131f387d74
Most of the syscall code is config agnostic aside from the size of target_ulong. In preparation for the next patch move the final bits of specialisation into the appropriate user and softmmu helpers. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20230302190846.2593720-26-alex.bennee@linaro.org> Message-Id: <20230303025805.625589-26-richard.henderson@linaro.org>
652 lines
16 KiB
C
652 lines
16 KiB
C
/*
|
|
* gdb server stub - softmmu specific bits
|
|
*
|
|
* Debug integration depends on support from the individual
|
|
* accelerators so most of this involves calling the ops helpers.
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
* Copyright (c) 2022 Linaro Ltd
|
|
*
|
|
* SPDX-License-Identifier: LGPL-2.0+
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qemu/cutils.h"
|
|
#include "exec/gdbstub.h"
|
|
#include "gdbstub/syscalls.h"
|
|
#include "exec/hwaddr.h"
|
|
#include "exec/tb-flush.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "sysemu/replay.h"
|
|
#include "hw/core/cpu.h"
|
|
#include "hw/cpu/cluster.h"
|
|
#include "hw/boards.h"
|
|
#include "chardev/char.h"
|
|
#include "chardev/char-fe.h"
|
|
#include "monitor/monitor.h"
|
|
#include "trace.h"
|
|
#include "internals.h"
|
|
|
|
/* System emulation specific state */
|
|
typedef struct {
|
|
CharBackend chr;
|
|
Chardev *mon_chr;
|
|
} GDBSystemState;
|
|
|
|
GDBSystemState gdbserver_system_state;
|
|
|
|
static void reset_gdbserver_state(void)
|
|
{
|
|
g_free(gdbserver_state.processes);
|
|
gdbserver_state.processes = NULL;
|
|
gdbserver_state.process_num = 0;
|
|
}
|
|
|
|
/*
|
|
* Return the GDB index for a given vCPU state.
|
|
*
|
|
* In system mode GDB numbers CPUs from 1 as 0 is reserved as an "any
|
|
* cpu" index.
|
|
*/
|
|
int gdb_get_cpu_index(CPUState *cpu)
|
|
{
|
|
return cpu->cpu_index + 1;
|
|
}
|
|
|
|
/*
|
|
* We check the status of the last message in the chardev receive code
|
|
*/
|
|
bool gdb_got_immediate_ack(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* GDB Connection management. For system emulation we do all of this
|
|
* via our existing Chardev infrastructure which allows us to support
|
|
* network and unix sockets.
|
|
*/
|
|
|
|
void gdb_put_buffer(const uint8_t *buf, int len)
|
|
{
|
|
/*
|
|
* XXX this blocks entire thread. Rewrite to use
|
|
* qemu_chr_fe_write and background I/O callbacks
|
|
*/
|
|
qemu_chr_fe_write_all(&gdbserver_system_state.chr, buf, len);
|
|
}
|
|
|
|
static void gdb_chr_event(void *opaque, QEMUChrEvent event)
|
|
{
|
|
int i;
|
|
GDBState *s = (GDBState *) opaque;
|
|
|
|
switch (event) {
|
|
case CHR_EVENT_OPENED:
|
|
/* Start with first process attached, others detached */
|
|
for (i = 0; i < s->process_num; i++) {
|
|
s->processes[i].attached = !i;
|
|
}
|
|
|
|
s->c_cpu = gdb_first_attached_cpu();
|
|
s->g_cpu = s->c_cpu;
|
|
|
|
vm_stop(RUN_STATE_PAUSED);
|
|
replay_gdb_attached();
|
|
gdb_has_xml = false;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In softmmu mode we stop the VM and wait to send the syscall packet
|
|
* until notification that the CPU has stopped. This must be done
|
|
* because if the packet is sent now the reply from the syscall
|
|
* request could be received while the CPU is still in the running
|
|
* state, which can cause packets to be dropped and state transition
|
|
* 'T' packets to be sent while the syscall is still being processed.
