qemu-e2k/hw/spitz.c
balrog d95b2f8d36 Switch to qemu_ram_alloc() for memory allocation in PXA255/270.
Pass correct RAM size to arm_load_kernel (currently unused) - thanks to BobOfDoom.
Register the Xscale Internal Memory Storage.


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2784 c046a42c-6fe2-441c-8c8c-71466251a162
2007-05-08 19:03:12 +00:00

1103 lines
32 KiB
C

/*
* PXA270-based Clamshell PDA platforms.
*
* Copyright (c) 2006 Openedhand Ltd.
* Written by Andrzej Zaborowski <balrog@zabor.org>
*
* This code is licensed under the GNU GPL v2.
*/
#include "vl.h"
#define spitz_printf(format, ...) \
fprintf(stderr, "%s: " format, __FUNCTION__, ##__VA_ARGS__)
#undef REG_FMT
#define REG_FMT "0x%02lx"
/* Spitz Flash */
#define FLASH_BASE 0x0c000000
#define FLASH_ECCLPLB 0x00 /* Line parity 7 - 0 bit */
#define FLASH_ECCLPUB 0x04 /* Line parity 15 - 8 bit */
#define FLASH_ECCCP 0x08 /* Column parity 5 - 0 bit */
#define FLASH_ECCCNTR 0x0c /* ECC byte counter */
#define FLASH_ECCCLRR 0x10 /* Clear ECC */
#define FLASH_FLASHIO 0x14 /* Flash I/O */
#define FLASH_FLASHCTL 0x18 /* Flash Control */
#define FLASHCTL_CE0 (1 << 0)
#define FLASHCTL_CLE (1 << 1)
#define FLASHCTL_ALE (1 << 2)
#define FLASHCTL_WP (1 << 3)
#define FLASHCTL_CE1 (1 << 4)
#define FLASHCTL_RYBY (1 << 5)
#define FLASHCTL_NCE (FLASHCTL_CE0 | FLASHCTL_CE1)
struct sl_nand_s {
target_phys_addr_t target_base;
struct nand_flash_s *nand;
uint8_t ctl;
struct ecc_state_s ecc;
};
static uint32_t sl_readb(void *opaque, target_phys_addr_t addr)
{
struct sl_nand_s *s = (struct sl_nand_s *) opaque;
int ryby;
addr -= s->target_base;
switch (addr) {
#define BSHR(byte, from, to) ((s->ecc.lp[byte] >> (from - to)) & (1 << to))
case FLASH_ECCLPLB:
return BSHR(0, 4, 0) | BSHR(0, 5, 2) | BSHR(0, 6, 4) | BSHR(0, 7, 6) |
BSHR(1, 4, 1) | BSHR(1, 5, 3) | BSHR(1, 6, 5) | BSHR(1, 7, 7);
#define BSHL(byte, from, to) ((s->ecc.lp[byte] << (to - from)) & (1 << to))
case FLASH_ECCLPUB:
return BSHL(0, 0, 0) | BSHL(0, 1, 2) | BSHL(0, 2, 4) | BSHL(0, 3, 6) |
BSHL(1, 0, 1) | BSHL(1, 1, 3) | BSHL(1, 2, 5) | BSHL(1, 3, 7);
case FLASH_ECCCP:
return s->ecc.cp;
case FLASH_ECCCNTR:
return s->ecc.count & 0xff;
case FLASH_FLASHCTL:
nand_getpins(s->nand, &ryby);
if (ryby)
return s->ctl | FLASHCTL_RYBY;
else
return s->ctl;
case FLASH_FLASHIO:
return ecc_digest(&s->ecc, nand_getio(s->nand));
default:
spitz_printf("Bad register offset " REG_FMT "\n", addr);
}
return 0;
}
static void sl_writeb(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct sl_nand_s *s = (struct sl_nand_s *) opaque;
addr -= s->target_base;
switch (addr) {
case FLASH_ECCCLRR:
/* Value is ignored. */
ecc_reset(&s->ecc);
break;
case FLASH_FLASHCTL:
s->ctl = value & 0xff & ~FLASHCTL_RYBY;
nand_setpins(s->nand,
s->ctl & FLASHCTL_CLE,
s->ctl & FLASHCTL_ALE,
s->ctl & FLASHCTL_NCE,
s->ctl & FLASHCTL_WP,
0);
break;
case FLASH_FLASHIO:
nand_setio(s->nand, ecc_digest(&s->ecc, value & 0xff));
break;
default:
spitz_printf("Bad register offset " REG_FMT "\n", addr);
}
}
enum {
FLASH_128M,
FLASH_1024M,
};
static void sl_flash_register(struct pxa2xx_state_s *cpu, int size)
{
int iomemtype;
struct sl_nand_s *s;
CPUReadMemoryFunc *sl_readfn[] = {
