alloc_ptr = loc + size;
qpci_config_writel(dev, bar_reg, loc);
}
bar.addr = loc;
return bar;
}
void qpci_iounmap(QPCIDevice *dev, QPCIBar bar)
{
/* FIXME */
}
QPCIBar qpci_legacy_iomap(QPCIDevice *dev, uint16_t addr)
{
QPCIBar bar = { .addr = addr };
return bar;
}
void qpci_plug_device_test(const char *driver, const char *id,
uint8_t slot, const char *opts)
{
QDict *response;
char *cmd;
cmd = g_strdup_printf("{'execute': 'device_add',"
" 'arguments': {"
" 'driver': '%s',"
" 'addr': '%d',"
" %s%s"
" 'id': '%s'"
"}}", driver, slot,
opts ? opts : "", opts ? "," : "",
id);
response = qmp(cmd);
g_free(cmd);
g_assert(response);
g_assert(!qdict_haskey(response, "error"));
QDECREF(response);
}