qemu-e2k/hw/intc/arm_gic_kvm.c

620 lines
19 KiB
C

/*
* ARM Generic Interrupt Controller using KVM in-kernel support
*
* Copyright (c) 2012 Linaro Limited
* Written by Peter Maydell
* Save/Restore logic added by Christoffer Dall.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/module.h"
#include "migration/blocker.h"
#include "sysemu/kvm.h"
#include "kvm_arm.h"
#include "gic_internal.h"
#include "vgic_common.h"
#include "qom/object.h"
#define TYPE_KVM_ARM_GIC "kvm-arm-gic"
typedef struct KVMARMGICClass KVMARMGICClass;
/* This is reusing the GICState typedef from ARM_GIC_COMMON */
DECLARE_OBJ_CHECKERS(GICState, KVMARMGICClass,
KVM_ARM_GIC, TYPE_KVM_ARM_GIC)
struct KVMARMGICClass {
ARMGICCommonClass parent_class;
DeviceRealize parent_realize;
void (*parent_reset)(DeviceState *dev);
};
void kvm_arm_gic_set_irq(uint32_t num_irq, int irq, int level)
{
/* Meaning of the 'irq' parameter:
* [0..N-1] : external interrupts
* [N..N+31] : PPI (internal) interrupts for CPU 0
* [N+32..N+63] : PPI (internal interrupts for CPU 1
* ...
* Convert this to the kernel's desired encoding, which
* has separate fields in the irq number for type,
* CPU number and interrupt number.
*/
int irqtype, cpu;
if (irq < (num_irq - GIC_INTERNAL)) {
/* External interrupt. The kernel numbers these like the GIC
* hardware, with external interrupt IDs starting after the
* internal ones.
*/
irqtype = KVM_ARM_IRQ_TYPE_SPI;
cpu = 0;
irq += GIC_INTERNAL;
} else {
/* Internal interrupt: decode into (cpu, interrupt id) */
irqtype = KVM_ARM_IRQ_TYPE_PPI;
irq -= (num_irq - GIC_INTERNAL);
cpu = irq / GIC_INTERNAL;
irq %= GIC_INTERNAL;
}
kvm_arm_set_irq(cpu, irqtype, irq, !!level);
}
static void kvm_arm_gicv2_set_irq(void *opaque, int irq, int level)
{
GICState *s = (GICState *)opaque;
kvm_arm_gic_set_irq(s->num_irq, irq, level);
}
static bool kvm_arm_gic_can_save_restore(GICState *s)
{
return s->dev_fd >= 0;
}
#define KVM_VGIC_ATTR(offset, cpu) \
((((uint64_t)(cpu) << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & \
KVM_DEV_ARM_VGIC_CPUID_MASK) | \
(((uint64_t)(offset) << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & \
KVM_DEV_ARM_VGIC_OFFSET_MASK))
static void kvm_gicd_access(GICState *s, int offset, int cpu,
uint32_t *val, bool write)
{
kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort);
}
static void kvm_gicc_access(GICState *s, int offset, int cpu,
uint32_t *val, bool write)
{
kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_REGS,
KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort);
}
#define for_each_irq_reg(_ctr, _max_irq, _field_width) \
for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++)
/*
* Translate from the in-kernel field for an IRQ value to/from the qemu
* representation.
