056b68af77
When adding hostmem backend at runtime, QEMU might exit with error: "os_mem_prealloc: Insufficient free host memory pages available to allocate guest RAM" It happens due to os_mem_prealloc() not handling errors gracefully. Fix it by passing errp argument so that os_mem_prealloc() could report error to callers and undo performed allocation when os_mem_prealloc() fails. Signed-off-by: Igor Mammedov <imammedo@redhat.com> Message-Id: <1469008443-72059-1-git-send-email-imammedo@redhat.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
3688 lines
105 KiB
C
3688 lines
105 KiB
C
/*
|
|
* Virtual page mapping
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "qapi/error.h"
|
|
#ifndef _WIN32
|
|
#endif
|
|
|
|
#include "qemu/cutils.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "tcg.h"
|
|
#include "hw/qdev-core.h"
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
#include "hw/boards.h"
|
|
#include "hw/xen/xen.h"
|
|
#endif
|
|
#include "sysemu/kvm.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "qemu/timer.h"
|
|
#include "qemu/config-file.h"
|
|
#include "qemu/error-report.h"
|
|
#if defined(CONFIG_USER_ONLY)
|
|
#include "qemu.h"
|
|
#else /* !CONFIG_USER_ONLY */
|
|
#include "hw/hw.h"
|
|
#include "exec/memory.h"
|
|
#include "exec/ioport.h"
|
|
#include "sysemu/dma.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "sysemu/xen-mapcache.h"
|
|
#include "trace.h"
|
|
#endif
|
|
#include "exec/cpu-all.h"
|
|
#include "qemu/rcu_queue.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "translate-all.h"
|
|
#include "sysemu/replay.h"
|
|
|
|
#include "exec/memory-internal.h"
|
|
#include "exec/ram_addr.h"
|
|
#include "exec/log.h"
|
|
|
|
#include "migration/vmstate.h"
|
|
|
|
#include "qemu/range.h"
|
|
#ifndef _WIN32
|
|
#include "qemu/mmap-alloc.h"
|
|
#endif
|
|
|
|
//#define DEBUG_SUBPAGE
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
|
|
* are protected by the ramlist lock.
|
|
*/
|
|
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
|
|
|
|
static MemoryRegion *system_memory;
|
|
static MemoryRegion *system_io;
|
|
|
|
AddressSpace address_space_io;
|
|
AddressSpace address_space_memory;
|
|
|
|
MemoryRegion io_mem_rom, io_mem_notdirty;
|
|
static MemoryRegion io_mem_unassigned;
|
|
|
|
/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
|
|
#define RAM_PREALLOC (1 << 0)
|
|
|
|
/* RAM is mmap-ed with MAP_SHARED */
|
|
#define RAM_SHARED (1 << 1)
|
|
|
|
/* Only a portion of RAM (used_length) is actually used, and migrated.
|
|
* This used_length size can change across reboots.
|
|
*/
|
|
#define RAM_RESIZEABLE (1 << 2)
|
|
|
|
#endif
|
|
|
|
struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
|
|
/* current CPU in the current thread. It is only valid inside
|
|
cpu_exec() */
|
|
__thread CPUState *current_cpu;
|
|
/* 0 = Do not count executed instructions.
|
|
1 = Precise instruction counting.
|
|
2 = Adaptive rate instruction counting. */
|
|
int use_icount;
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
typedef struct PhysPageEntry PhysPageEntry;
|
|
|
|
struct PhysPageEntry {
|
|
/* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
|
|
uint32_t skip : 6;
|
|
/* index into phys_sections (!skip) or phys_map_nodes (skip) */
|
|
uint32_t ptr : 26;
|
|
};
|
|
|
|
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
|
|
|
|
/* Size of the L2 (and L3, etc) page tables. */
|
|
#define ADDR_SPACE_BITS 64
|
|
|
|
#define P_L2_BITS 9
|
|
#define P_L2_SIZE (1 << P_L2_BITS)
|
|
|
|
#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
|
|
|
|
typedef PhysPageEntry Node[P_L2_SIZE];
|
|
|
|
typedef struct PhysPageMap {
|
|
struct rcu_head rcu;
|
|
|
|
unsigned sections_nb;
|
|
unsigned sections_nb_alloc;
|
|
unsigned nodes_nb;
|
|
unsigned nodes_nb_alloc;
|
|
Node *nodes;
|
|
MemoryRegionSection *sections;
|
|
} PhysPageMap;
|
|
|
|
struct AddressSpaceDispatch {
|
|
struct rcu_head rcu;
|
|
|
|
MemoryRegionSection *mru_section;
|
|
/* This is a multi-level map on the physical address space.
|
|
* The bottom level has pointers to MemoryRegionSections.
|
|
*/
|
|
PhysPageEntry phys_map;
|
|
PhysPageMap map;
|
|
AddressSpace *as;
|
|
};
|
|
|
|
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
|
|
typedef struct subpage_t {
|
|
MemoryRegion iomem;
|
|
AddressSpace *as;
|
|
hwaddr base;
|
|
uint16_t sub_section[TARGET_PAGE_SIZE];
|
|
} subpage_t;
|
|
|
|
#define PHYS_SECTION_UNASSIGNED 0
|
|
#define PHYS_SECTION_NOTDIRTY 1
|
|
#define PHYS_SECTION_ROM 2
|
|
#define PHYS_SECTION_WATCH 3
|
|
|
|
static void io_mem_init(void);
|
|
static void memory_map_init(void);
|
|
static void tcg_commit(MemoryListener *listener);
|
|
|
|
static MemoryRegion io_mem_watch;
|
|
|
|
/**
|
|
* CPUAddressSpace: all the information a CPU needs about an AddressSpace
|
|
* @cpu: the CPU whose AddressSpace this is
|
|
* @as: the AddressSpace itself
|
|
* @memory_dispatch: its dispatch pointer (cached, RCU protected)
|
|
* @tcg_as_listener: listener for tracking changes to the AddressSpace
|
|
*/
|
|
struct CPUAddressSpace {
|
|
CPUState *cpu;
|
|
AddressSpace *as;
|
|
struct AddressSpaceDispatch *memory_dispatch;
|
|
MemoryListener tcg_as_listener;
|
|
};
|
|
|
|
#endif
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
|
|
{
|
|
static unsigned alloc_hint = 16;
|
|
if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
|
|
map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
|
|
map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
|
|
map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
|
|
alloc_hint = map->nodes_nb_alloc;
|
|
}
|
|
}
|
|
|
|
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
|
|
{
|
|
unsigned i;
|
|
uint32_t ret;
|
|
PhysPageEntry e;
|
|
PhysPageEntry *p;
|
|
|
|
ret = map->nodes_nb++;
|
|
p = map->nodes[ret];
|
|
assert(ret != PHYS_MAP_NODE_NIL);
|
|
assert(ret != map->nodes_nb_alloc);
|
|
|
|
e.skip = leaf ? 0 : 1;
|
|
e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
|
|
for (i = 0; i < P_L2_SIZE; ++i) {
|
|
memcpy(&p[i], &e, sizeof(e));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
|
|
hwaddr *index, hwaddr *nb, uint16_t leaf,
|
|
int level)
|
|
{
|
|
PhysPageEntry *p;
|
|
hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
|
|
|
|
if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
|
|
lp->ptr = phys_map_node_alloc(map, level == 0);
|
|
}
|
|
p = map->nodes[lp->ptr];
|
|
lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
|
|
|
|
while (*nb && lp < &p[P_L2_SIZE]) {
|
|
if ((*index & (step - 1)) == 0 && *nb >= step) {
|
|
lp->skip = 0;
|
|
lp->ptr = leaf;
|
|
*index += step;
|
|
*nb -= step;
|
|
} else {
|
|
phys_page_set_level(map, lp, index, nb, leaf, level - 1);
|
|
}
|
|
++lp;
|
|
}
|
|
}
|
|
|
|
static void phys_page_set(AddressSpaceDispatch *d,
|
|
hwaddr index, hwaddr nb,
|
|
uint16_t leaf)
|
|
{
|
|
/* Wildly overreserve - it doesn't matter much. */
|
|
phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
|
|
|
|
phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
|
|
}
|
|
|
|
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
|
|
* and update our entry so we can skip it and go directly to the destination.
|
|
*/
|
|
static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
|
|
{
|
|
unsigned valid_ptr = P_L2_SIZE;
|
|
int valid = 0;
|
|
PhysPageEntry *p;
|
|
int i;
|
|
|
|
if (lp->ptr == PHYS_MAP_NODE_NIL) {
|
|
return;
|
|
}
|
|
|
|
p = nodes[lp->ptr];
|
|
for (i = 0; i < P_L2_SIZE; i++) {
|
|
if (p[i].ptr == PHYS_MAP_NODE_NIL) {
|
|
continue;
|
|
}
|
|
|
|
valid_ptr = i;
|
|
valid++;
|
|
if (p[i].skip) {
|
|
phys_page_compact(&p[i], nodes, compacted);
|
|
}
|
|
}
|
|
|
|
/* We can only compress if there's only one child. */
|
|
if (valid != 1) {
|
|
return;
|
|
}
|
|
|
|
assert(valid_ptr < P_L2_SIZE);
|
|
|
|
/* Don't compress if it won't fit in the # of bits we have. */
|
|
if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
|
|
return;
|
|
}
|
|
|
|
lp->ptr = p[valid_ptr].ptr;
|
|
if (!p[valid_ptr].skip) {
|
|
/* If our only child is a leaf, make this a leaf. */
|
|
/* By design, we should have made this node a leaf to begin with so we
|
|
* should never reach here.
|
|
* But since it's so simple to handle this, let's do it just in case we
|
|
* change this rule.
|
|
*/
|
|
lp->skip = 0;
|
|
} else {
|
|
lp->skip += p[valid_ptr].skip;
|
|
}
|
|
}
|
|
|
|
static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
|
|
{
|
|
DECLARE_BITMAP(compacted, nodes_nb);
|
|
|
|
if (d->phys_map.skip) {
|
|
phys_page_compact(&d->phys_map, d->map.nodes, compacted);
|
|
}
|
|
}
|
|
|
|
static inline bool section_covers_addr(const MemoryRegionSection *section,
|
|
hwaddr addr)
|
|
{
|
|
/* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
|
|
* the section must cover the entire address space.
|
|
*/
|
|
return section->size.hi ||
|
|
range_covers_byte(section->offset_within_address_space,
|
|
section->size.lo, addr);
|
|
}
|
|
|
|
static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
|
|
Node *nodes, MemoryRegionSection *sections)
|
|
{
|
|
PhysPageEntry *p;
|
|
hwaddr index = addr >> TARGET_PAGE_BITS;
|
|
int i;
|
|
|
|
for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
|
|
if (lp.ptr == PHYS_MAP_NODE_NIL) {
|
|
return §ions[PHYS_SECTION_UNASSIGNED];
|
|
}
|
|
p = nodes[lp.ptr];
|
|
lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
|
|
}
|
|
|
|
if (section_covers_addr(§ions[lp.ptr], addr)) {
|
|
return §ions[lp.ptr];
|
|
} else {
|
|
return §ions[PHYS_SECTION_UNASSIGNED];
|
|
}
|
|
}
|
|
|
|
bool memory_region_is_unassigned(MemoryRegion *mr)
|
|
{
|
|
return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
|
|
&& mr != &io_mem_watch;
|
|
}
|
|
|
|
/* Called from RCU critical section */
|
|
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
|
|
hwaddr addr,
|
|
bool resolve_subpage)
|
|
{
|
|
MemoryRegionSection *section = atomic_read(&d->mru_section);
|
|
subpage_t *subpage;
|
|
bool update;
|
|
|
|
if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
|
|
section_covers_addr(section, addr)) {
|
|
update = false;
|
|
} else {
|
|
section = phys_page_find(d->phys_map, addr, d->map.nodes,
|
|
d->map.sections);
|
|
update = true;
|
|
}
|
|
if (resolve_subpage && section->mr->subpage) {
|
|
subpage = container_of(section->mr, subpage_t, iomem);
|
|
section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
|
|
}
|
|
if (update) {
|
|
atomic_set(&d->mru_section, section);
|
|
}
|
|
return section;
|
|
}
|
|
|
|
/* Called from RCU critical section */
|
|
static MemoryRegionSection *
|
|
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
|
|
hwaddr *plen, bool resolve_subpage)
|
|
{
|
|
MemoryRegionSection *section;
|
|
MemoryRegion *mr;
|
|
Int128 diff;
|
|
|
|
section = address_space_lookup_region(d, addr, resolve_subpage);
|
|
/* Compute offset within MemoryRegionSection */
|
|
addr -= section->offset_within_address_space;
|
|
|
|
/* Compute offset within MemoryRegion */
|
|
*xlat = addr + section->offset_within_region;
|
|
|
|
mr = section->mr;
|
|
|
|
/* MMIO registers can be expected to perform full-width accesses based only
|
|
* on their address, without considering adjacent registers that could
|
|
* decode to completely different MemoryRegions. When such registers
|
|
* exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
|
|
* regions overlap wildly. For this reason we cannot clamp the accesses
|
|
* here.