sl_readb,
sl_readb,
sl_readb,
};
CPUWriteMemoryFunc *sl_writefn[] = {
sl_writeb,
sl_writeb,
sl_writeb,
};
s = (struct sl_nand_s *) qemu_mallocz(sizeof(struct sl_nand_s));
s->target_base = FLASH_BASE;
s->ctl = 0;
if (size == FLASH_128M)
s->nand = nand_init(NAND_MFR_SAMSUNG, 0x73);
else if (size == FLASH_1024M)
s->nand = nand_init(NAND_MFR_SAMSUNG, 0xf1);
iomemtype = cpu_register_io_memory(0, sl_readfn,
sl_writefn, s);
cpu_register_physical_memory(s->target_base, 0x40, iomemtype);
}
/* Spitz Keyboard */
#define SPITZ_KEY_STROBE_NUM 11
#define SPITZ_KEY_SENSE_NUM 7
static const int spitz_gpio_key_sense[SPITZ_KEY_SENSE_NUM] = {
12, 17, 91, 34, 36, 38, 39
};
static const int spitz_gpio_key_strobe[SPITZ_KEY_STROBE_NUM] = {
88, 23, 24, 25, 26, 27, 52, 103, 107, 108, 114
};
/* Eighth additional row maps the special keys */
static int spitz_keymap[SPITZ_KEY_SENSE_NUM + 1][SPITZ_KEY_STROBE_NUM] = {
{ 0x1d, 0x02, 0x04, 0x06, 0x07, 0x08, 0x0a, 0x0b, 0x0e, 0x3f, 0x40 },
{ -1 , 0x03, 0x05, 0x13, 0x15, 0x09, 0x17, 0x18, 0x19, 0x41, 0x42 },
{ 0x0f, 0x10, 0x12, 0x14, 0x22, 0x16, 0x24, 0x25, -1 , -1 , -1 },
{ 0x3c, 0x11, 0x1f, 0x21, 0x2f, 0x23, 0x32, 0x26, -1 , 0x36, -1 },
{ 0x3b, 0x1e, 0x20, 0x2e, 0x30, 0x31, 0x34, -1 , 0x1c, 0x2a, -1 },
{ 0x44, 0x2c, 0x2d, 0x0c, 0x39, 0x33, -1 , 0x48, -1 , -1 , 0x3d },
{ 0x37, 0x38, -1 , 0x45, 0x57, 0x58, 0x4b, 0x50, 0x4d, -1 , -1 },
{ 0x52, 0x43, 0x01, 0x47, 0x49, -1 , -1 , -1 , -1 , -1 , -1 },
};
#define SPITZ_GPIO_AK_INT 13 /* Remote control */
#define SPITZ_GPIO_SYNC 16 /* Sync button */
#define SPITZ_GPIO_ON_KEY 95 /* Power button */
#define SPITZ_GPIO_SWA 97 /* Lid */
#define SPITZ_GPIO_SWB 96 /* Tablet mode */
/* The special buttons are mapped to unused keys */
static const int spitz_gpiomap[5] = {
SPITZ_GPIO_AK_INT, SPITZ_GPIO_SYNC, SPITZ_GPIO_ON_KEY,
SPITZ_GPIO_SWA, SPITZ_GPIO_SWB,
};
static int spitz_gpio_invert[5] = { 0, 0, 0, 0, 0, };
struct spitz_keyboard_s {
struct pxa2xx_state_s *cpu;
int keymap[0x80];
uint16_t keyrow[SPITZ_KEY_SENSE_NUM];
uint16_t strobe_state;
uint16_t sense_state;
uint16_t pre_map[0x100];
uint16_t modifiers;
uint16_t imodifiers;
uint8_t fifo[16];
int fifopos, fifolen;
QEMUTimer *kbdtimer;
};
static void spitz_keyboard_sense_update(struct spitz_keyboard_s *s)
{
int i;
uint16_t strobe, sense = 0;
for (i = 0; i < SPITZ_KEY_SENSE_NUM; i ++) {
strobe = s->keyrow[i] & s->strobe_state;
if (strobe) {
sense |= 1 << i;
if (!(s->sense_state & (1 << i)))
pxa2xx_gpio_set(s->cpu->gpio, spitz_gpio_key_sense[i], 1);
} else if (s->sense_state & (1 << i))
pxa2xx_gpio_set(s->cpu->gpio, spitz_gpio_key_sense[i], 0);
}
s->sense_state = sense;
}
static void spitz_keyboard_strobe(int line, int level,
struct spitz_keyboard_s *s)
{
int i;
for (i = 0; i < SPITZ_KEY_STROBE_NUM; i ++)
if (spitz_gpio_key_strobe[i] == line) {
if (level)
s->strobe_state |= 1 << i;
else
s->strobe_state &= ~(1 << i);
spitz_keyboard_sense_update(s);
break;
}
}
static void spitz_keyboard_keydown(struct spitz_keyboard_s *s, int keycode)
{
int spitz_keycode = s->keymap[keycode & 0x7f];
if (spitz_keycode == -1)
return;
/* Handle the additional keys */
if ((spitz_keycode >> 4) == SPITZ_KEY_SENSE_NUM) {