*/
typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu,
uint32_t *field, bool to_kernel);
/* synthetic translate function used for clear/set registers to completely
* clear a setting using a clear-register before setting the remaining bits
* using a set-register */
static void translate_clear(GICState *s, int irq, int cpu,
uint32_t *field, bool to_kernel)
{
if (to_kernel) {
*field = ~0;
} else {
/* does not make sense: qemu model doesn't use set/clear regs */
abort();
}
}
static void translate_group(GICState *s, int irq, int cpu,
uint32_t *field, bool to_kernel)
{
int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
if (to_kernel) {
*field = GIC_DIST_TEST_GROUP(irq, cm);
} else {
if (*field & 1) {
GIC_DIST_SET_GROUP(irq, cm);
}
}
}
static void translate_enabled(GICState *s, int irq, int cpu,
uint32_t *field, bool to_kernel)
{
int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
if (to_kernel) {
*field = GIC_DIST_TEST_ENABLED(irq, cm);
} else {
if (*field & 1) {
GIC_DIST_SET_ENABLED(irq, cm);
}
}
}
static void translate_pending(GICState *s, int irq, int cpu,
uint32_t *field, bool to_kernel)
{
int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
if (to_kernel) {
*field = gic_test_pending(s, irq, cm);
} else {
if (*field & 1) {
GIC_DIST_SET_PENDING(irq, cm);
/* TODO: Capture is level-line is held high in the kernel */
}
}
}
static void translate_active(GICState *s, int irq, int cpu,
uint32_t *field, bool to_kernel)
{
int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
if (to_kernel) {
*field = GIC_DIST_TEST_ACTIVE(irq, cm);
} else {
if (*field & 1) {
GIC_DIST_SET_ACTIVE(irq, cm);
}
}
}
static void translate_trigger(GICState *s, int irq, int cpu,
uint32_t *field, bool to_kernel)
{
if (to_kernel) {
*field = (GIC_DIST_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0;
} else {
if (*field & 0x2) {
GIC_DIST_SET_EDGE_TRIGGER(irq);
}
}
}
static void translate_priority(GICState *s, int irq, int cpu,
uint32_t *field, bool to_kernel)
{
if (to_kernel) {
*field = GIC_DIST_GET_PRIORITY(irq, cpu) & 0xff;
} else {
gic_dist_set_priority(s, cpu, irq,
*field & 0xff, MEMTXATTRS_UNSPECIFIED);
}
}
static void translate_targets(GICState *s, int irq, int cpu,
uint32_t *field, bool to_kernel)
{
if (to_kernel) {
*field = s->irq_target[irq] & 0xff;
} else {
s->irq_target[irq] = *field & 0xff;
}
}
static void translate_sgisource(GICState *s, int irq, int cpu,
uint32_t *field, bool to_kernel)
{
if (to_kernel) {
*field = s->sgi_pending[irq][cpu] & 0xff;
} else {
s->sgi_pending[irq][cpu] = *field & 0xff;
}
}
/* Read a register group from the kernel VGIC */
static void kvm_dist_get(GICState *s, uint32_t offset, int width,
int maxirq, vgic_translate_fn translate_fn)
{
uint32_t reg;
int i;
int j;
int irq;
int cpu;
int regsz = 32 / width; /* irqs per kernel register */
uint32_t field;
for_each_irq_reg(i, maxirq, width) {
irq = i * regsz;
cpu = 0;
while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
kvm_gicd_access(s, offset, cpu, &reg, false);
for (j = 0; j < regsz; j++) {
field = extract32(reg, j * width, width);
translate_fn(s, irq + j, cpu, &field, false);
}
cpu++;
}
offset += 4;
}
}
/* Write a register group to the kernel VGIC */
static void kvm_dist_put(GICState *s, uint32_t offset, int width,
int maxirq, vgic_translate_fn translate_fn)
{
uint32_t reg;
int i;
int j;
int irq;
int cpu;
int regsz = 32 / width; /* irqs per kernel register */
uint32_t field;
for_each_irq_reg(i, maxirq, width) {
irq = i * regsz;
cpu = 0;
while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
reg = 0;
for (j = 0; j < regsz; j++) {
translate_fn(s, irq + j, cpu, &field, true);
reg = deposit32(reg, j * width, width, field);
}
kvm_gicd_access(s, offset, cpu, &reg, true);
cpu++;
}
offset += 4;
}
}
static void kvm_arm_gic_put(GICState *s)
{
uint32_t reg;
int i;
int cpu;
int num_cpu;
int num_irq;
/* Note: We do the restore in a slightly different order than the save
* (where the order doesn't matter and is simply ordered according to the
* register offset values */
/*****************************************************************
* Distributor State
*/
/* s->ctlr -> GICD_CTLR */
reg = s->ctlr;
kvm_gicd_access(s, 0x0, 0, &reg, true);
/* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */
kvm_gicd_access(s, 0x4, 0, &reg, false);