|
|
*
|
|
* If the length is small (as is the case for address_space_ldl/stl),
|
|
* everything works fine. If the incoming length is large, however,
|
|
* the caller really has to do the clamping through memory_access_size.
|
|
*/
|
|
if (memory_region_is_ram(mr)) {
|
|
diff = int128_sub(section->size, int128_make64(addr));
|
|
*plen = int128_get64(int128_min(diff, int128_make64(*plen)));
|
|
}
|
|
return section;
|
|
}
|
|
|
|
/* Called from RCU critical section */
|
|
MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
|
|
hwaddr *xlat, hwaddr *plen,
|
|
bool is_write)
|
|
{
|
|
IOMMUTLBEntry iotlb;
|
|
MemoryRegionSection *section;
|
|
MemoryRegion *mr;
|
|
|
|
for (;;) {
|
|
AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
|
|
section = address_space_translate_internal(d, addr, &addr, plen, true);
|
|
mr = section->mr;
|
|
|
|
if (!mr->iommu_ops) {
|
|
break;
|
|
}
|
|
|
|
iotlb = mr->iommu_ops->translate(mr, addr, is_write);
|
|
addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
|
|
| (addr & iotlb.addr_mask));
|
|
*plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
|
|
if (!(iotlb.perm & (1 << is_write))) {
|
|
mr = &io_mem_unassigned;
|
|
break;
|
|
}
|
|
|
|
as = iotlb.target_as;
|
|
}
|
|
|
|
if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
|
|
hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
|
|
*plen = MIN(page, *plen);
|
|
}
|
|
|
|
*xlat = addr;
|
|
return mr;
|
|
}
|
|
|
|
/* Called from RCU critical section */
|
|
MemoryRegionSection *
|
|
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
|
|
hwaddr *xlat, hwaddr *plen)
|
|
{
|
|
MemoryRegionSection *section;
|
|
AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
|
|
|
|
section = address_space_translate_internal(d, addr, xlat, plen, false);
|
|
|
|
assert(!section->mr->iommu_ops);
|
|
return section;
|
|
}
|
|
#endif
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
static int cpu_common_post_load(void *opaque, int version_id)
|
|
{
|
|
CPUState *cpu = opaque;
|
|
|
|
/* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
|
|
version_id is increased. */
|
|
cpu->interrupt_request &= ~0x01;
|
|
tlb_flush(cpu, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_common_pre_load(void *opaque)
|
|
{
|
|
CPUState *cpu = opaque;
|
|
|
|
cpu->exception_index = -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool cpu_common_exception_index_needed(void *opaque)
|
|
{
|
|
CPUState *cpu = opaque;
|
|
|
|
return tcg_enabled() && cpu->exception_index != -1;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_cpu_common_exception_index = {
|
|
.name = "cpu_common/exception_index",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = cpu_common_exception_index_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_INT32(exception_index, CPUState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static bool cpu_common_crash_occurred_needed(void *opaque)
|
|
{
|
|
CPUState *cpu = opaque;
|
|
|
|
return cpu->crash_occurred;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_cpu_common_crash_occurred = {
|
|
.name = "cpu_common/crash_occurred",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = cpu_common_crash_occurred_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_BOOL(crash_occurred, CPUState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
const VMStateDescription vmstate_cpu_common = {
|
|
.name = "cpu_common",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.pre_load = cpu_common_pre_load,
|
|
.post_load = cpu_common_post_load,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT32(halted, CPUState),
|
|
VMSTATE_UINT32(interrupt_request, CPUState),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
.subsections = (const VMStateDescription*[]) {
|
|
&vmstate_cpu_common_exception_index,
|
|
&vmstate_cpu_common_crash_occurred,
|
|
NULL
|
|
}
|
|
};
|
|
|
|
#endif
|
|
|
|
CPUState *qemu_get_cpu(int index)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
if (cpu->cpu_index == index) {
|
|
return cpu;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
|
|
{
|
|
CPUAddressSpace *newas;
|
|
|
|
/* Target code should have set num_ases before calling us */
|
|
assert(asidx < cpu->num_ases);
|
|
|
|
if (asidx == 0) {
|
|
/* address space 0 gets the convenience alias */
|
|
cpu->as = as;
|
|
}
|
|
|
|
/* KVM cannot currently support multiple address spaces. */
|
|
assert(asidx == 0 || !kvm_enabled());
|
|
|
|
if (!cpu->cpu_ases) {
|
|
cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
|
|
}
|
|
|
|
newas = &cpu->cpu_ases[asidx];
|
|
newas->cpu = cpu;
|
|
newas->as = as;
|
|
if (tcg_enabled()) {
|
|
newas->tcg_as_listener.commit = tcg_commit;
|
|
memory_listener_register(&newas->tcg_as_listener, as);
|
|
}
|
|
}
|
|
|
|
AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
|
|
{
|
|
/* Return the AddressSpace corresponding to the specified index */
|
|
return cpu->cpu_ases[asidx].as;
|
|
}
|
|
#endif
|
|
|
|
static int cpu_get_free_index(void)
|
|
{
|
|
CPUState *some_cpu;
|
|
int cpu_index = 0;
|
|
|
|
CPU_FOREACH(some_cpu) {
|
|
cpu_index++;
|
|
}
|
|
return cpu_index;
|
|
}
|
|
|
|
void cpu_exec_exit(CPUState *cpu)
|
|
{
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
|
|
cpu_list_lock();
|
|
if (cpu->node.tqe_prev == NULL) {
|
|
/* there is nothing to undo since cpu_exec_init() hasn't been called */
|
|
cpu_list_unlock();
|
|
return;
|
|
}
|
|
|
|
QTAILQ_REMOVE(&cpus, cpu, node);
|
|
cpu->node.tqe_prev = NULL;
|
|
cpu->cpu_index = UNASSIGNED_CPU_INDEX;
|
|
cpu_list_unlock();
|
|
|
|
if (cc->vmsd != NULL) {
|
|
vmstate_unregister(NULL, cc->vmsd, cpu);
|
|
}
|
|
if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
|
|
vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
|
|
}
|
|
}
|
|
|
|
void cpu_exec_init(CPUState *cpu, Error **errp)
|
|
{
|
|
CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
|
|
Error *local_err ATTRIBUTE_UNUSED = NULL;
|
|
|
|
cpu->as = NULL;
|
|
cpu->num_ases = 0;
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
cpu->thread_id = qemu_get_thread_id();
|
|
|
|
/* This is a softmmu CPU object, so create a property for it
|
|
* so users can wire up its memory. (This can't go in qom/cpu.c
|
|
* because that file is compiled only once for both user-mode
|
|
* and system builds.) The default if no link is set up is to use
|
|
* the system address space.
|
|
*/
|
|
object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
|
|
(Object **)&cpu->memory,
|
|
qdev_prop_allow_set_link_before_realize,
|
|
OBJ_PROP_LINK_UNREF_ON_RELEASE,
|
|
&error_abort);
|
|
cpu->memory = system_memory;
|
|
object_ref(OBJECT(cpu->memory));
|
|
#endif
|
|
|
|
cpu_list_lock();
|
|
if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
|
|
cpu->cpu_index = cpu_get_free_index();
|
|
assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
|
|
}
|
|
QTAILQ_INSERT_TAIL(&cpus, cpu, node);
|
|
cpu_list_unlock();
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
|
|
vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
|
|
}
|
|
if (cc->vmsd != NULL) {
|
|
vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
|
|
{
|
|
tb_invalidate_phys_page_range(pc, pc + 1, 0);
|
|
}
|
|
#else
|
|
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
|
|
{
|
|
MemTxAttrs attrs;
|
|
hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
|
|
int asidx = cpu_asidx_from_attrs(cpu, attrs);
|
|
if (phys != -1) {
|
|
tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
|
|
phys | (pc & ~TARGET_PAGE_MASK));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
|
|
|
|
{
|
|
}
|
|
|
|
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
|
|
int flags)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
|
|
{
|
|
}
|
|
|
|
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
|
|
int flags, CPUWatchpoint **watchpoint)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#else
|
|
/* Add a watchpoint. */
|
|
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
|
|
int flags, CPUWatchpoint **watchpoint)
|
|
{
|
|
CPUWatchpoint *wp;
|
|
|
|
/* forbid ranges which are empty or run off the end of the address space */
|
|
if (len == 0 || (addr + len - 1) < addr) {
|
|
error_report("tried to set invalid watchpoint at %"
|
|
VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
|
|
return -EINVAL;
|
|
}
|
|
wp = g_malloc(sizeof(*wp));
|
|
|
|
wp->vaddr = addr;
|
|
wp->len = len;
|
|
wp->flags = flags;
|
|
|
|
/* keep all GDB-injected watchpoints in front */
|
|
if (flags & BP_GDB) {
|
|
QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
|
|
} else {
|
|
QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
|
|
}
|
|
|
|
tlb_flush_page(cpu, addr);
|
|
|
|
if (watchpoint)
|
|
*watchpoint = wp;
|
|
return 0;
|
|
}
|
|
|
|
/* Remove a specific watchpoint. */
|
|
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
|
|
int flags)
|
|
{
|
|
CPUWatchpoint *wp;
|
|
|
|
QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
|
|
if (addr == wp->vaddr && len == wp->len
|
|
&& flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
|
|
cpu_watchpoint_remove_by_ref(cpu, wp);
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Remove a specific watchpoint by reference. */
|
|
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
|
|
{
|
|
QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
|
|
|
|
tlb_flush_page(cpu, watchpoint->vaddr);
|
|
|
|
g_free(watchpoint);
|
|
}
|
|
|
|
/* Remove all matching watchpoints. */
|
|
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
|
|
{
|
|
CPUWatchpoint *wp, *next;
|
|
|
|
QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
|
|
if (wp->flags & mask) {
|
|
cpu_watchpoint_remove_by_ref(cpu, wp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return true if this watchpoint address matches the specified
|
|
* access (ie the address range covered by the watchpoint overlaps
|
|
* partially or completely with the address range covered by the
|
|
* access).
|
|
*/
|
|
static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
|
|
vaddr addr,
|
|
vaddr len)
|
|
{
|
|
/* We know the lengths are non-zero, but a little caution is
|
|
* required to avoid errors in the case where the range ends
|
|
* exactly at the top of the address space and so addr + len
|
|
* wraps round to zero.