pxa2xx_gpio_set(s->cpu->gpio, spitz_gpiomap[spitz_keycode & 0xf],
(keycode < 0x80) ^
spitz_gpio_invert[spitz_keycode & 0xf]);
return;
}
if (keycode & 0x80)
s->keyrow[spitz_keycode >> 4] &= ~(1 << (spitz_keycode & 0xf));
else
s->keyrow[spitz_keycode >> 4] |= 1 << (spitz_keycode & 0xf);
spitz_keyboard_sense_update(s);
}
#define SHIFT (1 << 7)
#define CTRL (1 << 8)
#define FN (1 << 9)
#define QUEUE_KEY(c) s->fifo[(s->fifopos + s->fifolen ++) & 0xf] = c
static void spitz_keyboard_handler(struct spitz_keyboard_s *s, int keycode)
{
uint16_t code;
int mapcode;
switch (keycode) {
case 0x2a: /* Left Shift */
s->modifiers |= 1;
break;
case 0xaa:
s->modifiers &= ~1;
break;
case 0x36: /* Right Shift */
s->modifiers |= 2;
break;
case 0xb6:
s->modifiers &= ~2;
break;
case 0x1d: /* Control */
s->modifiers |= 4;
break;
case 0x9d:
s->modifiers &= ~4;
break;
case 0x38: /* Alt */
s->modifiers |= 8;
break;
case 0xb8:
s->modifiers &= ~8;
break;
}
code = s->pre_map[mapcode = ((s->modifiers & 3) ?
(keycode | SHIFT) :
(keycode & ~SHIFT))];
if (code != mapcode) {
#if 0
if ((code & SHIFT) && !(s->modifiers & 1))
QUEUE_KEY(0x2a | (keycode & 0x80));
if ((code & CTRL ) && !(s->modifiers & 4))
QUEUE_KEY(0x1d | (keycode & 0x80));
if ((code & FN ) && !(s->modifiers & 8))
QUEUE_KEY(0x38 | (keycode & 0x80));
if ((code & FN ) && (s->modifiers & 1))
QUEUE_KEY(0x2a | (~keycode & 0x80));
if ((code & FN ) && (s->modifiers & 2))
QUEUE_KEY(0x36 | (~keycode & 0x80));
#else
if (keycode & 0x80) {
if ((s->imodifiers & 1 ) && !(s->modifiers & 1))
QUEUE_KEY(0x2a | 0x80);
if ((s->imodifiers & 4 ) && !(s->modifiers & 4))
QUEUE_KEY(0x1d | 0x80);
if ((s->imodifiers & 8 ) && !(s->modifiers & 8))
QUEUE_KEY(0x38 | 0x80);
if ((s->imodifiers & 0x10) && (s->modifiers & 1))
QUEUE_KEY(0x2a);
if ((s->imodifiers & 0x20) && (s->modifiers & 2))
QUEUE_KEY(0x36);
s->imodifiers = 0;
} else {
if ((code & SHIFT) && !((s->modifiers | s->imodifiers) & 1)) {
QUEUE_KEY(0x2a);
s->imodifiers |= 1;
}
if ((code & CTRL ) && !((s->modifiers | s->imodifiers) & 4)) {
QUEUE_KEY(0x1d);
s->imodifiers |= 4;
}
if ((code & FN ) && !((s->modifiers | s->imodifiers) & 8)) {
QUEUE_KEY(0x38);
s->imodifiers |= 8;
}
if ((code & FN ) && (s->modifiers & 1) &&
!(s->imodifiers & 0x10)) {
QUEUE_KEY(0x2a | 0x80);
s->imodifiers |= 0x10;
}
if ((code & FN ) && (s->modifiers & 2) &&
!(s->imodifiers & 0x20)) {
QUEUE_KEY(0x36 | 0x80);
s->imodifiers |= 0x20;
}
}
#endif
}
QUEUE_KEY((code & 0x7f) | (keycode & 0x80));
}
static void spitz_keyboard_tick(void *opaque)
{
struct spitz_keyboard_s *s = (struct spitz_keyboard_s *) opaque;
if (s->fifolen) {
spitz_keyboard_keydown(s, s->fifo[s->fifopos ++]);
s->fifolen --;
if (s->fifopos >= 16)
s->fifopos = 0;
}
qemu_mod_timer(s->kbdtimer, qemu_get_clock(vm_clock) + ticks_per_sec / 32);
}
static void spitz_keyboard_pre_map(struct spitz_keyboard_s *s)
{
int i;
for (i = 0; i < 0x100; i ++)
s->pre_map[i] = i;
s->pre_map[0x02 | SHIFT ] = 0x02 | SHIFT; /* exclam */
s->pre_map[0x28 | SHIFT ] = 0x03 | SHIFT; /* quotedbl */
s->pre_map[0x04 | SHIFT ] = 0x04 | SHIFT; /* numbersign */
s->pre_map[0x05 | SHIFT ] = 0x05 | SHIFT; /* dollar */
s->pre_map[0x06 | SHIFT ] = 0x06 | SHIFT; /* percent */
