qemu-e2k/tests/m48t59-test.c
Andreas Färber 2ad645d285 qtest: Use -display none by default
This avoids each test needing to add it to suppress windows popping up.

[Commit 7ceeedd016 ("blockdev-test: add
test case for drive_add duplicate IDs") and commit
43cd209803 ("qdev-monitor-test: add
device_add leak test cases") added qtest tests without specifying
-display none.

As a result, "make check" now tries to use graphics (GTK or SDL).  Since
graphics are not used by the test and inappropriate for headless "make
check" runs, add the missing -display none.

This fixes "make check" in the QEMU buildbot.
-- Stefan]

Signed-off-by: Andreas Färber <afaerber@suse.de>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2013-11-19 10:28:14 +01:00

264 lines
5.9 KiB
C

/*
* QTest testcase for the M48T59 and M48T08 real-time clocks
*
* Based on MC146818 RTC test:
* Copyright IBM, Corp. 2012
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "libqtest.h"
#include <glib.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#define RTC_SECONDS 0x9
#define RTC_MINUTES 0xa
#define RTC_HOURS 0xb
#define RTC_DAY_OF_WEEK 0xc
#define RTC_DAY_OF_MONTH 0xd
#define RTC_MONTH 0xe
#define RTC_YEAR 0xf
static uint32_t base;
static uint16_t reg_base = 0x1ff0; /* 0x7f0 for m48t02 */
static int base_year;
static bool use_mmio;
static uint8_t cmos_read_mmio(uint8_t reg)
{
return readb(base + (uint32_t)reg_base + (uint32_t)reg);
}
static void cmos_write_mmio(uint8_t reg, uint8_t val)
{
uint8_t data = val;
writeb(base + (uint32_t)reg_base + (uint32_t)reg, data);
}
static uint8_t cmos_read_ioio(uint8_t reg)
{
outw(base + 0, reg_base + (uint16_t)reg);
return inb(base + 3);
}
static void cmos_write_ioio(uint8_t reg, uint8_t val)
{
outw(base + 0, reg_base + (uint16_t)reg);
outb(base + 3, val);
}
static uint8_t cmos_read(uint8_t reg)
{
if (use_mmio) {
return cmos_read_mmio(reg);
} else {
return cmos_read_ioio(reg);
}
}
static void cmos_write(uint8_t reg, uint8_t val)
{
if (use_mmio) {
cmos_write_mmio(reg, val);
} else {
cmos_write_ioio(reg, val);
}
}
static int bcd2dec(int value)
{
return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
}
static int tm_cmp(struct tm *lhs, struct tm *rhs)
{
time_t a, b;
struct tm d1, d2;
memcpy(&d1, lhs, sizeof(d1));
memcpy(&d2, rhs, sizeof(d2));
a = mktime(&d1);
b = mktime(&d2);
if (a < b) {
return -1;
} else if (a > b) {
return 1;
}
return 0;
}
#if 0
static void print_tm(struct tm *tm)
{
printf("%04d-%02d-%02d %02d:%02d:%02d %+02ld\n",
tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
}
#endif
static void cmos_get_date_time(struct tm *date)
{
int sec, min, hour, mday, mon, year;
time_t ts;
struct tm dummy;
sec = cmos_read(RTC_SECONDS);
min = cmos_read(RTC_MINUTES);
hour = cmos_read(RTC_HOURS);
mday = cmos_read(RTC_DAY_OF_MONTH);
mon = cmos_read(RTC_MONTH);
year = cmos_read(RTC_YEAR);
sec = bcd2dec(sec);
min = bcd2dec(min);
hour = bcd2dec(hour);
mday = bcd2dec(mday);
mon = bcd2dec(mon);
year = bcd2dec(year);
ts = time(NULL);
localtime_r(&ts, &dummy);
date->tm_isdst = dummy.tm_isdst;
date->tm_sec = sec;
date->tm_min = min;
date->tm_hour = hour;
date->tm_mday = mday;
date->tm_mon = mon - 1;
date->tm_year = base_year + year - 1900;
#ifndef __sun__
date->tm_gmtoff = 0;
#endif
ts = mktime(date);
}
static void check_time(int wiggle)
{
struct tm start, date[4], end;
struct tm *datep;
time_t ts;
/*
* This check assumes a few things. First, we cannot guarantee that we get
* a consistent reading from the wall clock because we may hit an edge of
* the clock while reading. To work around this, we read four clock readings
* such that at least two of them should match. We need to assume that one
* reading is corrupt so we need four readings to ensure that we have at
* least two consecutive identical readings
*
* It's also possible that we'll cross an edge reading the host clock so
* simply check to make sure that the clock reading is within the period of
* when we expect it to be.
*/
ts = time(NULL);
gmtime_r(&ts, &start);
cmos_get_date_time(&date[0]);
cmos_get_date_time(&date[1]);
cmos_get_date_time(&date[2]);
cmos_get_date_time(&date[3]);
ts = time(NULL);
gmtime_r(&ts, &end);
if (tm_cmp(&date[0], &date[1]) == 0) {
datep = &date[0];
} else if (tm_cmp(&date[1], &date[2]) == 0) {
datep = &date[1];
} else if (tm_cmp(&date[2], &date[3]) == 0) {
datep = &date[2];
} else {
g_assert_not_reached();
}
if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
long t, s;
start.tm_isdst = datep->tm_isdst;
t = (long)mktime(datep);
s = (long)mktime(&start);
if (t < s) {
g_test_message("RTC is %ld second(s) behind wall-clock\n", (s - t));
} else {
g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t - s));
}
g_assert_cmpint(ABS(t - s), <=, wiggle);
}
}
static int wiggle = 2;
static void bcd_check_time(void)
{
if (strcmp(qtest_get_arch(), "sparc64") == 0) {
base = 0x74;
base_year = 1900;
use_mmio = false;
} else if (strcmp(qtest_get_arch(), "sparc") == 0) {
base = 0x71200000;
base_year = 1968;
use_mmio = true;
} else { /* PPC: need to map macio in PCI */
g_assert_not_reached();
}
check_time(wiggle);
}
/* success if no crash or abort */
static void fuzz_registers(void)
{
unsigned int i;
for (i = 0; i < 1000; i++) {
uint8_t reg, val;
reg = (uint8_t)g_test_rand_int_range(0, 16);
val = (uint8_t)g_test_rand_int_range(0, 256);
if (reg == 7) {
/* watchdog setup register, may trigger system reset, skip */
continue;
}
cmos_write(reg, val);
cmos_read(reg);
}
}
int main(int argc, char **argv)
{
QTestState *s = NULL;
int ret;
g_test_init(&argc, &argv, NULL);
s = qtest_start("-rtc clock=vm");
qtest_add_func("/rtc/bcd/check-time", bcd_check_time);
qtest_add_func("/rtc/fuzz-registers", fuzz_registers);
ret = g_test_run();
if (s) {
qtest_quit(s);
}
return ret;
}