|
|
*/
|
|
vaddr wpend = wp->vaddr + wp->len - 1;
|
|
vaddr addrend = addr + len - 1;
|
|
|
|
return !(addr > wpend || wp->vaddr > addrend);
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Add a breakpoint. */
|
|
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
|
|
CPUBreakpoint **breakpoint)
|
|
{
|
|
CPUBreakpoint *bp;
|
|
|
|
bp = g_malloc(sizeof(*bp));
|
|
|
|
bp->pc = pc;
|
|
bp->flags = flags;
|
|
|
|
/* keep all GDB-injected breakpoints in front */
|
|
if (flags & BP_GDB) {
|
|
QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
|
|
} else {
|
|
QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
|
|
}
|
|
|
|
breakpoint_invalidate(cpu, pc);
|
|
|
|
if (breakpoint) {
|
|
*breakpoint = bp;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Remove a specific breakpoint. */
|
|
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
|
|
{
|
|
CPUBreakpoint *bp;
|
|
|
|
QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
|
|
if (bp->pc == pc && bp->flags == flags) {
|
|
cpu_breakpoint_remove_by_ref(cpu, bp);
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Remove a specific breakpoint by reference. */
|
|
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
|
|
{
|
|
QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
|
|
|
|
breakpoint_invalidate(cpu, breakpoint->pc);
|
|
|
|
g_free(breakpoint);
|
|
}
|
|
|
|
/* Remove all matching breakpoints. */
|
|
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
|
|
{
|
|
CPUBreakpoint *bp, *next;
|
|
|
|
QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
|
|
if (bp->flags & mask) {
|
|
cpu_breakpoint_remove_by_ref(cpu, bp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* enable or disable single step mode. EXCP_DEBUG is returned by the
|
|
CPU loop after each instruction */
|
|
void cpu_single_step(CPUState *cpu, int enabled)
|
|
{
|
|
if (cpu->singlestep_enabled != enabled) {
|
|
cpu->singlestep_enabled = enabled;
|
|
if (kvm_enabled()) {
|
|
kvm_update_guest_debug(cpu, 0);
|
|
} else {
|
|
/* must flush all the translated code to avoid inconsistencies */
|
|
/* XXX: only flush what is necessary */
|
|
tb_flush(cpu);
|
|
}
|
|
}
|
|
}
|
|
|
|
void cpu_abort(CPUState *cpu, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
va_list ap2;
|
|
|
|
va_start(ap, fmt);
|
|
va_copy(ap2, ap);
|
|
fprintf(stderr, "qemu: fatal: ");
|
|
vfprintf(stderr, fmt, ap);
|
|
fprintf(stderr, "\n");
|
|
cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
|
|
if (qemu_log_separate()) {
|
|
qemu_log("qemu: fatal: ");
|
|
qemu_log_vprintf(fmt, ap2);
|
|
qemu_log("\n");
|
|
log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
|
|
qemu_log_flush();
|
|
qemu_log_close();
|
|
}
|
|
va_end(ap2);
|
|
va_end(ap);
|
|
replay_finish();
|
|
#if defined(CONFIG_USER_ONLY)
|
|
{
|
|
struct sigaction act;
|
|
sigfillset(&act.sa_mask);
|
|
act.sa_handler = SIG_DFL;
|
|
sigaction(SIGABRT, &act, NULL);
|
|
}
|
|
#endif
|
|
abort();
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
/* Called from RCU critical section */
|
|
static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
block = atomic_rcu_read(&ram_list.mru_block);
|
|
if (block && addr - block->offset < block->max_length) {
|
|
return block;
|
|
}
|
|
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
|
|
if (addr - block->offset < block->max_length) {
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
|
|
abort();
|
|
|
|
found:
|
|
/* It is safe to write mru_block outside the iothread lock. This
|
|
* is what happens:
|
|
*
|
|
* mru_block = xxx
|
|
* rcu_read_unlock()
|
|
* xxx removed from list
|
|
* rcu_read_lock()
|
|
* read mru_block
|
|
* mru_block = NULL;
|
|
* call_rcu(reclaim_ramblock, xxx);
|
|
* rcu_read_unlock()
|
|
*
|
|
* atomic_rcu_set is not needed here. The block was already published
|
|
* when it was placed into the list. Here we're just making an extra
|
|
* copy of the pointer.
|
|
*/
|
|
ram_list.mru_block = block;
|
|
return block;
|
|
}
|
|
|
|
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
|
|
{
|
|
CPUState *cpu;
|
|
ram_addr_t start1;
|
|
RAMBlock *block;
|
|
ram_addr_t end;
|
|
|
|
end = TARGET_PAGE_ALIGN(start + length);
|
|
start &= TARGET_PAGE_MASK;
|
|
|
|
rcu_read_lock();
|
|
block = qemu_get_ram_block(start);
|
|
assert(block == qemu_get_ram_block(end - 1));
|
|
start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
|
|
CPU_FOREACH(cpu) {
|
|
tlb_reset_dirty(cpu, start1, length);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* Note: start and end must be within the same ram block. */
|
|
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
|
|
ram_addr_t length,
|
|
unsigned client)
|
|
{
|
|
DirtyMemoryBlocks *blocks;
|
|
unsigned long end, page;
|
|
bool dirty = false;
|
|
|
|
if (length == 0) {
|
|
return false;
|
|
}
|
|
|
|
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
|
page = start >> TARGET_PAGE_BITS;
|
|
|
|
rcu_read_lock();
|
|
|
|
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
|
|
|
|
while (page < end) {
|
|
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
|
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
|
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
|
|
|
|
dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
|
|
offset, num);
|
|
page += num;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
if (dirty && tcg_enabled()) {
|
|
tlb_reset_dirty_range_all(start, length);
|
|
}
|
|
|
|
return dirty;
|
|
}
|
|
|
|
/* Called from RCU critical section */
|
|
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
|
|
MemoryRegionSection *section,
|
|
target_ulong vaddr,
|
|
hwaddr paddr, hwaddr xlat,
|
|
int prot,
|
|
target_ulong *address)
|
|
{
|
|
hwaddr iotlb;
|
|
CPUWatchpoint *wp;
|
|
|
|
if (memory_region_is_ram(section->mr)) {
|
|
/* Normal RAM. */
|
|
iotlb = memory_region_get_ram_addr(section->mr) + xlat;
|
|
if (!section->readonly) {
|
|
iotlb |= PHYS_SECTION_NOTDIRTY;
|
|
} else {
|
|
iotlb |= PHYS_SECTION_ROM;
|
|
}
|
|
} else {
|
|
AddressSpaceDispatch *d;
|
|
|
|
d = atomic_rcu_read(§ion->address_space->dispatch);
|
|
iotlb = section - d->map.sections;
|
|
iotlb += xlat;
|
|
}
|
|
|
|
/* Make accesses to pages with watchpoints go via the
|
|
watchpoint trap routines. */
|
|
QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
|
|
if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
|
|
/* Avoid trapping reads of pages with a write breakpoint. */
|
|
if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
|
|
iotlb = PHYS_SECTION_WATCH + paddr;
|
|
*address |= TLB_MMIO;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return iotlb;
|
|
}
|
|
#endif /* defined(CONFIG_USER_ONLY) */
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
|
|
uint16_t section);
|
|
static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
|
|
|
|
static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
|
|
qemu_anon_ram_alloc;
|
|
|
|
/*
|
|
* Set a custom physical guest memory alloator.
|
|
* Accelerators with unusual needs may need this. Hopefully, we can
|
|
* get rid of it eventually.
|
|
*/
|
|
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
|
|
{
|
|
phys_mem_alloc = alloc;
|
|
}
|
|
|
|
static uint16_t phys_section_add(PhysPageMap *map,
|
|
MemoryRegionSection *section)
|
|
{
|
|
/* The physical section number is ORed with a page-aligned
|
|
* pointer to produce the iotlb entries. Thus it should
|
|
* never overflow into the page-aligned value.
|
|
*/
|
|
assert(map->sections_nb < TARGET_PAGE_SIZE);
|
|
|
|
if (map->sections_nb == map->sections_nb_alloc) {
|
|
map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
|
|
map->sections = g_renew(MemoryRegionSection, map->sections,
|
|
map->sections_nb_alloc);
|
|
}
|
|
map->sections[map->sections_nb] = *section;
|
|
memory_region_ref(section->mr);
|
|
return map->sections_nb++;
|
|
}
|
|
|
|
static void phys_section_destroy(MemoryRegion *mr)
|
|
{
|
|
bool have_sub_page = mr->subpage;
|
|
|
|
memory_region_unref(mr);
|
|
|
|
if (have_sub_page) {
|
|
subpage_t *subpage = container_of(mr, subpage_t, iomem);
|
|
object_unref(OBJECT(&subpage->iomem));
|
|
g_free(subpage);
|
|
}
|
|
}
|
|
|
|
static void phys_sections_free(PhysPageMap *map)
|
|
{
|
|
while (map->sections_nb > 0) {
|
|
MemoryRegionSection *section = &map->sections[--map->sections_nb];
|
|
phys_section_destroy(section->mr);
|
|
}
|
|
g_free(map->sections);
|
|
g_free(map->nodes);
|
|
}
|
|
|
|
static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
|
|
{
|
|
subpage_t *subpage;
|
|
hwaddr base = section->offset_within_address_space
|
|
& TARGET_PAGE_MASK;
|
|
MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
|
|
d->map.nodes, d->map.sections);
|
|
MemoryRegionSection subsection = {
|
|
.offset_within_address_space = base,
|
|
.size = int128_make64(TARGET_PAGE_SIZE),
|
|
};
|
|
hwaddr start, end;
|
|
|
|
assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
|
|
|
|
if (!(existing->mr->subpage)) {
|
|
subpage = subpage_init(d->as, base);
|
|
subsection.address_space = d->as;
|
|
subsection.mr = &subpage->iomem;
|
|
phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
|
|
phys_section_add(&d->map, &subsection));
|
|
} else {
|
|
subpage = container_of(existing->mr, subpage_t, iomem);
|
|
}
|
|
start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
|
|
end = start + int128_get64(section->size) - 1;
|
|
subpage_register(subpage, start, end,
|
|
phys_section_add(&d->map, section));
|
|
}
|
|
|
|
|
|
static void register_multipage(AddressSpaceDispatch *d,
|
|
MemoryRegionSection *section)
|
|
{
|
|
hwaddr start_addr = section->offset_within_address_space;
|
|
uint16_t section_index = phys_section_add(&d->map, section);
|
|
uint64_t num_pages = int128_get64(int128_rshift(section->size,
|
|
TARGET_PAGE_BITS));
|
|
|
|
assert(num_pages);
|
|
phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
|
|
}
|
|
|
|
static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
|
|
{
|
|
AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
|
|
AddressSpaceDispatch *d = as->next_dispatch;
|
|
MemoryRegionSection now = *section, remain = *section;
|
|
Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
|
|
|
|
if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
|
|
uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
|
|
- now.offset_within_address_space;
|
|
|
|
now.size = int128_min(int128_make64(left), now.size);
|
|
register_subpage(d, &now);
|
|
} else {
|
|
now.size = int128_zero();
|
|
}
|
|
while (int128_ne(remain.size, now.size)) {
|
|
remain.size = int128_sub(remain.size, now.size);
|
|
remain.offset_within_address_space += int128_get64(now.size);
|
|
remain.offset_within_region += int128_get64(now.size);
|
|
now = remain;
|
|
if (int128_lt(remain.size, page_size)) {
|
|
register_subpage(d, &now);
|
|
} else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
|
|
now.size = page_size;
|
|
register_subpage(d, &now);
|
|
} else {
|
|
now.size = int128_and(now.size, int128_neg(page_size));
|
|
register_multipage(d, &now);
|
|
}
|
|
}
|
|
}
|
|
|
|
void qemu_flush_coalesced_mmio_buffer(void)
|
|
{
|
|
if (kvm_enabled())
|
|
kvm_flush_coalesced_mmio_buffer();
|
|
}
|
|
|
|
void qemu_mutex_lock_ramlist(void)
|
|
{
|
|
qemu_mutex_lock(&ram_list.mutex);
|
|
}
|
|
|
|
void qemu_mutex_unlock_ramlist(void)
|
|
{
|
|
qemu_mutex_unlock(&ram_list.mutex);
|
|
}
|
|
|
|
#ifdef __linux__
|
|
static void *file_ram_alloc(RAMBlock *block,
|
|
ram_addr_t memory,
|
|
const char *path,
|
|
Error **errp)
|
|
{
|
|
bool unlink_on_error = false;
|
|
char *filename;
|
|
char *sanitized_name;
|
|
char *c;
|
|
void *area = MAP_FAILED;
|
|
int fd = -1;
|
|
int64_t page_size;
|
|
|
|
if (kvm_enabled() && !kvm_has_sync_mmu()) {
|
|
error_setg(errp,
|
|
"host lacks kvm mmu notifiers, -mem-path unsupported");
|
|
return NULL;
|
|
}
|
|
|
|
for (;;) {
|
|
fd = open(path, O_RDWR);
|
|
if (fd >= 0) {
|
|
/* @path names an existing file, use it */
|
|
break;
|
|
}
|
|
if (errno == ENOENT) {
|
|
/* @path names a file that doesn't exist, create it */
|
|
fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
|
|
if (fd >= 0) {
|
|
unlink_on_error = true;
|
|
break;
|
|
}
|
|
} else if (errno == EISDIR) {
|
|
/* @path names a directory, create a file there */
|
|
/* Make name safe to use with mkstemp by replacing '/' with '_'. */
|
|
sanitized_name = g_strdup(memory_region_name(block->mr));
|
|
for (c = sanitized_name; *c != '\0'; c++) {
|
|
if (*c == '/') {
|
|
*c = '_';
|
|
}
|
|
}
|
|
|
|
filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
|
|
sanitized_name);
|
|
g_free(sanitized_name);
|
|
|
|
fd = mkstemp(filename);
|
|
if (fd >= 0) {
|
|
unlink(filename);
|
|
g_free(filename);
|
|
break;
|
|
}
|
|
g_free(filename);
|
|
}
|
|
if (errno != EEXIST && errno != EINTR) {
|
|
error_setg_errno(errp, errno,
|
|
"can't open backing store %s for guest RAM",
|
|
path);
|
|
goto error;
|
|
}
|
|
/*
|
|
* Try again on EINTR and EEXIST. The latter happens when
|
|
* something else creates the file between our two open().