s->pre_map[0x08 | SHIFT ] = 0x07 | SHIFT; /* ampersand */
s->pre_map[0x28 ] = 0x08 | SHIFT; /* apostrophe */
s->pre_map[0x0a | SHIFT ] = 0x09 | SHIFT; /* parenleft */
s->pre_map[0x0b | SHIFT ] = 0x0a | SHIFT; /* parenright */
s->pre_map[0x29 | SHIFT ] = 0x0b | SHIFT; /* asciitilde */
s->pre_map[0x03 | SHIFT ] = 0x0c | SHIFT; /* at */
s->pre_map[0xd3 ] = 0x0e | FN; /* Delete */
s->pre_map[0x3a ] = 0x0f | FN; /* Caps_Lock */
s->pre_map[0x07 | SHIFT ] = 0x11 | FN; /* asciicircum */
s->pre_map[0x0d ] = 0x12 | FN; /* equal */
s->pre_map[0x0d | SHIFT ] = 0x13 | FN; /* plus */
s->pre_map[0x1a ] = 0x14 | FN; /* bracketleft */
s->pre_map[0x1b ] = 0x15 | FN; /* bracketright */
s->pre_map[0x27 ] = 0x22 | FN; /* semicolon */
s->pre_map[0x27 | SHIFT ] = 0x23 | FN; /* colon */
s->pre_map[0x09 | SHIFT ] = 0x24 | FN; /* asterisk */
s->pre_map[0x2b ] = 0x25 | FN; /* backslash */
s->pre_map[0x2b | SHIFT ] = 0x26 | FN; /* bar */
s->pre_map[0x0c | SHIFT ] = 0x30 | FN; /* underscore */
s->pre_map[0x35 ] = 0x33 | SHIFT; /* slash */
s->pre_map[0x35 | SHIFT ] = 0x34 | SHIFT; /* question */
s->pre_map[0x49 ] = 0x48 | FN; /* Page_Up */
s->pre_map[0x51 ] = 0x50 | FN; /* Page_Down */
s->modifiers = 0;
s->imodifiers = 0;
s->fifopos = 0;
s->fifolen = 0;
s->kbdtimer = qemu_new_timer(vm_clock, spitz_keyboard_tick, s);
spitz_keyboard_tick(s);
}
#undef SHIFT
#undef CTRL
#undef FN
static void spitz_keyboard_register(struct pxa2xx_state_s *cpu)
{
int i, j;
struct spitz_keyboard_s *s;
s = (struct spitz_keyboard_s *)
qemu_mallocz(sizeof(struct spitz_keyboard_s));
memset(s, 0, sizeof(struct spitz_keyboard_s));
s->cpu = cpu;
for (i = 0; i < 0x80; i ++)
s->keymap[i] = -1;
for (i = 0; i < SPITZ_KEY_SENSE_NUM + 1; i ++)
for (j = 0; j < SPITZ_KEY_STROBE_NUM; j ++)
if (spitz_keymap[i][j] != -1)
s->keymap[spitz_keymap[i][j]] = (i << 4) | j;
for (i = 0; i < SPITZ_KEY_STROBE_NUM; i ++)
pxa2xx_gpio_handler_set(cpu->gpio, spitz_gpio_key_strobe[i],
(gpio_handler_t) spitz_keyboard_strobe, s);
spitz_keyboard_pre_map(s);
qemu_add_kbd_event_handler((QEMUPutKBDEvent *) spitz_keyboard_handler, s);
}
/* SCOOP devices */
struct scoop_info_s {
target_phys_addr_t target_base;
uint16_t status;
uint16_t power;
uint32_t gpio_level;
uint32_t gpio_dir;
uint32_t prev_level;
struct {
gpio_handler_t fn;
void *opaque;
} handler[16];
uint16_t mcr;
uint16_t cdr;
uint16_t ccr;
uint16_t irr;
uint16_t imr;
uint16_t isr;
uint16_t gprr;
};
#define SCOOP_MCR 0x00
#define SCOOP_CDR 0x04
#define SCOOP_CSR 0x08
#define SCOOP_CPR 0x0c
#define SCOOP_CCR 0x10
#define SCOOP_IRR_IRM 0x14
#define SCOOP_IMR 0x18
#define SCOOP_ISR 0x1c
#define SCOOP_GPCR 0x20
#define SCOOP_GPWR 0x24
#define SCOOP_GPRR 0x28
static inline void scoop_gpio_handler_update(struct scoop_info_s *s) {
uint32_t level, diff;
int bit;
level = s->gpio_level & s->gpio_dir;
for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
bit = ffs(diff) - 1;
if (s->handler[bit].fn)
s->handler[bit].fn(bit, (level >> bit) & 1,
s->handler[bit].opaque);
}
s->prev_level = level;
}
static uint32_t scoop_readb(void *opaque, target_phys_addr_t addr)
{
struct scoop_info_s *s = (struct scoop_info_s *) opaque;
addr -= s->target_base;
switch (addr) {