num_irq = ((reg & 0x1f) + 1) * 32;
num_cpu = ((reg & 0xe0) >> 5) + 1;
if (num_irq < s->num_irq) {
fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n",
s->num_irq, num_irq);
abort();
} else if (num_cpu != s->num_cpu) {
fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n",
s->num_cpu, num_cpu);
/* Did we not create the VCPUs in the kernel yet? */
abort();
}
/* TODO: Consider checking compatibility with the IIDR ? */
/* irq_state[n].enabled -> GICD_ISENABLERn */
kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear);
kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled);
/* irq_state[n].group -> GICD_IGROUPRn */
kvm_dist_put(s, 0x80, 1, s->num_irq, translate_group);
/* s->irq_target[irq] -> GICD_ITARGETSRn
* (restore targets before pending to ensure the pending state is set on
* the appropriate CPU interfaces in the kernel) */
kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets);
/* irq_state[n].trigger -> GICD_ICFGRn
* (restore configuration registers before pending IRQs so we treat
* level/edge correctly) */
kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger);
/* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */
kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear);
kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending);
/* irq_state[n].active -> GICD_ISACTIVERn */
kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear);
kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active);
/* s->priorityX[irq] -> ICD_IPRIORITYRn */
kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority);
/* s->sgi_pending -> ICD_CPENDSGIRn */
kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear);
kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource);
/*****************************************************************
* CPU Interface(s) State
*/
for (cpu = 0; cpu < s->num_cpu; cpu++) {
/* s->cpu_ctlr[cpu] -> GICC_CTLR */
reg = s->cpu_ctlr[cpu];
kvm_gicc_access(s, 0x00, cpu, &reg, true);
/* s->priority_mask[cpu] -> GICC_PMR */
reg = (s->priority_mask[cpu] & 0xff);
kvm_gicc_access(s, 0x04, cpu, &reg, true);
/* s->bpr[cpu] -> GICC_BPR */
reg = (s->bpr[cpu] & 0x7);
kvm_gicc_access(s, 0x08, cpu, &reg, true);
/* s->abpr[cpu] -> GICC_ABPR */
reg = (s->abpr[cpu] & 0x7);
kvm_gicc_access(s, 0x1c, cpu, &reg, true);
/* s->apr[n][cpu] -> GICC_APRn */
for (i = 0; i < 4; i++) {
reg = s->apr[i][cpu];
kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, true);
}
}
}
static void kvm_arm_gic_get(GICState *s)
{
uint32_t reg;
int i;
int cpu;
/*****************************************************************
* Distributor State
*/
/* GICD_CTLR -> s->ctlr */
kvm_gicd_access(s, 0x0, 0, &reg, false);
s->ctlr = reg;
/* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */
kvm_gicd_access(s, 0x4, 0, &reg, false);
s->num_irq = ((reg & 0x1f) + 1) * 32;
s->num_cpu = ((reg & 0xe0) >> 5) + 1;
if (s->num_irq > GIC_MAXIRQ) {
fprintf(stderr, "Too many IRQs reported from the kernel: %d\n",
s->num_irq);
abort();
}
/* GICD_IIDR -> ? */
kvm_gicd_access(s, 0x8, 0, &reg, false);
/* Clear all the IRQ settings */
for (i = 0; i < s->num_irq; i++) {
memset(&s->irq_state[i], 0, sizeof(s->irq_state[0]));
}
/* GICD_IGROUPRn -> irq_state[n].group */
kvm_dist_get(s, 0x80, 1, s->num_irq, translate_group);
/* GICD_ISENABLERn -> irq_state[n].enabled */
kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled);
/* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */
kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending);
/* GICD_ISACTIVERn -> irq_state[n].active */
kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active);
/* GICD_ICFRn -> irq_state[n].trigger */
kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger);
/* GICD_IPRIORITYRn -> s->priorityX[irq] */
kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority);
/* GICD_ITARGETSRn -> s->irq_target[irq] */
kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets);
/* GICD_CPENDSGIRn -> s->sgi_pending */
kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource);
/*****************************************************************
* CPU Interface(s) State
*/
for (cpu = 0; cpu < s->num_cpu; cpu++) {
/* GICC_CTLR -> s->cpu_ctlr[cpu] */
kvm_gicc_access(s, 0x00, cpu, &reg, false);
s->cpu_ctlr[cpu] = reg;
/* GICC_PMR -> s->priority_mask[cpu] */