|
|
*/
|
|
}
|
|
|
|
page_size = qemu_fd_getpagesize(fd);
|
|
block->mr->align = MAX(page_size, QEMU_VMALLOC_ALIGN);
|
|
|
|
if (memory < page_size) {
|
|
error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
|
|
"or larger than page size 0x%" PRIx64,
|
|
memory, page_size);
|
|
goto error;
|
|
}
|
|
|
|
memory = ROUND_UP(memory, page_size);
|
|
|
|
/*
|
|
* ftruncate is not supported by hugetlbfs in older
|
|
* hosts, so don't bother bailing out on errors.
|
|
* If anything goes wrong with it under other filesystems,
|
|
* mmap will fail.
|
|
*/
|
|
if (ftruncate(fd, memory)) {
|
|
perror("ftruncate");
|
|
}
|
|
|
|
area = qemu_ram_mmap(fd, memory, block->mr->align,
|
|
block->flags & RAM_SHARED);
|
|
if (area == MAP_FAILED) {
|
|
error_setg_errno(errp, errno,
|
|
"unable to map backing store for guest RAM");
|
|
goto error;
|
|
}
|
|
|
|
if (mem_prealloc) {
|
|
os_mem_prealloc(fd, area, memory, errp);
|
|
if (errp && *errp) {
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
block->fd = fd;
|
|
return area;
|
|
|
|
error:
|
|
if (area != MAP_FAILED) {
|
|
qemu_ram_munmap(area, memory);
|
|
}
|
|
if (unlink_on_error) {
|
|
unlink(path);
|
|
}
|
|
if (fd != -1) {
|
|
close(fd);
|
|
}
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
/* Called with the ramlist lock held. */
|
|
static ram_addr_t find_ram_offset(ram_addr_t size)
|
|
{
|
|
RAMBlock *block, *next_block;
|
|
ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
|
|
|
|
assert(size != 0); /* it would hand out same offset multiple times */
|
|
|
|
if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
|
|
return 0;
|
|
}
|
|
|
|
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
|
|
ram_addr_t end, next = RAM_ADDR_MAX;
|
|
|
|
end = block->offset + block->max_length;
|
|
|
|
QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
|
|
if (next_block->offset >= end) {
|
|
next = MIN(next, next_block->offset);
|
|
}
|
|
}
|
|
if (next - end >= size && next - end < mingap) {
|
|
offset = end;
|
|
mingap = next - end;
|
|
}
|
|
}
|
|
|
|
if (offset == RAM_ADDR_MAX) {
|
|
fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
|
|
(uint64_t)size);
|
|
abort();
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
ram_addr_t last_ram_offset(void)
|
|
{
|
|
RAMBlock *block;
|
|
ram_addr_t last = 0;
|
|
|
|
rcu_read_lock();
|
|
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
|
|
last = MAX(last, block->offset + block->max_length);
|
|
}
|
|
rcu_read_unlock();
|
|
return last;
|
|
}
|
|
|
|
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
|
|
{
|
|
int ret;
|
|
|
|
/* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
|
|
if (!machine_dump_guest_core(current_machine)) {
|
|
ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
|
|
if (ret) {
|
|
perror("qemu_madvise");
|
|
fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
|
|
"but dump_guest_core=off specified\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
const char *qemu_ram_get_idstr(RAMBlock *rb)
|
|
{
|
|
return rb->idstr;
|
|
}
|
|
|
|
/* Called with iothread lock held. */
|
|
void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
assert(new_block);
|
|
assert(!new_block->idstr[0]);
|
|
|
|
if (dev) {
|
|
char *id = qdev_get_dev_path(dev);
|
|
if (id) {
|
|
snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
|
|
g_free(id);
|
|
}
|
|
}
|
|
pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
|
|
|
|
rcu_read_lock();
|
|
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
|
|
if (block != new_block &&
|
|
!strcmp(block->idstr, new_block->idstr)) {
|
|
fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
|
|
new_block->idstr);
|
|
abort();
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* Called with iothread lock held. */
|
|
void qemu_ram_unset_idstr(RAMBlock *block)
|
|
{
|
|
/* FIXME: arch_init.c assumes that this is not called throughout
|
|
* migration. Ignore the problem since hot-unplug during migration
|
|
* does not work anyway.
|
|
*/
|
|
if (block) {
|
|
memset(block->idstr, 0, sizeof(block->idstr));
|
|
}
|
|
}
|
|
|
|
static int memory_try_enable_merging(void *addr, size_t len)
|
|
{
|
|
if (!machine_mem_merge(current_machine)) {
|
|
/* disabled by the user */
|
|
return 0;
|
|
}
|
|
|
|
return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
|
|
}
|
|
|
|
/* Only legal before guest might have detected the memory size: e.g. on
|
|
* incoming migration, or right after reset.
|
|
*
|
|
* As memory core doesn't know how is memory accessed, it is up to
|
|
* resize callback to update device state and/or add assertions to detect
|
|
* misuse, if necessary.
|
|
*/
|
|
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
|
|
{
|
|
assert(block);
|
|
|
|
newsize = HOST_PAGE_ALIGN(newsize);
|
|
|
|
if (block->used_length == newsize) {
|
|
return 0;
|
|
}
|
|
|
|
if (!(block->flags & RAM_RESIZEABLE)) {
|
|
error_setg_errno(errp, EINVAL,
|
|
"Length mismatch: %s: 0x" RAM_ADDR_FMT
|
|
" in != 0x" RAM_ADDR_FMT, block->idstr,
|
|
newsize, block->used_length);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (block->max_length < newsize) {
|
|
error_setg_errno(errp, EINVAL,
|
|
"Length too large: %s: 0x" RAM_ADDR_FMT
|
|
" > 0x" RAM_ADDR_FMT, block->idstr,
|
|
newsize, block->max_length);
|
|
return -EINVAL;
|
|
}
|
|
|
|
cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
|
|
block->used_length = newsize;
|
|
cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
|
|
DIRTY_CLIENTS_ALL);
|
|
memory_region_set_size(block->mr, newsize);
|
|
if (block->resized) {
|
|
block->resized(block->idstr, newsize, block->host);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Called with ram_list.mutex held */
|
|
static void dirty_memory_extend(ram_addr_t old_ram_size,
|
|
ram_addr_t new_ram_size)
|
|
{
|
|
ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
|
|
DIRTY_MEMORY_BLOCK_SIZE);
|
|
ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
|
|
DIRTY_MEMORY_BLOCK_SIZE);
|
|
int i;
|
|
|
|
/* Only need to extend if block count increased */
|
|
if (new_num_blocks <= old_num_blocks) {
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
|
|
DirtyMemoryBlocks *old_blocks;
|
|
DirtyMemoryBlocks *new_blocks;
|
|
int j;
|
|
|
|
old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
|
|
new_blocks = g_malloc(sizeof(*new_blocks) +
|
|
sizeof(new_blocks->blocks[0]) * new_num_blocks);
|
|
|
|
if (old_num_blocks) {
|
|
memcpy(new_blocks->blocks, old_blocks->blocks,
|
|
old_num_blocks * sizeof(old_blocks->blocks[0]));
|
|
}
|
|
|
|
for (j = old_num_blocks; j < new_num_blocks; j++) {
|
|
new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
|
|
}
|
|
|
|
atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
|
|
|
|
if (old_blocks) {
|
|
g_free_rcu(old_blocks, rcu);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ram_block_add(RAMBlock *new_block, Error **errp)
|
|
{
|
|
RAMBlock *block;
|
|
RAMBlock *last_block = NULL;
|
|
ram_addr_t old_ram_size, new_ram_size;
|
|
Error *err = NULL;
|
|
|
|
old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
|
|
|
|
qemu_mutex_lock_ramlist();
|
|
new_block->offset = find_ram_offset(new_block->max_length);
|
|
|
|
if (!new_block->host) {
|
|
if (xen_enabled()) {
|
|
xen_ram_alloc(new_block->offset, new_block->max_length,
|
|
new_block->mr, &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
qemu_mutex_unlock_ramlist();
|
|
return;
|
|
}
|
|
} else {
|
|
new_block->host = phys_mem_alloc(new_block->max_length,
|
|
&new_block->mr->align);
|
|
if (!new_block->host) {
|
|
error_setg_errno(errp, errno,
|
|
"cannot set up guest memory '%s'",
|
|
memory_region_name(new_block->mr));
|
|
qemu_mutex_unlock_ramlist();
|
|
return;
|
|
}
|
|
memory_try_enable_merging(new_block->host, new_block->max_length);
|
|
}
|
|
}
|
|
|
|
new_ram_size = MAX(old_ram_size,
|
|
(new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
|
|
if (new_ram_size > old_ram_size) {
|
|
migration_bitmap_extend(old_ram_size, new_ram_size);
|
|
dirty_memory_extend(old_ram_size, new_ram_size);
|
|
}
|
|
/* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
|
|
* QLIST (which has an RCU-friendly variant) does not have insertion at
|
|
* tail, so save the last element in last_block.
|
|
*/
|
|
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
|
|
last_block = block;
|
|
if (block->max_length < new_block->max_length) {
|
|
break;
|
|
}
|
|
}
|
|
if (block) {
|
|
QLIST_INSERT_BEFORE_RCU(block, new_block, next);
|
|
} else if (last_block) {
|
|
QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
|
|
} else { /* list is empty */
|
|
QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
|
|
}
|
|
ram_list.mru_block = NULL;
|
|
|
|
/* Write list before version */
|
|
smp_wmb();
|
|
ram_list.version++;
|
|
qemu_mutex_unlock_ramlist();
|
|
|
|
cpu_physical_memory_set_dirty_range(new_block->offset,
|
|
new_block->used_length,
|
|
DIRTY_CLIENTS_ALL);
|
|
|
|
if (new_block->host) {
|
|
qemu_ram_setup_dump(new_block->host, new_block->max_length);
|
|
qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
|
|
qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
|
|
if (kvm_enabled()) {
|
|
kvm_setup_guest_memory(new_block->host, new_block->max_length);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef __linux__
|
|
RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
|
|
bool share, const char *mem_path,
|
|
Error **errp)
|
|
{
|
|
RAMBlock *new_block;
|
|
Error *local_err = NULL;
|
|
|
|
if (xen_enabled()) {
|
|
error_setg(errp, "-mem-path not supported with Xen");
|
|
return NULL;
|
|
}
|
|
|
|
if (phys_mem_alloc != qemu_anon_ram_alloc) {
|
|
/*
|
|
* file_ram_alloc() needs to allocate just like
|
|
* phys_mem_alloc, but we haven't bothered to provide
|
|
* a hook there.