case SCOOP_MCR:
return s->mcr;
case SCOOP_CDR:
return s->cdr;
case SCOOP_CSR:
return s->status;
case SCOOP_CPR:
return s->power;
case SCOOP_CCR:
return s->ccr;
case SCOOP_IRR_IRM:
return s->irr;
case SCOOP_IMR:
return s->imr;
case SCOOP_ISR:
return s->isr;
case SCOOP_GPCR:
return s->gpio_dir;
case SCOOP_GPWR:
return s->gpio_level;
case SCOOP_GPRR:
return s->gprr;
default:
spitz_printf("Bad register offset " REG_FMT "\n", addr);
}
return 0;
}
static void scoop_writeb(void *opaque, target_phys_addr_t addr, uint32_t value)
{
struct scoop_info_s *s = (struct scoop_info_s *) opaque;
addr -= s->target_base;
value &= 0xffff;
switch (addr) {
case SCOOP_MCR:
s->mcr = value;
break;
case SCOOP_CDR:
s->cdr = value;
break;
case SCOOP_CPR:
s->power = value;
if (value & 0x80)
s->power |= 0x8040;
break;
case SCOOP_CCR:
s->ccr = value;
break;
case SCOOP_IRR_IRM:
s->irr = value;
break;
case SCOOP_IMR:
s->imr = value;
break;
case SCOOP_ISR:
s->isr = value;
break;
case SCOOP_GPCR:
s->gpio_dir = value;
scoop_gpio_handler_update(s);
break;
case SCOOP_GPWR:
s->gpio_level = value & s->gpio_dir;
scoop_gpio_handler_update(s);
break;
case SCOOP_GPRR:
s->gprr = value;
break;
default:
spitz_printf("Bad register offset " REG_FMT "\n", addr);
}
}
CPUReadMemoryFunc *scoop_readfn[] = {
scoop_readb,
scoop_readb,
scoop_readb,
};
CPUWriteMemoryFunc *scoop_writefn[] = {
scoop_writeb,
scoop_writeb,
scoop_writeb,
};
static inline void scoop_gpio_set(struct scoop_info_s *s, int line, int level)
{
if (line >= 16) {
spitz_printf("No GPIO pin %i\n", line);
return;
}
if (level)
s->gpio_level |= (1 << line);
else
s->gpio_level &= ~(1 << line);
}
static inline void scoop_gpio_handler_set(struct scoop_info_s *s, int line,
gpio_handler_t handler, void *opaque) {
if (line >= 16) {
spitz_printf("No GPIO pin %i\n", line);
return;
}
s->handler[line].fn = handler;
s->handler[line].opaque = opaque;
}
static struct scoop_info_s *spitz_scoop_init(struct pxa2xx_state_s *cpu,
int count) {
int iomemtype;
struct scoop_info_s *s;
s = (struct scoop_info_s *)
qemu_mallocz(sizeof(struct scoop_info_s) * 2);
memset(s, 0, sizeof(struct scoop_info_s) * count);
s[0].target_base = 0x10800000;
s[1].target_base = 0x08800040;
/* Ready */
s[0].status = 0x02;
s[1].status = 0x02;
iomemtype = cpu_register_io_memory(0, scoop_readfn,
scoop_writefn, &s[0]);
cpu_register_physical_memory(s[0].target_base, 0xfff, iomemtype);
if (count < 2)
return s;
iomemtype = cpu_register_io_memory(0, scoop_readfn,
scoop_writefn, &s[1]);
cpu_register_physical_memory(s[1].target_base, 0xfff, iomemtype);
return s;
}
/* LCD backlight controller */
#define LCDTG_RESCTL 0x00
#define LCDTG_PHACTRL 0x01
#define LCDTG_DUTYCTRL 0x02
#define LCDTG_POWERREG0 0x03
#define LCDTG_POWERREG1 0x04
#define LCDTG_GPOR3 0x05
#define LCDTG_PICTRL 0x06
#define LCDTG_POLCTRL 0x07
static int bl_intensity, bl_power;
static void spitz_bl_update(struct pxa2xx_state_s *s)
{
if (bl_power && bl_intensity)
spitz_printf("LCD Backlight now at %i/63\n", bl_intensity);
else
spitz_printf("LCD Backlight now off\n");
}
static void spitz_bl_bit5(int line, int level, void *opaque)
{
int prev = bl_intensity;
if (level)
bl_intensity &= ~0x20;
else