kvm_gicc_access(s, 0x04, cpu, &reg, false);
s->priority_mask[cpu] = (reg & 0xff);
/* GICC_BPR -> s->bpr[cpu] */
kvm_gicc_access(s, 0x08, cpu, &reg, false);
s->bpr[cpu] = (reg & 0x7);
/* GICC_ABPR -> s->abpr[cpu] */
kvm_gicc_access(s, 0x1c, cpu, &reg, false);
s->abpr[cpu] = (reg & 0x7);
/* GICC_APRn -> s->apr[n][cpu] */
for (i = 0; i < 4; i++) {
kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, false);
s->apr[i][cpu] = reg;
}
}
}
static void kvm_arm_gic_reset(DeviceState *dev)
{
GICState *s = ARM_GIC_COMMON(dev);
KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
kgc->parent_reset(dev);
if (kvm_arm_gic_can_save_restore(s)) {
kvm_arm_gic_put(s);
}
}
static void kvm_arm_gic_realize(DeviceState *dev, Error **errp)
{
int i;
GICState *s = KVM_ARM_GIC(dev);
KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
Error *local_err = NULL;
int ret;
kgc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (s->security_extn) {
error_setg(errp, "the in-kernel VGIC does not implement the "
"security extensions");
return;
}
if (s->virt_extn) {
error_setg(errp, "the in-kernel VGIC does not implement the "
"virtualization extensions");
return;
}
if (!kvm_arm_gic_can_save_restore(s)) {
error_setg(&s->migration_blocker, "This operating system kernel does "
"not support vGICv2 migration");
if (migrate_add_blocker(s->migration_blocker, errp) < 0) {
error_free(s->migration_blocker);
return;
}
}
gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL, NULL);
for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) {
qemu_irq irq = qdev_get_gpio_in(dev, i);
kvm_irqchip_set_qemuirq_gsi(kvm_state, irq, i);
}
/* Try to create the device via the device control API */
s->dev_fd = -1;
ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false);
if (ret >= 0) {
s->dev_fd = ret;
/* Newstyle API is used, we may have attributes */
if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) {
uint32_t numirqs = s->num_irq;
kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0,
&numirqs, true, &error_abort);
}
/* Tell the kernel to complete VGIC initialization now */
if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
KVM_DEV_ARM_VGIC_CTRL_INIT)) {
kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true,
&error_abort);
}
} else if (kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) {
error_setg_errno(errp, -ret, "error creating in-kernel VGIC");
error_append_hint(errp,
"Perhaps the host CPU does not support GICv2?\n");
} else if (ret != -ENODEV && ret != -ENOTSUP) {
/*
* Very ancient kernel without KVM_CAP_DEVICE_CTRL: assume that
* ENODEV or ENOTSUP mean "can't create GICv2 with KVM_CREATE_DEVICE",
* and that we will get a GICv2 via KVM_CREATE_IRQCHIP.
*/
error_setg_errno(errp, -ret, "error creating in-kernel VGIC");
return;
}
/* Distributor */
kvm_arm_register_device(&s->iomem,
(KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
| KVM_VGIC_V2_ADDR_TYPE_DIST,
KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V2_ADDR_TYPE_DIST,
s->dev_fd, 0);
/* CPU interface for current core. Unlike arm_gic, we don't
* provide the "interface for core #N" memory regions, because
* cores with a VGIC don't have those.
*/
kvm_arm_register_device(&s->cpuiomem[0],
(KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
| KVM_VGIC_V2_ADDR_TYPE_CPU,
KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V2_ADDR_TYPE_CPU,
s->dev_fd, 0);
if (kvm_has_gsi_routing()) {
/* set up irq routing */
for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
}
kvm_gsi_routing_allowed = true;
kvm_irqchip_commit_routes(kvm_state);
}
}
static void kvm_arm_gic_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass);
KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass);
agcc->pre_save = kvm_arm_gic_get;
agcc->post_load = kvm_arm_gic_put;
device_class_set_parent_realize(dc, kvm_arm_gic_realize,
&kgc->parent_realize);
device_class_set_parent_reset(dc, kvm_arm_gic_reset, &kgc->parent_reset);
}
static const TypeInfo kvm_arm_gic_info = {
.name = TYPE_KVM_ARM_GIC,
.parent = TYPE_ARM_GIC_COMMON,
.instance_size = sizeof(GICState),
.class_init = kvm_arm_gic_class_init,
.class_size = sizeof(KVMARMGICClass),
};
static void kvm_arm_gic_register_types(void)
{
type_register_static(&kvm_arm_gic_info);
}
type_init(kvm_arm_gic_register_types)