|
|
*/
|
|
error_setg(errp,
|
|
"-mem-path not supported with this accelerator");
|
|
return NULL;
|
|
}
|
|
|
|
size = HOST_PAGE_ALIGN(size);
|
|
new_block = g_malloc0(sizeof(*new_block));
|
|
new_block->mr = mr;
|
|
new_block->used_length = size;
|
|
new_block->max_length = size;
|
|
new_block->flags = share ? RAM_SHARED : 0;
|
|
new_block->host = file_ram_alloc(new_block, size,
|
|
mem_path, errp);
|
|
if (!new_block->host) {
|
|
g_free(new_block);
|
|
return NULL;
|
|
}
|
|
|
|
ram_block_add(new_block, &local_err);
|
|
if (local_err) {
|
|
g_free(new_block);
|
|
error_propagate(errp, local_err);
|
|
return NULL;
|
|
}
|
|
return new_block;
|
|
}
|
|
#endif
|
|
|
|
static
|
|
RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
|
|
void (*resized)(const char*,
|
|
uint64_t length,
|
|
void *host),
|
|
void *host, bool resizeable,
|
|
MemoryRegion *mr, Error **errp)
|
|
{
|
|
RAMBlock *new_block;
|
|
Error *local_err = NULL;
|
|
|
|
size = HOST_PAGE_ALIGN(size);
|
|
max_size = HOST_PAGE_ALIGN(max_size);
|
|
new_block = g_malloc0(sizeof(*new_block));
|
|
new_block->mr = mr;
|
|
new_block->resized = resized;
|
|
new_block->used_length = size;
|
|
new_block->max_length = max_size;
|
|
assert(max_size >= size);
|
|
new_block->fd = -1;
|
|
new_block->host = host;
|
|
if (host) {
|
|
new_block->flags |= RAM_PREALLOC;
|
|
}
|
|
if (resizeable) {
|
|
new_block->flags |= RAM_RESIZEABLE;
|
|
}
|
|
ram_block_add(new_block, &local_err);
|
|
if (local_err) {
|
|
g_free(new_block);
|
|
error_propagate(errp, local_err);
|
|
return NULL;
|
|
}
|
|
return new_block;
|
|
}
|
|
|
|
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
|
|
MemoryRegion *mr, Error **errp)
|
|
{
|
|
return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
|
|
}
|
|
|
|
RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
|
|
{
|
|
return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
|
|
}
|
|
|
|
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
|
|
void (*resized)(const char*,
|
|
uint64_t length,
|
|
void *host),
|
|
MemoryRegion *mr, Error **errp)
|
|
{
|
|
return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
|
|
}
|
|
|
|
static void reclaim_ramblock(RAMBlock *block)
|
|
{
|
|
if (block->flags & RAM_PREALLOC) {
|
|
;
|
|
} else if (xen_enabled()) {
|
|
xen_invalidate_map_cache_entry(block->host);
|
|
#ifndef _WIN32
|
|
} else if (block->fd >= 0) {
|
|
qemu_ram_munmap(block->host, block->max_length);
|
|
close(block->fd);
|
|
#endif
|
|
} else {
|
|
qemu_anon_ram_free(block->host, block->max_length);
|
|
}
|
|
g_free(block);
|
|
}
|
|
|
|
void qemu_ram_free(RAMBlock *block)
|
|
{
|
|
if (!block) {
|
|
return;
|
|
}
|
|
|
|
qemu_mutex_lock_ramlist();
|
|
QLIST_REMOVE_RCU(block, next);
|
|
ram_list.mru_block = NULL;
|
|
/* Write list before version */
|
|
smp_wmb();
|
|
ram_list.version++;
|
|
call_rcu(block, reclaim_ramblock, rcu);
|
|
qemu_mutex_unlock_ramlist();
|
|
}
|
|
|
|
#ifndef _WIN32
|
|
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
|
|
{
|
|
RAMBlock *block;
|
|
ram_addr_t offset;
|
|
int flags;
|
|
void *area, *vaddr;
|
|
|
|
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
|
|
offset = addr - block->offset;
|
|
if (offset < block->max_length) {
|
|
vaddr = ramblock_ptr(block, offset);
|
|
if (block->flags & RAM_PREALLOC) {
|
|
;
|
|
} else if (xen_enabled()) {
|
|
abort();
|
|
} else {
|
|
flags = MAP_FIXED;
|
|
if (block->fd >= 0) {
|
|
flags |= (block->flags & RAM_SHARED ?
|
|
MAP_SHARED : MAP_PRIVATE);
|
|
area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
|
|
flags, block->fd, offset);
|
|
} else {
|
|
/*
|
|
* Remap needs to match alloc. Accelerators that
|
|
* set phys_mem_alloc never remap. If they did,
|
|
* we'd need a remap hook here.
|
|
*/
|
|
assert(phys_mem_alloc == qemu_anon_ram_alloc);
|
|
|
|
flags |= MAP_PRIVATE | MAP_ANONYMOUS;
|
|
area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
|
|
flags, -1, 0);
|
|
}
|
|
if (area != vaddr) {
|
|
fprintf(stderr, "Could not remap addr: "
|
|
RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
|
|
length, addr);
|
|
exit(1);
|
|
}
|
|
memory_try_enable_merging(vaddr, length);
|
|
qemu_ram_setup_dump(vaddr, length);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* !_WIN32 */
|
|
|
|
/* Return a host pointer to ram allocated with qemu_ram_alloc.
|
|
* This should not be used for general purpose DMA. Use address_space_map
|
|
* or address_space_rw instead. For local memory (e.g. video ram) that the
|
|
* device owns, use memory_region_get_ram_ptr.
|
|
*
|
|
* Called within RCU critical section.
|
|
*/
|
|
void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
|
|
{
|
|
RAMBlock *block = ram_block;
|
|
|
|
if (block == NULL) {
|
|
block = qemu_get_ram_block(addr);
|
|
addr -= block->offset;
|
|
}
|
|
|
|
if (xen_enabled() && block->host == NULL) {
|
|
/* We need to check if the requested address is in the RAM
|
|
* because we don't want to map the entire memory in QEMU.
|
|
* In that case just map until the end of the page.
|
|
*/
|
|
if (block->offset == 0) {
|
|
return xen_map_cache(addr, 0, 0);
|
|
}
|
|
|
|
block->host = xen_map_cache(block->offset, block->max_length, 1);
|
|
}
|
|
return ramblock_ptr(block, addr);
|
|
}
|
|
|
|
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
|
|
* but takes a size argument.
|
|
*
|
|
* Called within RCU critical section.
|
|
*/
|
|
static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
|
|
hwaddr *size)
|
|
{
|
|
RAMBlock *block = ram_block;
|
|
if (*size == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
if (block == NULL) {
|
|
block = qemu_get_ram_block(addr);
|
|
addr -= block->offset;
|
|
}
|
|
*size = MIN(*size, block->max_length - addr);
|
|
|
|
if (xen_enabled() && block->host == NULL) {
|
|
/* We need to check if the requested address is in the RAM
|
|
* because we don't want to map the entire memory in QEMU.
|
|
* In that case just map the requested area.
|
|
*/
|
|
if (block->offset == 0) {
|
|
return xen_map_cache(addr, *size, 1);
|
|
}
|
|
|
|
block->host = xen_map_cache(block->offset, block->max_length, 1);
|
|
}
|
|
|
|
return ramblock_ptr(block, addr);
|
|
}
|
|
|
|
/*
|
|
* Translates a host ptr back to a RAMBlock, a ram_addr and an offset
|
|
* in that RAMBlock.
|
|
*
|
|
* ptr: Host pointer to look up
|
|
* round_offset: If true round the result offset down to a page boundary
|
|
* *ram_addr: set to result ram_addr
|
|
* *offset: set to result offset within the RAMBlock
|
|
*
|
|
* Returns: RAMBlock (or NULL if not found)
|
|
*
|
|
* By the time this function returns, the returned pointer is not protected
|
|
* by RCU anymore. If the caller is not within an RCU critical section and
|
|
* does not hold the iothread lock, it must have other means of protecting the
|
|
* pointer, such as a reference to the region that includes the incoming
|
|
* ram_addr_t.
|
|
*/
|
|
RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
|
|
ram_addr_t *offset)
|
|
{
|
|
RAMBlock *block;
|
|
uint8_t *host = ptr;
|
|
|
|
if (xen_enabled()) {
|
|
ram_addr_t ram_addr;
|
|
rcu_read_lock();
|
|
ram_addr = xen_ram_addr_from_mapcache(ptr);
|
|
block = qemu_get_ram_block(ram_addr);
|
|
if (block) {
|
|
*offset = ram_addr - block->offset;
|
|
}
|
|
rcu_read_unlock();
|
|
return block;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
block = atomic_rcu_read(&ram_list.mru_block);
|
|
if (block && block->host && host - block->host < block->max_length) {
|
|
goto found;
|
|
}
|
|
|
|
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
|
|
/* This case append when the block is not mapped. */
|
|
if (block->host == NULL) {
|
|
continue;
|
|
}
|
|
if (host - block->host < block->max_length) {
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
return NULL;
|
|
|
|
found:
|
|
*offset = (host - block->host);
|
|
if (round_offset) {
|
|
*offset &= TARGET_PAGE_MASK;
|
|
}
|
|
rcu_read_unlock();
|
|
return block;
|
|
}
|
|
|
|
/*
|
|
* Finds the named RAMBlock
|
|
*
|
|
* name: The name of RAMBlock to find
|
|
*
|
|
* Returns: RAMBlock (or NULL if not found)
|
|
*/
|
|
RAMBlock *qemu_ram_block_by_name(const char *name)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
|
|
if (!strcmp(name, block->idstr)) {
|
|
return block;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Some of the softmmu routines need to translate from a host pointer
|
|
(typically a TLB entry) back to a ram offset. */
|
|
ram_addr_t qemu_ram_addr_from_host(void *ptr)
|
|
{
|
|
RAMBlock *block;
|
|
ram_addr_t offset;
|
|
|
|
block = qemu_ram_block_from_host(ptr, false, &offset);
|
|
if (!block) {
|
|
return RAM_ADDR_INVALID;
|
|
}
|
|
|
|
return block->offset + offset;
|
|
}
|
|
|
|
/* Called within RCU critical section. */
|
|
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
|
|
tb_invalidate_phys_page_fast(ram_addr, size);
|
|
}
|
|
switch (size) {
|
|
case 1:
|
|
stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
|
|
break;
|
|
case 2:
|
|
stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
|
|
break;
|
|
case 4:
|
|
stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
/* Set both VGA and migration bits for simplicity and to remove
|
|
* the notdirty callback faster.