bl_intensity |= 0x20;
if (bl_power && prev != bl_intensity)
spitz_bl_update((struct pxa2xx_state_s *) opaque);
}
static void spitz_bl_power(int line, int level, void *opaque)
{
bl_power = !!level;
spitz_bl_update((struct pxa2xx_state_s *) opaque);
}
static void spitz_lcdtg_dac_put(void *opaque, uint8_t cmd)
{
int addr, value;
addr = cmd >> 5;
value = cmd & 0x1f;
switch (addr) {
case LCDTG_RESCTL:
if (value)
spitz_printf("LCD in QVGA mode\n");
else
spitz_printf("LCD in VGA mode\n");
break;
case LCDTG_DUTYCTRL:
bl_intensity &= ~0x1f;
bl_intensity |= value;
if (bl_power)
spitz_bl_update((struct pxa2xx_state_s *) opaque);
break;
case LCDTG_POWERREG0:
/* Set common voltage to M62332FP */
break;
}
}
/* SSP devices */
#define CORGI_SSP_PORT 2
#define SPITZ_GPIO_LCDCON_CS 53
#define SPITZ_GPIO_ADS7846_CS 14
#define SPITZ_GPIO_MAX1111_CS 20
#define SPITZ_GPIO_TP_INT 11
static int lcd_en, ads_en, max_en;
static struct max111x_s *max1111;
static struct ads7846_state_s *ads7846;
/* "Demux" the signal based on current chipselect */
static uint32_t corgi_ssp_read(void *opaque)
{
if (lcd_en)
return 0;
if (ads_en)
return ads7846_read(ads7846);
if (max_en)
return max111x_read(max1111);
return 0;
}
static void corgi_ssp_write(void *opaque, uint32_t value)
{
if (lcd_en)
spitz_lcdtg_dac_put(opaque, value);
if (ads_en)
ads7846_write(ads7846, value);
if (max_en)
max111x_write(max1111, value);
}
static void corgi_ssp_gpio_cs(int line, int level, struct pxa2xx_state_s *s)
{
if (line == SPITZ_GPIO_LCDCON_CS)
lcd_en = !level;
else if (line == SPITZ_GPIO_ADS7846_CS)
ads_en = !level;
else if (line == SPITZ_GPIO_MAX1111_CS)
max_en = !level;
}
#define MAX1111_BATT_VOLT 1
#define MAX1111_BATT_TEMP 2
#define MAX1111_ACIN_VOLT 3
#define SPITZ_BATTERY_TEMP 0xe0 /* About 2.9V */
#define SPITZ_BATTERY_VOLT 0xd0 /* About 4.0V */
#define SPITZ_CHARGEON_ACIN 0x80 /* About 5.0V */
static void spitz_adc_temp_on(int line, int level, void *opaque)
{
if (!max1111)
return;
if (level)
max111x_set_input(max1111, MAX1111_BATT_TEMP, SPITZ_BATTERY_TEMP);
else
max111x_set_input(max1111, MAX1111_BATT_TEMP, 0);
}
static void spitz_pendown_set(void *opaque, int line, int level)
{
struct pxa2xx_state_s *cpu = (struct pxa2xx_state_s *) opaque;
pxa2xx_gpio_set(cpu->gpio, SPITZ_GPIO_TP_INT, level);
}
static void spitz_ssp_attach(struct pxa2xx_state_s *cpu)
{
lcd_en = ads_en = max_en = 0;
ads7846 = ads7846_init(qemu_allocate_irqs(spitz_pendown_set, cpu, 1)[0]);
max1111 = max1111_init(0);
max111x_set_input(max1111, MAX1111_BATT_VOLT, SPITZ_BATTERY_VOLT);
max111x_set_input(max1111, MAX1111_BATT_TEMP, 0);
max111x_set_input(max1111, MAX1111_ACIN_VOLT, SPITZ_CHARGEON_ACIN);
pxa2xx_ssp_attach(cpu->ssp[CORGI_SSP_PORT - 1], corgi_ssp_read,
corgi_ssp_write, cpu);
pxa2xx_gpio_handler_set(cpu->gpio, SPITZ_GPIO_LCDCON_CS,
(gpio_handler_t) corgi_ssp_gpio_cs, cpu);
pxa2xx_gpio_handler_set(cpu->gpio, SPITZ_GPIO_ADS7846_CS,
(gpio_handler_t) corgi_ssp_gpio_cs, cpu);
pxa2xx_gpio_handler_set(cpu->gpio, SPITZ_GPIO_MAX1111_CS,
(gpio_handler_t) corgi_ssp_gpio_cs, cpu);
bl_intensity = 0x20;
bl_power = 0;
}
/* CF Microdrive */
static void spitz_microdrive_attach(struct pxa2xx_state_s *cpu)
{