|
|
*/
|
|
void gdb_syscall_handling(const char *syscall_packet)
|
|
{
|
|
vm_stop(RUN_STATE_DEBUG);
|
|
qemu_cpu_kick(gdbserver_state.c_cpu);
|
|
}
|
|
|
|
static void gdb_vm_state_change(void *opaque, bool running, RunState state)
|
|
{
|
|
CPUState *cpu = gdbserver_state.c_cpu;
|
|
g_autoptr(GString) buf = g_string_new(NULL);
|
|
g_autoptr(GString) tid = g_string_new(NULL);
|
|
const char *type;
|
|
int ret;
|
|
|
|
if (running || gdbserver_state.state == RS_INACTIVE) {
|
|
return;
|
|
}
|
|
|
|
/* Is there a GDB syscall waiting to be sent? */
|
|
if (gdb_handled_syscall()) {
|
|
return;
|
|
}
|
|
|
|
if (cpu == NULL) {
|
|
/* No process attached */
|
|
return;
|
|
}
|
|
|
|
gdb_append_thread_id(cpu, tid);
|
|
|
|
switch (state) {
|
|
case RUN_STATE_DEBUG:
|
|
if (cpu->watchpoint_hit) {
|
|
switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
|
|
case BP_MEM_READ:
|
|
type = "r";
|
|
break;
|
|
case BP_MEM_ACCESS:
|
|
type = "a";
|
|
break;
|
|
default:
|
|
type = "";
|
|
break;
|
|
}
|
|
trace_gdbstub_hit_watchpoint(type,
|
|
gdb_get_cpu_index(cpu),
|
|
cpu->watchpoint_hit->vaddr);
|
|
g_string_printf(buf, "T%02xthread:%s;%swatch:%" VADDR_PRIx ";",
|
|
GDB_SIGNAL_TRAP, tid->str, type,
|
|
cpu->watchpoint_hit->vaddr);
|
|
cpu->watchpoint_hit = NULL;
|
|
goto send_packet;
|
|
} else {
|
|
trace_gdbstub_hit_break();
|
|
}
|
|
tb_flush(cpu);
|
|
ret = GDB_SIGNAL_TRAP;
|
|
break;
|
|
case RUN_STATE_PAUSED:
|
|
trace_gdbstub_hit_paused();
|
|
ret = GDB_SIGNAL_INT;
|
|
break;
|
|
case RUN_STATE_SHUTDOWN:
|
|
trace_gdbstub_hit_shutdown();
|
|
ret = GDB_SIGNAL_QUIT;
|
|
break;
|
|
case RUN_STATE_IO_ERROR:
|
|
trace_gdbstub_hit_io_error();
|
|
ret = GDB_SIGNAL_IO;
|
|
break;
|
|
case RUN_STATE_WATCHDOG:
|
|
trace_gdbstub_hit_watchdog();
|
|
ret = GDB_SIGNAL_ALRM;
|
|
break;
|
|
case RUN_STATE_INTERNAL_ERROR:
|
|
trace_gdbstub_hit_internal_error();
|
|
ret = GDB_SIGNAL_ABRT;
|
|
break;
|
|
case RUN_STATE_SAVE_VM:
|
|
case RUN_STATE_RESTORE_VM:
|
|
return;
|
|
case RUN_STATE_FINISH_MIGRATE:
|
|
ret = GDB_SIGNAL_XCPU;
|
|
break;
|
|
default:
|
|
trace_gdbstub_hit_unknown(state);
|
|
ret = GDB_SIGNAL_UNKNOWN;
|
|
break;
|
|
}
|
|
gdb_set_stop_cpu(cpu);
|
|
g_string_printf(buf, "T%02xthread:%s;", ret, tid->str);
|
|
|
|
send_packet:
|
|
gdb_put_packet(buf->str);
|
|
|
|
/* disable single step if it was enabled */
|
|
cpu_single_step(cpu, 0);
|
|
}
|
|
|
|
#ifndef _WIN32
|
|
static void gdb_sigterm_handler(int signal)
|
|
{
|
|
if (runstate_is_running()) {
|
|
vm_stop(RUN_STATE_PAUSED);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
|
|
{
|
|
g_autoptr(GString) hex_buf = g_string_new("O");
|
|
gdb_memtohex(hex_buf, buf, len);
|
|
gdb_put_packet(hex_buf->str);
|
|
return len;
|
|
}
|
|
|
|
static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
|
|
bool *be_opened, Error **errp)
|
|
{
|
|
*be_opened = false;
|
|
}
|
|
|
|
static void char_gdb_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
ChardevClass *cc = CHARDEV_CLASS(oc);
|
|
|
|
cc->internal = true;
|
|
cc->open = gdb_monitor_open;
|
|
cc->chr_write = gdb_monitor_write;
|
|
}
|
|
|
|
#define TYPE_CHARDEV_GDB "chardev-gdb"
|
|
|
|
static const TypeInfo char_gdb_type_info = {
|
|
.name = TYPE_CHARDEV_GDB,
|
|
.parent = TYPE_CHARDEV,
|
|
.class_init = char_gdb_class_init,
|
|
};
|
|
|
|
static int gdb_chr_can_receive(void *opaque)
|
|
{
|
|
/*
|
|
* We can handle an arbitrarily large amount of data.