|
|
*/
|
|
cpu_physical_memory_set_dirty_range(ram_addr, size,
|
|
DIRTY_CLIENTS_NOCODE);
|
|
/* we remove the notdirty callback only if the code has been
|
|
flushed */
|
|
if (!cpu_physical_memory_is_clean(ram_addr)) {
|
|
tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
|
|
}
|
|
}
|
|
|
|
static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
|
|
unsigned size, bool is_write)
|
|
{
|
|
return is_write;
|
|
}
|
|
|
|
static const MemoryRegionOps notdirty_mem_ops = {
|
|
.write = notdirty_mem_write,
|
|
.valid.accepts = notdirty_mem_accepts,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
/* Generate a debug exception if a watchpoint has been hit. */
|
|
static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
|
|
{
|
|
CPUState *cpu = current_cpu;
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
CPUArchState *env = cpu->env_ptr;
|
|
target_ulong pc, cs_base;
|
|
target_ulong vaddr;
|
|
CPUWatchpoint *wp;
|
|
uint32_t cpu_flags;
|
|
|
|
if (cpu->watchpoint_hit) {
|
|
/* We re-entered the check after replacing the TB. Now raise
|
|
* the debug interrupt so that is will trigger after the
|
|
* current instruction. */
|
|
cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
|
|
return;
|
|
}
|
|
vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
|
|
QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
|
|
if (cpu_watchpoint_address_matches(wp, vaddr, len)
|
|
&& (wp->flags & flags)) {
|
|
if (flags == BP_MEM_READ) {
|
|
wp->flags |= BP_WATCHPOINT_HIT_READ;
|
|
} else {
|
|
wp->flags |= BP_WATCHPOINT_HIT_WRITE;
|
|
}
|
|
wp->hitaddr = vaddr;
|
|
wp->hitattrs = attrs;
|
|
if (!cpu->watchpoint_hit) {
|
|
if (wp->flags & BP_CPU &&
|
|
!cc->debug_check_watchpoint(cpu, wp)) {
|
|
wp->flags &= ~BP_WATCHPOINT_HIT;
|
|
continue;
|
|
}
|
|
cpu->watchpoint_hit = wp;
|
|
tb_check_watchpoint(cpu);
|
|
if (wp->flags & BP_STOP_BEFORE_ACCESS) {
|
|
cpu->exception_index = EXCP_DEBUG;
|
|
cpu_loop_exit(cpu);
|
|
} else {
|
|
cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
|
|
tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
|
|
cpu_loop_exit_noexc(cpu);
|
|
}
|
|
}
|
|
} else {
|
|
wp->flags &= ~BP_WATCHPOINT_HIT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
|
|
so these check for a hit then pass through to the normal out-of-line
|
|
phys routines. */
|
|
static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
|
|
unsigned size, MemTxAttrs attrs)
|
|
{
|
|
MemTxResult res;
|
|
uint64_t data;
|
|
int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
|
|
AddressSpace *as = current_cpu->cpu_ases[asidx].as;
|
|
|
|
check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
|
|
switch (size) {
|
|
case 1:
|
|
data = address_space_ldub(as, addr, attrs, &res);
|
|
break;
|
|
case 2:
|
|
data = address_space_lduw(as, addr, attrs, &res);
|
|
break;
|
|
case 4:
|
|
data = address_space_ldl(as, addr, attrs, &res);
|
|
break;
|
|
default: abort();
|
|
}
|
|
*pdata = data;
|
|
return res;
|
|
}
|
|
|
|
static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
|
|
uint64_t val, unsigned size,
|
|
MemTxAttrs attrs)
|
|
{
|
|
MemTxResult res;
|
|
int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
|
|
AddressSpace *as = current_cpu->cpu_ases[asidx].as;
|
|
|
|
check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
|
|
switch (size) {
|
|
case 1:
|
|
address_space_stb(as, addr, val, attrs, &res);
|
|
break;
|
|
case 2:
|
|
address_space_stw(as, addr, val, attrs, &res);
|
|
break;
|
|
case 4:
|
|
address_space_stl(as, addr, val, attrs, &res);
|
|
break;
|
|
default: abort();
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static const MemoryRegionOps watch_mem_ops = {
|
|
.read_with_attrs = watch_mem_read,
|
|
.write_with_attrs = watch_mem_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
|
|
unsigned len, MemTxAttrs attrs)
|
|
{
|
|
subpage_t *subpage = opaque;
|
|
uint8_t buf[8];
|
|
MemTxResult res;
|
|
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
|
|
subpage, len, addr);
|
|
#endif
|
|
res = address_space_read(subpage->as, addr + subpage->base,
|
|
attrs, buf, len);
|
|
if (res) {
|
|
return res;
|
|
}
|
|
switch (len) {
|
|
case 1:
|
|
*data = ldub_p(buf);
|
|
return MEMTX_OK;
|
|
case 2:
|
|
*data = lduw_p(buf);
|
|
return MEMTX_OK;
|
|
case 4:
|
|
*data = ldl_p(buf);
|
|
return MEMTX_OK;
|
|
case 8:
|
|
*data = ldq_p(buf);
|
|
return MEMTX_OK;
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static MemTxResult subpage_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned len, MemTxAttrs attrs)
|
|
{
|
|
subpage_t *subpage = opaque;
|
|
uint8_t buf[8];
|
|
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: subpage %p len %u addr " TARGET_FMT_plx
|
|
" value %"PRIx64"\n",
|
|
__func__, subpage, len, addr, value);
|
|
#endif
|
|
switch (len) {
|
|
case 1:
|
|
stb_p(buf, value);
|
|
break;
|
|
case 2:
|
|
stw_p(buf, value);
|
|
break;
|
|
case 4:
|
|
stl_p(buf, value);
|
|
break;
|
|
case 8:
|
|
stq_p(buf, value);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
return address_space_write(subpage->as, addr + subpage->base,
|
|
attrs, buf, len);
|
|
}
|
|
|
|
static bool subpage_accepts(void *opaque, hwaddr addr,
|
|
unsigned len, bool is_write)
|
|
{
|
|
subpage_t *subpage = opaque;
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
|
|
__func__, subpage, is_write ? 'w' : 'r', len, addr);
|
|
#endif
|
|
|
|
return address_space_access_valid(subpage->as, addr + subpage->base,
|
|
len, is_write);
|
|
}
|
|
|
|
static const MemoryRegionOps subpage_ops = {
|
|
.read_with_attrs = subpage_read,
|
|
.write_with_attrs = subpage_write,
|
|
.impl.min_access_size = 1,
|
|
.impl.max_access_size = 8,
|
|
.valid.min_access_size = 1,
|
|
.valid.max_access_size = 8,
|
|
.valid.accepts = subpage_accepts,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
|
|
uint16_t section)
|
|
{
|
|
int idx, eidx;
|
|
|
|
if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
|
|
return -1;
|
|
idx = SUBPAGE_IDX(start);
|
|
eidx = SUBPAGE_IDX(end);
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
|
|
__func__, mmio, start, end, idx, eidx, section);
|
|
#endif
|
|
for (; idx <= eidx; idx++) {
|
|
mmio->sub_section[idx] = section;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
|
|
{
|
|
subpage_t *mmio;
|
|
|
|
mmio = g_malloc0(sizeof(subpage_t));
|
|
|
|
mmio->as = as;
|
|
mmio->base = base;
|
|
memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
|
|
NULL, TARGET_PAGE_SIZE);
|
|
mmio->iomem.subpage = true;
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
|
|
mmio, base, TARGET_PAGE_SIZE);
|
|
#endif
|
|
subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
|
|
|
|
return mmio;
|
|
}
|
|
|
|
static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
|
|
MemoryRegion *mr)
|
|
{
|
|
assert(as);
|
|
MemoryRegionSection section = {
|
|
.address_space = as,
|
|
.mr = mr,
|
|
.offset_within_address_space = 0,
|
|
.offset_within_region = 0,
|
|
.size = int128_2_64(),
|
|
};
|
|
|
|
return phys_section_add(map, §ion);
|
|
}
|
|
|
|
MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
|
|
{
|
|
int asidx = cpu_asidx_from_attrs(cpu, attrs);
|
|
CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
|
|
AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
|
|
MemoryRegionSection *sections = d->map.sections;
|
|
|
|
return sections[index & ~TARGET_PAGE_MASK].mr;
|
|
}
|
|
|
|
static void io_mem_init(void)
|
|
{
|
|
memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
|
|
memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
|
|
NULL, UINT64_MAX);
|
|
memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL,
|
|
NULL, UINT64_MAX);
|
|
memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
|
|
NULL, UINT64_MAX);
|
|
}
|
|
|
|
static void mem_begin(MemoryListener *listener)
|
|
{
|
|
AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
|
|
AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
|
|
uint16_t n;
|
|
|
|
n = dummy_section(&d->map, as, &io_mem_unassigned);
|
|
assert(n == PHYS_SECTION_UNASSIGNED);
|
|
n = dummy_section(&d->map, as, &io_mem_notdirty);
|
|
assert(n == PHYS_SECTION_NOTDIRTY);
|
|
n = dummy_section(&d->map, as, &io_mem_rom);
|
|
assert(n == PHYS_SECTION_ROM);
|
|
n = dummy_section(&d->map, as, &io_mem_watch);
|
|
assert(n == PHYS_SECTION_WATCH);
|
|
|
|
d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
|
|
d->as = as;
|
|
as->next_dispatch = d;
|
|
}
|
|
|
|
static void address_space_dispatch_free(AddressSpaceDispatch *d)
|
|
{
|
|
phys_sections_free(&d->map);
|
|
g_free(d);
|
|
}
|
|
|
|
static void mem_commit(MemoryListener *listener)
|
|
{
|
|
AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
|
|
AddressSpaceDispatch *cur = as->dispatch;
|
|
AddressSpaceDispatch *next = as->next_dispatch;
|
|
|
|
phys_page_compact_all(next, next->map.nodes_nb);
|
|
|
|
atomic_rcu_set(&as->dispatch, next);
|
|
if (cur) {
|
|
call_rcu(cur, address_space_dispatch_free, rcu);
|
|
}
|
|
}
|
|
|
|
static void tcg_commit(MemoryListener *listener)
|
|
{
|
|
CPUAddressSpace *cpuas;
|
|
AddressSpaceDispatch *d;
|
|
|
|
/* since each CPU stores ram addresses in its TLB cache, we must
|
|
reset the modified entries */
|
|
cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
|
|
cpu_reloading_memory_map();
|
|
/* The CPU and TLB are protected by the iothread lock.
|
|
* We reload the dispatch pointer now because cpu_reloading_memory_map()
|
|
* may have split the RCU critical section.
|
|
*/
|
|
d = atomic_rcu_read(&cpuas->as->dispatch);
|
|
cpuas->memory_dispatch = d;
|
|
tlb_flush(cpuas->cpu, 1);
|
|
}
|
|
|
|
void address_space_init_dispatch(AddressSpace *as)
|
|
{
|
|
as->dispatch = NULL;
|
|
as->dispatch_listener = (MemoryListener) {
|
|
.begin = mem_begin,
|
|
.commit = mem_commit,
|
|
.region_add = mem_add,
|
|
.region_nop = mem_add,
|
|
.priority = 0,
|
|
};
|
|
memory_listener_register(&as->dispatch_listener, as);
|
|
}
|
|
|
|
void address_space_unregister(AddressSpace *as)
|
|
{
|
|
memory_listener_unregister(&as->dispatch_listener);
|
|
}
|
|
|
|
void address_space_destroy_dispatch(AddressSpace *as)
|
|
{
|
|
AddressSpaceDispatch *d = as->dispatch;
|
|
|
|
atomic_rcu_set(&as->dispatch, NULL);
|
|
if (d) {
|
|
call_rcu(d, address_space_dispatch_free, rcu);
|
|
}
|
|
}
|
|
|
|
static void memory_map_init(void)
|
|
{
|
|
system_memory = g_malloc(sizeof(*system_memory));
|
|
|
|
memory_region_init(system_memory, NULL, "system", UINT64_MAX);
|
|
address_space_init(&address_space_memory, system_memory, "memory");
|
|
|
|
system_io = g_malloc(sizeof(*system_io));
|
|
memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
|
|
65536);
|
|
address_space_init(&address_space_io, system_io, "I/O");
|
|
}
|
|
|
|
MemoryRegion *get_system_memory(void)
|
|
{
|
|
return system_memory;
|
|
}
|
|
|
|
MemoryRegion *get_system_io(void)
|
|
{
|
|
return system_io;
|
|
}
|
|
|
|
#endif /* !defined(CONFIG_USER_ONLY) */
|
|
|
|
/* physical memory access (slow version, mainly for debug) */
|
|
#if defined(CONFIG_USER_ONLY)
|
|
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
|
|
uint8_t *buf, int len, int is_write)
|
|
{
|
|
int l, flags;
|
|
target_ulong page;
|
|
void * p;
|
|
|
|
while (len > 0) {
|
|
page = addr & TARGET_PAGE_MASK;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
flags = page_get_flags(page);
|
|
if (!(flags & PAGE_VALID))
|
|
return -1;
|
|
if (is_write) {
|
|
if (!(flags & PAGE_WRITE))
|
|
return -1;
|
|
/* XXX: this code should not depend on lock_user */
|
|
if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
|
|
return -1;
|
|
memcpy(p, buf, l);
|
|
unlock_user(p, addr, l);
|
|
} else {
|
|
if (!(flags & PAGE_READ))
|
|
return -1;
|
|
/* XXX: this code should not depend on lock_user */
|
|
if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
|
|
return -1;
|
|
memcpy(buf, p, l);
|
|
unlock_user(p, addr, 0);
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
|
|
hwaddr length)
|
|
{
|
|
uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
|
|
addr += memory_region_get_ram_addr(mr);
|
|
|
|
/* No early return if dirty_log_mask is or becomes 0, because
|
|
* cpu_physical_memory_set_dirty_range will still call
|
|
* xen_modified_memory.