struct pcmcia_card_s *md;
BlockDriverState *bs = bs_table[0];
if (bs && bdrv_is_inserted(bs) && !bdrv_is_removable(bs)) {
md = dscm1xxxx_init(bs);
pxa2xx_pcmcia_attach(cpu->pcmcia[0], md);
}
}
/* Other peripherals */
static void spitz_charge_switch(int line, int level, void *opaque)
{
spitz_printf("Charging %s.\n", level ? "off" : "on");
}
static void spitz_discharge_switch(int line, int level, void *opaque)
{
spitz_printf("Discharging %s.\n", level ? "on" : "off");
}
static void spitz_greenled_switch(int line, int level, void *opaque)
{
spitz_printf("Green LED %s.\n", level ? "on" : "off");
}
static void spitz_orangeled_switch(int line, int level, void *opaque)
{
spitz_printf("Orange LED %s.\n", level ? "on" : "off");
}
#define SPITZ_SCP_LED_GREEN 1
#define SPITZ_SCP_JK_B 2
#define SPITZ_SCP_CHRG_ON 3
#define SPITZ_SCP_MUTE_L 4
#define SPITZ_SCP_MUTE_R 5
#define SPITZ_SCP_CF_POWER 6
#define SPITZ_SCP_LED_ORANGE 7
#define SPITZ_SCP_JK_A 8
#define SPITZ_SCP_ADC_TEMP_ON 9
#define SPITZ_SCP2_IR_ON 1
#define SPITZ_SCP2_AKIN_PULLUP 2
#define SPITZ_SCP2_BACKLIGHT_CONT 7
#define SPITZ_SCP2_BACKLIGHT_ON 8
#define SPITZ_SCP2_MIC_BIAS 9
static void spitz_scoop_gpio_setup(struct pxa2xx_state_s *cpu,
struct scoop_info_s *scp, int num)
{
scoop_gpio_handler_set(&scp[0], SPITZ_SCP_CHRG_ON,
spitz_charge_switch, cpu);
scoop_gpio_handler_set(&scp[0], SPITZ_SCP_JK_B,
spitz_discharge_switch, cpu);
scoop_gpio_handler_set(&scp[0], SPITZ_SCP_LED_GREEN,
spitz_greenled_switch, cpu);
scoop_gpio_handler_set(&scp[0], SPITZ_SCP_LED_ORANGE,
spitz_orangeled_switch, cpu);
if (num >= 2) {
scoop_gpio_handler_set(&scp[1], SPITZ_SCP2_BACKLIGHT_CONT,
spitz_bl_bit5, cpu);
scoop_gpio_handler_set(&scp[1], SPITZ_SCP2_BACKLIGHT_ON,
spitz_bl_power, cpu);
}
scoop_gpio_handler_set(&scp[0], SPITZ_SCP_ADC_TEMP_ON,
spitz_adc_temp_on, cpu);
}
#define SPITZ_GPIO_HSYNC 22
#define SPITZ_GPIO_SD_DETECT 9
#define SPITZ_GPIO_SD_WP 81
#define SPITZ_GPIO_ON_RESET 89
#define SPITZ_GPIO_BAT_COVER 90
#define SPITZ_GPIO_CF1_IRQ 105
#define SPITZ_GPIO_CF1_CD 94
#define SPITZ_GPIO_CF2_IRQ 106
#define SPITZ_GPIO_CF2_CD 93
int spitz_hsync;
static void spitz_lcd_hsync_handler(void *opaque)
{
struct pxa2xx_state_s *cpu = (struct pxa2xx_state_s *) opaque;
pxa2xx_gpio_set(cpu->gpio, SPITZ_GPIO_HSYNC, spitz_hsync);
spitz_hsync ^= 1;
}
static void spitz_mmc_coverswitch_change(void *opaque, int in)
{
struct pxa2xx_state_s *cpu = (struct pxa2xx_state_s *) opaque;
pxa2xx_gpio_set(cpu->gpio, SPITZ_GPIO_SD_DETECT, in);
}
static void spitz_mmc_writeprotect_change(void *opaque, int wp)
{
struct pxa2xx_state_s *cpu = (struct pxa2xx_state_s *) opaque;
pxa2xx_gpio_set(cpu->gpio, SPITZ_GPIO_SD_WP, wp);
}
static void spitz_pcmcia_cb(void *opaque, int line, int level)
{
struct pxa2xx_state_s *cpu = (struct pxa2xx_state_s *) opaque;
static const int gpio_map[] = {
SPITZ_GPIO_CF1_IRQ, SPITZ_GPIO_CF1_CD,
SPITZ_GPIO_CF2_IRQ, SPITZ_GPIO_CF2_CD,
};
pxa2xx_gpio_set(cpu->gpio, gpio_map[line], level);
}
static void spitz_gpio_setup(struct pxa2xx_state_s *cpu, int slots)
{
qemu_irq *pcmcia_cb;
/*
* Bad hack: We toggle the LCD hsync GPIO on every GPIO status
* read to satisfy broken guests that poll-wait for hsync.