|
|
* Pick the maximum packet size, which is as good as anything.
|
|
*/
|
|
return MAX_PACKET_LENGTH;
|
|
}
|
|
|
|
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
gdb_read_byte(buf[i]);
|
|
}
|
|
}
|
|
|
|
static int find_cpu_clusters(Object *child, void *opaque)
|
|
{
|
|
if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
|
|
GDBState *s = (GDBState *) opaque;
|
|
CPUClusterState *cluster = CPU_CLUSTER(child);
|
|
GDBProcess *process;
|
|
|
|
s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
|
|
|
|
process = &s->processes[s->process_num - 1];
|
|
|
|
/*
|
|
* GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
|
|
* runtime, we enforce here that the machine does not use a cluster ID
|
|
* that would lead to PID 0.
|
|
*/
|
|
assert(cluster->cluster_id != UINT32_MAX);
|
|
process->pid = cluster->cluster_id + 1;
|
|
process->attached = false;
|
|
process->target_xml[0] = '\0';
|
|
|
|
return 0;
|
|
}
|
|
|
|
return object_child_foreach(child, find_cpu_clusters, opaque);
|
|
}
|
|
|
|
static int pid_order(const void *a, const void *b)
|
|
{
|
|
GDBProcess *pa = (GDBProcess *) a;
|
|
GDBProcess *pb = (GDBProcess *) b;
|
|
|
|
if (pa->pid < pb->pid) {
|
|
return -1;
|
|
} else if (pa->pid > pb->pid) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void create_processes(GDBState *s)
|
|
{
|
|
object_child_foreach(object_get_root(), find_cpu_clusters, s);
|
|
|
|
if (gdbserver_state.processes) {
|
|
/* Sort by PID */
|
|
qsort(gdbserver_state.processes,
|
|
gdbserver_state.process_num,
|
|
sizeof(gdbserver_state.processes[0]),
|
|
pid_order);
|
|
}
|
|
|
|
gdb_create_default_process(s);
|
|
}
|
|
|
|
int gdbserver_start(const char *device)
|
|
{
|
|
trace_gdbstub_op_start(device);
|
|
|
|
char gdbstub_device_name[128];
|
|
Chardev *chr = NULL;
|
|
Chardev *mon_chr;
|
|
|
|
if (!first_cpu) {
|
|
error_report("gdbstub: meaningless to attach gdb to a "
|
|
"machine without any CPU.");
|
|
return -1;
|
|
}
|
|
|
|
if (!gdb_supports_guest_debug()) {
|
|
error_report("gdbstub: current accelerator doesn't "
|
|
"support guest debugging");
|
|
return -1;
|
|
}
|
|
|
|
if (!device) {
|
|
return -1;
|
|
}
|
|
if (strcmp(device, "none") != 0) {
|
|
if (strstart(device, "tcp:", NULL)) {
|
|
/* enforce required TCP attributes */
|
|
snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
|
|
"%s,wait=off,nodelay=on,server=on", device);
|
|
device = gdbstub_device_name;
|
|
}
|
|
#ifndef _WIN32
|
|
else if (strcmp(device, "stdio") == 0) {
|
|
struct sigaction act;
|
|
|
|
memset(&act, 0, sizeof(act));
|
|
act.sa_handler = gdb_sigterm_handler;
|
|
sigaction(SIGINT, &act, NULL);
|
|
}
|
|
#endif
|
|
/*
|
|
* FIXME: it's a bit weird to allow using a mux chardev here
|
|
* and implicitly setup a monitor. We may want to break this.