|
|
*/
|
|
if (dirty_log_mask) {
|
|
dirty_log_mask =
|
|
cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
|
|
}
|
|
if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
|
|
tb_invalidate_phys_range(addr, addr + length);
|
|
dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
|
|
}
|
|
cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
|
|
}
|
|
|
|
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
|
|
{
|
|
unsigned access_size_max = mr->ops->valid.max_access_size;
|
|
|
|
/* Regions are assumed to support 1-4 byte accesses unless
|
|
otherwise specified. */
|
|
if (access_size_max == 0) {
|
|
access_size_max = 4;
|
|
}
|
|
|
|
/* Bound the maximum access by the alignment of the address. */
|
|
if (!mr->ops->impl.unaligned) {
|
|
unsigned align_size_max = addr & -addr;
|
|
if (align_size_max != 0 && align_size_max < access_size_max) {
|
|
access_size_max = align_size_max;
|
|
}
|
|
}
|
|
|
|
/* Don't attempt accesses larger than the maximum. */
|
|
if (l > access_size_max) {
|
|
l = access_size_max;
|
|
}
|
|
l = pow2floor(l);
|
|
|
|
return l;
|
|
}
|
|
|
|
static bool prepare_mmio_access(MemoryRegion *mr)
|
|
{
|
|
bool unlocked = !qemu_mutex_iothread_locked();
|
|
bool release_lock = false;
|
|
|
|
if (unlocked && mr->global_locking) {
|
|
qemu_mutex_lock_iothread();
|
|
unlocked = false;
|
|
release_lock = true;
|
|
}
|
|
if (mr->flush_coalesced_mmio) {
|
|
if (unlocked) {
|
|
qemu_mutex_lock_iothread();
|
|
}
|
|
qemu_flush_coalesced_mmio_buffer();
|
|
if (unlocked) {
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
}
|
|
|
|
return release_lock;
|
|
}
|
|
|
|
/* Called within RCU critical section. */
|
|
static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs,
|
|
const uint8_t *buf,
|
|
int len, hwaddr addr1,
|
|
hwaddr l, MemoryRegion *mr)
|
|
{
|
|
uint8_t *ptr;
|
|
uint64_t val;
|
|
MemTxResult result = MEMTX_OK;
|
|
bool release_lock = false;
|
|
|
|
for (;;) {
|
|
if (!memory_access_is_direct(mr, true)) {
|
|
release_lock |= prepare_mmio_access(mr);
|
|
l = memory_access_size(mr, l, addr1);
|
|
/* XXX: could force current_cpu to NULL to avoid
|
|
potential bugs */
|
|
switch (l) {
|
|
case 8:
|
|
/* 64 bit write access */
|
|
val = ldq_p(buf);
|
|
result |= memory_region_dispatch_write(mr, addr1, val, 8,
|
|
attrs);
|
|
break;
|
|
case 4:
|
|
/* 32 bit write access */
|
|
val = ldl_p(buf);
|
|
result |= memory_region_dispatch_write(mr, addr1, val, 4,
|
|
attrs);
|
|
break;
|
|
case 2:
|
|
/* 16 bit write access */
|
|
val = lduw_p(buf);
|
|
result |= memory_region_dispatch_write(mr, addr1, val, 2,
|
|
attrs);
|
|
break;
|
|
case 1:
|
|
/* 8 bit write access */
|
|
val = ldub_p(buf);
|
|
result |= memory_region_dispatch_write(mr, addr1, val, 1,
|
|
attrs);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
|
|
memcpy(ptr, buf, l);
|
|
invalidate_and_set_dirty(mr, addr1, l);
|
|
}
|
|
|
|
if (release_lock) {
|
|
qemu_mutex_unlock_iothread();
|
|
release_lock = false;
|
|
}
|
|
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
|
|
if (!len) {
|
|
break;
|
|
}
|
|
|
|
l = len;
|
|
mr = address_space_translate(as, addr, &addr1, &l, true);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
|
|
const uint8_t *buf, int len)
|
|
{
|
|
hwaddr l;
|
|
hwaddr addr1;
|
|
MemoryRegion *mr;
|
|
MemTxResult result = MEMTX_OK;
|
|
|
|
if (len > 0) {
|
|
rcu_read_lock();
|
|
l = len;
|
|
mr = address_space_translate(as, addr, &addr1, &l, true);
|
|
result = address_space_write_continue(as, addr, attrs, buf, len,
|
|
addr1, l, mr);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Called within RCU critical section. */
|
|
MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs, uint8_t *buf,
|
|
int len, hwaddr addr1, hwaddr l,
|
|
MemoryRegion *mr)
|
|
{
|
|
uint8_t *ptr;
|
|
uint64_t val;
|
|
MemTxResult result = MEMTX_OK;
|
|
bool release_lock = false;
|
|
|
|
for (;;) {
|
|
if (!memory_access_is_direct(mr, false)) {
|
|
/* I/O case */
|
|
release_lock |= prepare_mmio_access(mr);
|
|
l = memory_access_size(mr, l, addr1);
|
|
switch (l) {
|
|
case 8:
|
|
/* 64 bit read access */
|
|
result |= memory_region_dispatch_read(mr, addr1, &val, 8,
|
|
attrs);
|
|
stq_p(buf, val);
|
|
break;
|
|
case 4:
|
|
/* 32 bit read access */
|
|
result |= memory_region_dispatch_read(mr, addr1, &val, 4,
|
|
attrs);
|
|
stl_p(buf, val);
|
|
break;
|
|
case 2:
|
|
/* 16 bit read access */
|
|
result |= memory_region_dispatch_read(mr, addr1, &val, 2,
|
|
attrs);
|
|
stw_p(buf, val);
|
|
break;
|
|
case 1:
|
|
/* 8 bit read access */
|
|
result |= memory_region_dispatch_read(mr, addr1, &val, 1,
|
|
attrs);
|
|
stb_p(buf, val);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
|
|
memcpy(buf, ptr, l);
|
|
}
|
|
|
|
if (release_lock) {
|
|
qemu_mutex_unlock_iothread();
|
|
release_lock = false;
|
|
}
|
|
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
|
|
if (!len) {
|
|
break;
|
|
}
|
|
|
|
l = len;
|
|
mr = address_space_translate(as, addr, &addr1, &l, false);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs, uint8_t *buf, int len)
|
|
{
|
|
hwaddr l;
|
|
hwaddr addr1;
|
|
MemoryRegion *mr;
|
|
MemTxResult result = MEMTX_OK;
|
|
|
|
if (len > 0) {
|
|
rcu_read_lock();
|
|
l = len;
|
|
mr = address_space_translate(as, addr, &addr1, &l, false);
|
|
result = address_space_read_continue(as, addr, attrs, buf, len,
|
|
addr1, l, mr);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
|
|
uint8_t *buf, int len, bool is_write)
|
|
{
|
|
if (is_write) {
|
|
return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
|
|
} else {
|
|
return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
|
|
}
|
|
}
|
|
|
|
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
|
|
int len, int is_write)
|
|
{
|
|
address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
|
|
buf, len, is_write);
|
|
}
|
|
|
|
enum write_rom_type {
|
|
WRITE_DATA,
|
|
FLUSH_CACHE,
|
|
};
|
|
|
|
static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
|
|
hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
|
|
{
|
|
hwaddr l;
|
|
uint8_t *ptr;
|
|
hwaddr addr1;
|
|
MemoryRegion *mr;
|
|
|
|
rcu_read_lock();
|
|
while (len > 0) {
|
|
l = len;
|
|
mr = address_space_translate(as, addr, &addr1, &l, true);
|
|
|
|
if (!(memory_region_is_ram(mr) ||
|
|
memory_region_is_romd(mr))) {
|
|
l = memory_access_size(mr, l, addr1);
|
|
} else {
|
|
/* ROM/RAM case */
|
|
ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
|
|
switch (type) {
|
|
case WRITE_DATA:
|
|
memcpy(ptr, buf, l);
|
|
invalidate_and_set_dirty(mr, addr1, l);
|
|
break;
|
|
case FLUSH_CACHE:
|
|
flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
|
|
break;
|
|
}
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* used for ROM loading : can write in RAM and ROM */
|
|
void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
|
|
const uint8_t *buf, int len)
|
|
{
|
|
cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
|
|
}
|
|
|
|
void cpu_flush_icache_range(hwaddr start, int len)
|
|
{
|
|
/*
|
|
* This function should do the same thing as an icache flush that was
|
|
* triggered from within the guest. For TCG we are always cache coherent,
|
|
* so there is no need to flush anything. For KVM / Xen we need to flush
|
|
* the host's instruction cache at least.
|
|
*/
|
|
if (tcg_enabled()) {
|
|
return;
|
|
}
|
|
|
|
cpu_physical_memory_write_rom_internal(&address_space_memory,
|
|
start, NULL, len, FLUSH_CACHE);
|
|
}
|
|
|
|
typedef struct {
|
|
MemoryRegion *mr;
|
|
void *buffer;
|
|
hwaddr addr;
|
|
hwaddr len;
|
|
bool in_use;
|
|
} BounceBuffer;
|
|
|
|
static BounceBuffer bounce;
|
|
|
|
typedef struct MapClient {
|
|
QEMUBH *bh;
|
|
QLIST_ENTRY(MapClient) link;
|
|
} MapClient;
|
|
|
|
QemuMutex map_client_list_lock;
|
|
static QLIST_HEAD(map_client_list, MapClient) map_client_list
|
|
= QLIST_HEAD_INITIALIZER(map_client_list);
|
|
|
|
static void cpu_unregister_map_client_do(MapClient *client)
|
|
{
|
|
QLIST_REMOVE(client, link);
|
|
g_free(client);
|
|
}
|
|
|
|
static void cpu_notify_map_clients_locked(void)
|
|
{
|
|
MapClient *client;
|
|
|
|
while (!QLIST_EMPTY(&map_client_list)) {
|
|
client = QLIST_FIRST(&map_client_list);
|
|
qemu_bh_schedule(client->bh);
|
|
cpu_unregister_map_client_do(client);
|
|
}
|
|
}
|
|
|
|
void cpu_register_map_client(QEMUBH *bh)
|
|
{
|
|
MapClient *client = g_malloc(sizeof(*client));
|
|
|
|
qemu_mutex_lock(&map_client_list_lock);
|
|
client->bh = bh;
|
|
QLIST_INSERT_HEAD(&map_client_list, client, link);
|
|
if (!atomic_read(&bounce.in_use)) {
|
|
cpu_notify_map_clients_locked();
|
|
}
|
|
qemu_mutex_unlock(&map_client_list_lock);
|
|
}
|
|
|
|
void cpu_exec_init_all(void)
|
|
{
|
|
qemu_mutex_init(&ram_list.mutex);
|
|
io_mem_init();
|
|
memory_map_init();
|
|
qemu_mutex_init(&map_client_list_lock);
|
|
}
|
|
|
|
void cpu_unregister_map_client(QEMUBH *bh)
|
|
{
|
|
MapClient *client;
|
|
|
|
qemu_mutex_lock(&map_client_list_lock);
|
|
QLIST_FOREACH(client, &map_client_list, link) {
|
|
if (client->bh == bh) {
|
|
cpu_unregister_map_client_do(client);
|
|
break;
|
|
}
|
|
}
|
|
qemu_mutex_unlock(&map_client_list_lock);
|
|
}
|
|
|
|
static void cpu_notify_map_clients(void)
|
|
{
|
|
qemu_mutex_lock(&map_client_list_lock);
|
|
cpu_notify_map_clients_locked();
|
|
qemu_mutex_unlock(&map_client_list_lock);
|
|
}
|
|
|
|
bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
|
|
{
|
|
MemoryRegion *mr;
|
|
hwaddr l, xlat;
|
|
|
|
rcu_read_lock();
|
|
while (len > 0) {
|
|
l = len;
|
|
mr = address_space_translate(as, addr, &xlat, &l, is_write);
|
|
if (!memory_access_is_direct(mr, is_write)) {
|
|
l = memory_access_size(mr, l, addr);
|
|
if (!memory_region_access_valid(mr, xlat, l, is_write)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
len -= l;
|
|
addr += l;
|
|
}
|
|
rcu_read_unlock();
|
|
return true;
|
|
}
|
|
|
|
/* Map a physical memory region into a host virtual address.
|
|
* May map a subset of the requested range, given by and returned in *plen.
|
|
* May return NULL if resources needed to perform the mapping are exhausted.
|
|
* Use only for reads OR writes - not for read-modify-write operations.
|
|
* Use cpu_register_map_client() to know when retrying the map operation is
|
|
* likely to succeed.
|
|
*/
|
|
void *address_space_map(AddressSpace *as,
|
|
hwaddr addr,
|
|
hwaddr *plen,
|
|
bool is_write)
|
|
{
|
|
hwaddr len = *plen;
|
|
hwaddr done = 0;
|
|
hwaddr l, xlat, base;
|
|
MemoryRegion *mr, *this_mr;
|
|
void *ptr;
|
|
|
|
if (len == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
l = len;
|
|
rcu_read_lock();
|
|
mr = address_space_translate(as, addr, &xlat, &l, is_write);
|
|
|
|
if (!memory_access_is_direct(mr, is_write)) {
|
|
if (atomic_xchg(&bounce.in_use, true)) {
|
|
rcu_read_unlock();
|
|
return NULL;
|
|
}
|
|
/* Avoid unbounded allocations */
|
|
l = MIN(l, TARGET_PAGE_SIZE);
|
|
bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
|
|
bounce.addr = addr;
|
|
bounce.len = l;
|
|
|
|
memory_region_ref(mr);
|
|
bounce.mr = mr;
|
|
if (!is_write) {
|
|
address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
|
|
bounce.buffer, l);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
*plen = l;
|
|
return bounce.buffer;
|
|
}
|
|
|
|
base = xlat;
|
|
|
|
for (;;) {
|
|
len -= l;
|
|
addr += l;
|
|
done += l;
|
|
if (len == 0) {
|
|
break;
|
|
}
|
|
|
|
l = len;
|
|
this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
|
|
if (this_mr != mr || xlat != base + done) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
memory_region_ref(mr);
|
|
*plen = done;
|
|
ptr = qemu_ram_ptr_length(mr->ram_block, base, plen);
|
|
rcu_read_unlock();
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/* Unmaps a memory region previously mapped by address_space_map().
|
|
* Will also mark the memory as dirty if is_write == 1. access_len gives
|
|
* the amount of memory that was actually read or written by the caller.