|
|
*/
|
|
chr = qemu_chr_new_noreplay("gdb", device, true, NULL);
|
|
if (!chr) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (!gdbserver_state.init) {
|
|
gdb_init_gdbserver_state();
|
|
|
|
qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
|
|
|
|
/* Initialize a monitor terminal for gdb */
|
|
mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
|
|
NULL, NULL, &error_abort);
|
|
monitor_init_hmp(mon_chr, false, &error_abort);
|
|
} else {
|
|
qemu_chr_fe_deinit(&gdbserver_system_state.chr, true);
|
|
mon_chr = gdbserver_system_state.mon_chr;
|
|
reset_gdbserver_state();
|
|
}
|
|
|
|
create_processes(&gdbserver_state);
|
|
|
|
if (chr) {
|
|
qemu_chr_fe_init(&gdbserver_system_state.chr, chr, &error_abort);
|
|
qemu_chr_fe_set_handlers(&gdbserver_system_state.chr,
|
|
gdb_chr_can_receive,
|
|
gdb_chr_receive, gdb_chr_event,
|
|
NULL, &gdbserver_state, NULL, true);
|
|
}
|
|
gdbserver_state.state = chr ? RS_IDLE : RS_INACTIVE;
|
|
gdbserver_system_state.mon_chr = mon_chr;
|
|
gdb_syscall_reset();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void register_types(void)
|
|
{
|
|
type_register_static(&char_gdb_type_info);
|
|
}
|
|
|
|
type_init(register_types);
|
|
|
|
/* Tell the remote gdb that the process has exited. */
|
|
void gdb_exit(int code)
|
|
{
|
|
char buf[4];
|
|
|
|
if (!gdbserver_state.init) {
|
|
return;
|
|
}
|
|
|
|
trace_gdbstub_op_exiting((uint8_t)code);
|
|
|
|
snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
|
|
gdb_put_packet(buf);
|
|
|
|
qemu_chr_fe_deinit(&gdbserver_system_state.chr, true);
|
|
}
|
|
|
|
/*
|
|
* Memory access
|
|
*/
|
|
static int phy_memory_mode;
|
|
|
|
int gdb_target_memory_rw_debug(CPUState *cpu, hwaddr addr,
|
|
uint8_t *buf, int len, bool is_write)
|
|
{
|
|
CPUClass *cc;
|
|
|
|
if (phy_memory_mode) {
|
|
if (is_write) {
|
|
cpu_physical_memory_write(addr, buf, len);
|
|
} else {
|
|
cpu_physical_memory_read(addr, buf, len);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
cc = CPU_GET_CLASS(cpu);
|
|
if (cc->memory_rw_debug) {
|
|
return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
|
|
}
|
|
|
|
return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
|
|
}
|
|
|
|
/*
|
|
* cpu helpers
|
|
*/
|
|
|
|
unsigned int gdb_get_max_cpus(void)
|
|
{
|
|
MachineState *ms = MACHINE(qdev_get_machine());
|
|
return ms->smp.max_cpus;
|
|
}
|
|
|
|
bool gdb_can_reverse(void)
|
|
{
|
|
return replay_mode == REPLAY_MODE_PLAY;
|
|
}
|
|
|
|
/*
|
|
* Softmmu specific command helpers
|
|
*/
|
|
|
|
void gdb_handle_query_qemu_phy_mem_mode(GArray *params,
|
|
void *user_ctx)
|
|
{
|
|
g_string_printf(gdbserver_state.str_buf, "%d", phy_memory_mode);
|
|
gdb_put_strbuf();
|
|
}
|
|
|
|
void gdb_handle_set_qemu_phy_mem_mode(GArray *params, void *user_ctx)
|
|
{
|
|
if (!params->len) {
|
|
gdb_put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
if (!get_param(params, 0)->val_ul) {
|
|
phy_memory_mode = 0;
|
|
} else {
|
|
phy_memory_mode = 1;
|
|
}
|
|
gdb_put_packet("OK");
|
|
}
|
|
|
|
void gdb_handle_query_rcmd(GArray *params, void *user_ctx)
|
|
{
|
|
const guint8 zero = 0;
|
|
int len;
|
|
|
|
if (!params->len) {
|
|
gdb_put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
len = strlen(get_param(params, 0)->data);
|
|
if (len % 2) {
|
|
gdb_put_packet("E01");
|
|
return;
|
|
}
|
|
|
|
g_assert(gdbserver_state.mem_buf->len == 0);
|
|
len = len / 2;
|
|
gdb_hextomem(gdbserver_state.mem_buf, get_param(params, 0)->data, len);
|
|
g_byte_array_append(gdbserver_state.mem_buf, &zero, 1);
|
|
qemu_chr_be_write(gdbserver_system_state.mon_chr,
|
|
gdbserver_state.mem_buf->data,
|
|
gdbserver_state.mem_buf->len);
|
|
gdb_put_packet("OK");
|
|
}
|
|
|
|
/*
|
|
* Execution state helpers
|
|
*/
|
|
|
|
void gdb_handle_query_attached(GArray *params, void *user_ctx)
|
|
{
|
|
gdb_put_packet("1");
|
|
}
|
|
|
|
void gdb_continue(void)
|
|
{
|
|
if (!runstate_needs_reset()) {
|
|
trace_gdbstub_op_continue();
|
|
vm_start();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Resume execution, per CPU actions.
|
|
*/
|
|
int gdb_continue_partial(char *newstates)
|
|
{
|
|
CPUState *cpu;
|
|
int res = 0;
|
|
int flag = 0;
|
|
|
|
if (!runstate_needs_reset()) {
|
|
bool step_requested = false;
|
|
CPU_FOREACH(cpu) {
|
|
if (newstates[cpu->cpu_index] == 's') {
|
|
step_requested = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (vm_prepare_start(step_requested)) {
|
|
return 0;
|
|
}
|
|
|
|
CPU_FOREACH(cpu) {
|
|
switch (newstates[cpu->cpu_index]) {
|
|
case 0:
|
|
case 1:
|
|
break; /* nothing to do here */
|
|
case 's':
|
|
trace_gdbstub_op_stepping(cpu->cpu_index);
|
|
cpu_single_step(cpu, gdbserver_state.sstep_flags);
|
|
cpu_resume(cpu);
|
|
flag = 1;
|
|
break;
|
|
case 'c':
|
|
trace_gdbstub_op_continue_cpu(cpu->cpu_index);
|
|
cpu_resume(cpu);
|
|
flag = 1;
|
|
break;
|
|
default:
|
|
res = -1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (flag) {
|
|
qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Signal Handling - in system mode we only need SIGINT and SIGTRAP; other
|
|
* signals are not yet supported.
|
|
*/
|
|
|
|
enum {
|
|
TARGET_SIGINT = 2,
|
|
TARGET_SIGTRAP = 5
|
|
};
|
|
|
|
int gdb_signal_to_target(int sig)
|
|
{
|
|
switch (sig) {
|
|
case 2:
|
|
return TARGET_SIGINT;
|
|
case 5:
|
|
return TARGET_SIGTRAP;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Break/Watch point helpers
|
|
*/
|
|
|
|
bool gdb_supports_guest_debug(void)
|
|
{
|
|
const AccelOpsClass *ops = cpus_get_accel();
|
|
if (ops->supports_guest_debug) {
|
|
return ops->supports_guest_debug();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int gdb_breakpoint_insert(CPUState *cs, int type, vaddr addr, vaddr len)
|
|
{
|
|
const AccelOpsClass *ops = cpus_get_accel();
|
|
if (ops->insert_breakpoint) {
|
|
return ops->insert_breakpoint(cs, type, addr, len);
|
|
}
|
|
return -ENOSYS;
|
|
}
|
|
|
|
int gdb_breakpoint_remove(CPUState *cs, int type, vaddr addr, vaddr len)
|
|
{
|
|
const AccelOpsClass *ops = cpus_get_accel();
|
|
if (ops->remove_breakpoint) {
|
|
return ops->remove_breakpoint(cs, type, addr, len);
|
|
}
|
|
return -ENOSYS;
|
|
}
|
|
|
|
void gdb_breakpoint_remove_all(CPUState *cs)
|
|
{
|
|
const AccelOpsClass *ops = cpus_get_accel();
|
|
if (ops->remove_all_breakpoints) {
|
|
ops->remove_all_breakpoints(cs);
|
|
}
|
|
}
|