|
|
*/
|
|
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
|
|
int is_write, hwaddr access_len)
|
|
{
|
|
if (buffer != bounce.buffer) {
|
|
MemoryRegion *mr;
|
|
ram_addr_t addr1;
|
|
|
|
mr = memory_region_from_host(buffer, &addr1);
|
|
assert(mr != NULL);
|
|
if (is_write) {
|
|
invalidate_and_set_dirty(mr, addr1, access_len);
|
|
}
|
|
if (xen_enabled()) {
|
|
xen_invalidate_map_cache_entry(buffer);
|
|
}
|
|
memory_region_unref(mr);
|
|
return;
|
|
}
|
|
if (is_write) {
|
|
address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
|
|
bounce.buffer, access_len);
|
|
}
|
|
qemu_vfree(bounce.buffer);
|
|
bounce.buffer = NULL;
|
|
memory_region_unref(bounce.mr);
|
|
atomic_mb_set(&bounce.in_use, false);
|
|
cpu_notify_map_clients();
|
|
}
|
|
|
|
void *cpu_physical_memory_map(hwaddr addr,
|
|
hwaddr *plen,
|
|
int is_write)
|
|
{
|
|
return address_space_map(&address_space_memory, addr, plen, is_write);
|
|
}
|
|
|
|
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
|
|
int is_write, hwaddr access_len)
|
|
{
|
|
return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs,
|
|
MemTxResult *result,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
uint64_t val;
|
|
MemoryRegion *mr;
|
|
hwaddr l = 4;
|
|
hwaddr addr1;
|
|
MemTxResult r;
|
|
bool release_lock = false;
|
|
|
|
rcu_read_lock();
|
|
mr = address_space_translate(as, addr, &addr1, &l, false);
|
|
if (l < 4 || !memory_access_is_direct(mr, false)) {
|
|
release_lock |= prepare_mmio_access(mr);
|
|
|
|
/* I/O case */
|
|
r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap32(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap32(val);
|
|
}
|
|
#endif
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
val = ldl_le_p(ptr);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
val = ldl_be_p(ptr);
|
|
break;
|
|
default:
|
|
val = ldl_p(ptr);
|
|
break;
|
|
}
|
|
r = MEMTX_OK;
|
|
}
|
|
if (result) {
|
|
*result = r;
|
|
}
|
|
if (release_lock) {
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
rcu_read_unlock();
|
|
return val;
|
|
}
|
|
|
|
uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
return address_space_ldl_internal(as, addr, attrs, result,
|
|
DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
return address_space_ldl_internal(as, addr, attrs, result,
|
|
DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
return address_space_ldl_internal(as, addr, attrs, result,
|
|
DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs,
|
|
MemTxResult *result,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
uint64_t val;
|
|
MemoryRegion *mr;
|
|
hwaddr l = 8;
|
|
hwaddr addr1;
|
|
MemTxResult r;
|
|
bool release_lock = false;
|
|
|
|
rcu_read_lock();
|
|
mr = address_space_translate(as, addr, &addr1, &l,
|
|
false);
|
|
if (l < 8 || !memory_access_is_direct(mr, false)) {
|
|
release_lock |= prepare_mmio_access(mr);
|
|
|
|
/* I/O case */
|
|
r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap64(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap64(val);
|
|
}
|
|
#endif
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
val = ldq_le_p(ptr);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
val = ldq_be_p(ptr);
|
|
break;
|
|
default:
|
|
val = ldq_p(ptr);
|
|
break;
|
|
}
|
|
r = MEMTX_OK;
|
|
}
|
|
if (result) {
|
|
*result = r;
|
|
}
|
|
if (release_lock) {
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
rcu_read_unlock();
|
|
return val;
|
|
}
|
|
|
|
uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
return address_space_ldq_internal(as, addr, attrs, result,
|
|
DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
return address_space_ldq_internal(as, addr, attrs, result,
|
|
DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
return address_space_ldq_internal(as, addr, attrs, result,
|
|
DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
/* XXX: optimize */
|
|
uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
uint8_t val;
|
|
MemTxResult r;
|
|
|
|
r = address_space_rw(as, addr, attrs, &val, 1, 0);
|
|
if (result) {
|
|
*result = r;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline uint32_t address_space_lduw_internal(AddressSpace *as,
|
|
hwaddr addr,
|
|
MemTxAttrs attrs,
|
|
MemTxResult *result,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
uint64_t val;
|
|
MemoryRegion *mr;
|
|
hwaddr l = 2;
|
|
hwaddr addr1;
|
|
MemTxResult r;
|
|
bool release_lock = false;
|
|
|
|
rcu_read_lock();
|
|
mr = address_space_translate(as, addr, &addr1, &l,
|
|
false);
|
|
if (l < 2 || !memory_access_is_direct(mr, false)) {
|
|
release_lock |= prepare_mmio_access(mr);
|
|
|
|
/* I/O case */
|
|
r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap16(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap16(val);
|
|
}
|
|
#endif
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
val = lduw_le_p(ptr);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
val = lduw_be_p(ptr);
|
|
break;
|
|
default:
|
|
val = lduw_p(ptr);
|
|
break;
|
|
}
|
|
r = MEMTX_OK;
|
|
}
|
|
if (result) {
|
|
*result = r;
|
|
}
|
|
if (release_lock) {
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
rcu_read_unlock();
|
|
return val;
|
|
}
|
|
|
|
uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
return address_space_lduw_internal(as, addr, attrs, result,
|
|
DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
return address_space_lduw_internal(as, addr, attrs, result,
|
|
DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
return address_space_lduw_internal(as, addr, attrs, result,
|
|
DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
|
|
{
|
|
return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
/* warning: addr must be aligned. The ram page is not masked as dirty
|
|
and the code inside is not invalidated. It is useful if the dirty
|
|
bits are used to track modified PTEs */
|
|
void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
uint8_t *ptr;
|
|
MemoryRegion *mr;
|
|
hwaddr l = 4;
|
|
hwaddr addr1;
|
|
MemTxResult r;
|
|
uint8_t dirty_log_mask;
|
|
bool release_lock = false;
|
|
|
|
rcu_read_lock();
|
|
mr = address_space_translate(as, addr, &addr1, &l,
|
|
true);
|
|
if (l < 4 || !memory_access_is_direct(mr, true)) {
|
|
release_lock |= prepare_mmio_access(mr);
|
|
|
|
r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
|
|
} else {
|
|
ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
|
|
stl_p(ptr, val);
|
|
|
|
dirty_log_mask = memory_region_get_dirty_log_mask(mr);
|
|
dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
|
|
cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
|
|
4, dirty_log_mask);
|
|
r = MEMTX_OK;
|
|
}
|
|
if (result) {
|
|
*result = r;
|
|
}
|
|
if (release_lock) {
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline void address_space_stl_internal(AddressSpace *as,
|
|
hwaddr addr, uint32_t val,
|
|
MemTxAttrs attrs,
|
|
MemTxResult *result,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
MemoryRegion *mr;
|
|
hwaddr l = 4;
|
|
hwaddr addr1;
|
|
MemTxResult r;
|
|
bool release_lock = false;
|
|
|
|
rcu_read_lock();
|
|
mr = address_space_translate(as, addr, &addr1, &l,
|
|
true);
|
|
if (l < 4 || !memory_access_is_direct(mr, true)) {
|
|
release_lock |= prepare_mmio_access(mr);
|
|
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap32(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap32(val);
|
|
}
|
|
#endif
|
|
r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
stl_le_p(ptr, val);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
stl_be_p(ptr, val);
|
|
break;
|
|
default:
|
|
stl_p(ptr, val);
|
|
break;
|
|
}
|
|
invalidate_and_set_dirty(mr, addr1, 4);
|
|
r = MEMTX_OK;
|
|
}
|
|
if (result) {
|
|
*result = r;
|
|
}
|
|
if (release_lock) {
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
address_space_stl_internal(as, addr, val, attrs, result,
|
|
DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
address_space_stl_internal(as, addr, val, attrs, result,
|
|
DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
address_space_stl_internal(as, addr, val, attrs, result,
|
|
DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
/* XXX: optimize */
|
|
void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
uint8_t v = val;
|
|
MemTxResult r;
|
|
|
|
r = address_space_rw(as, addr, attrs, &v, 1, 1);
|
|
if (result) {
|
|
*result = r;
|
|
}
|
|
}
|
|
|
|
void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline void address_space_stw_internal(AddressSpace *as,
|
|
hwaddr addr, uint32_t val,
|
|
MemTxAttrs attrs,
|
|
MemTxResult *result,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
MemoryRegion *mr;
|
|
hwaddr l = 2;
|
|
hwaddr addr1;
|
|
MemTxResult r;
|
|
bool release_lock = false;
|
|
|
|
rcu_read_lock();
|
|
mr = address_space_translate(as, addr, &addr1, &l, true);
|
|
if (l < 2 || !memory_access_is_direct(mr, true)) {
|
|
release_lock |= prepare_mmio_access(mr);
|
|
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap16(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap16(val);
|
|
}
|
|
#endif
|
|
r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
stw_le_p(ptr, val);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
stw_be_p(ptr, val);
|
|
break;
|
|
default:
|
|
stw_p(ptr, val);
|
|
break;
|
|
}
|
|
invalidate_and_set_dirty(mr, addr1, 2);
|
|
r = MEMTX_OK;
|
|
}
|
|
if (result) {
|
|
*result = r;
|
|
}
|
|
if (release_lock) {
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
address_space_stw_internal(as, addr, val, attrs, result,
|
|
DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
address_space_stw_internal(as, addr, val, attrs, result,
|
|
DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
address_space_stw_internal(as, addr, val, attrs, result,
|
|
DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
/* XXX: optimize */
|
|
void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
MemTxResult r;
|
|
val = tswap64(val);
|
|
r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
|
|
if (result) {
|
|
*result = r;
|
|
}
|
|
}
|
|
|
|
void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
MemTxResult r;
|
|
val = cpu_to_le64(val);
|
|
r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
|
|
if (result) {
|
|
*result = r;
|
|
}
|
|
}
|
|
void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
|
|
MemTxAttrs attrs, MemTxResult *result)
|
|
{
|
|
MemTxResult r;
|
|
val = cpu_to_be64(val);
|
|
r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
|
|
if (result) {
|
|
*result = r;
|
|
}
|
|
}
|
|
|
|
void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
|
|
{
|
|
address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
|
|
{
|
|
address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
|
|
{
|
|
address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
/* virtual memory access for debug (includes writing to ROM) */
|
|
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
|
|
uint8_t *buf, int len, int is_write)
|
|
{
|
|
int l;
|
|
hwaddr phys_addr;
|
|
target_ulong page;
|
|
|
|
while (len > 0) {
|
|
int asidx;
|
|
MemTxAttrs attrs;
|
|
|
|
page = addr & TARGET_PAGE_MASK;
|
|
phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
|
|
asidx = cpu_asidx_from_attrs(cpu, attrs);
|
|
/* if no physical page mapped, return an error */
|
|
if (phys_addr == -1)
|
|
return -1;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
phys_addr += (addr & ~TARGET_PAGE_MASK);
|
|
if (is_write) {
|
|
cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
|
|
phys_addr, buf, l);
|
|
} else {
|
|
address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
|
|
MEMTXATTRS_UNSPECIFIED,
|
|
buf, l, 0);
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allows code that needs to deal with migration bitmaps etc to still be built
|
|
* target independent.
|
|
*/
|
|
size_t qemu_target_page_bits(void)
|
|
{
|
|
return TARGET_PAGE_BITS;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* A helper function for the _utterly broken_ virtio device model to find out if
|
|
* it's running on a big endian machine. Don't do this at home kids!
|
|
*/
|
|
bool target_words_bigendian(void);
|
|
bool target_words_bigendian(void)
|
|
{
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
bool cpu_physical_memory_is_io(hwaddr phys_addr)
|
|
{
|
|
MemoryRegion*mr;
|
|
hwaddr l = 1;
|
|
bool res;
|
|
|
|
rcu_read_lock();
|
|
mr = address_space_translate(&address_space_memory,
|
|
phys_addr, &phys_addr, &l, false);
|
|
|
|
res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
|
|
rcu_read_unlock();
|
|
return res;
|
|
}
|
|
|
|
int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
|
|
{
|
|
RAMBlock *block;
|
|
int ret = 0;
|
|
|
|
rcu_read_lock();
|
|
QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
|
|
ret = func(block->idstr, block->host, block->offset,
|
|
block->used_length, opaque);
|
|
if (ret) {
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
#endif
|