* Simulating a real hsync event would be less practical and
* wouldn't guarantee that a guest ever exits the loop.
*/
spitz_hsync = 0;
pxa2xx_gpio_read_notifier(cpu->gpio, spitz_lcd_hsync_handler, cpu);
pxa2xx_lcd_vsync_cb(cpu->lcd, spitz_lcd_hsync_handler, cpu);
/* MMC/SD host */
pxa2xx_mmci_handlers(cpu->mmc, cpu, spitz_mmc_writeprotect_change,
spitz_mmc_coverswitch_change);
/* Battery lock always closed */
pxa2xx_gpio_set(cpu->gpio, SPITZ_GPIO_BAT_COVER, 1);
/* Handle reset */
pxa2xx_gpio_handler_set(cpu->gpio, SPITZ_GPIO_ON_RESET, pxa2xx_reset, cpu);
/* PCMCIA signals: card's IRQ and Card-Detect */
pcmcia_cb = qemu_allocate_irqs(spitz_pcmcia_cb, cpu, slots * 2);
if (slots >= 1)
pxa2xx_pcmcia_set_irq_cb(cpu->pcmcia[0], pcmcia_cb[0], pcmcia_cb[1]);
if (slots >= 2)
pxa2xx_pcmcia_set_irq_cb(cpu->pcmcia[1], pcmcia_cb[2], pcmcia_cb[3]);
/* Initialise the screen rotation related signals */
spitz_gpio_invert[3] = 0; /* Always open */
if (graphic_rotate) { /* Tablet mode */
spitz_gpio_invert[4] = 0;
} else { /* Portrait mode */
spitz_gpio_invert[4] = 1;
}
pxa2xx_gpio_set(cpu->gpio, SPITZ_GPIO_SWA, spitz_gpio_invert[3]);
pxa2xx_gpio_set(cpu->gpio, SPITZ_GPIO_SWB, spitz_gpio_invert[4]);
}
/* Write the bootloader parameters memory area. */
#define MAGIC_CHG(a, b, c, d) ((d << 24) | (c << 16) | (b << 8) | a)
struct __attribute__ ((__packed__)) sl_param_info {
uint32_t comadj_keyword;
int32_t comadj;
uint32_t uuid_keyword;
char uuid[16];
uint32_t touch_keyword;
int32_t touch_xp;
int32_t touch_yp;
int32_t touch_xd;
int32_t touch_yd;
uint32_t adadj_keyword;
int32_t adadj;
uint32_t phad_keyword;
int32_t phadadj;
} spitz_bootparam = {
.comadj_keyword = MAGIC_CHG('C', 'M', 'A', 'D'),
.comadj = 125,
.uuid_keyword = MAGIC_CHG('U', 'U', 'I', 'D'),
.uuid = { -1 },
.touch_keyword = MAGIC_CHG('T', 'U', 'C', 'H'),
.touch_xp = -1,
.adadj_keyword = MAGIC_CHG('B', 'V', 'A', 'D'),
.adadj = -1,
.phad_keyword = MAGIC_CHG('P', 'H', 'A', 'D'),
.phadadj = 0x01,
};
static void sl_bootparam_write(uint32_t ptr)
{
memcpy(phys_ram_base + ptr, &spitz_bootparam,
sizeof(struct sl_param_info));
}
#define SL_PXA_PARAM_BASE 0xa0000a00
/* Board init. */
enum spitz_model_e { spitz, akita, borzoi, terrier };
static void spitz_common_init(int ram_size, int vga_ram_size,
DisplayState *ds, const char *kernel_filename,
const char *kernel_cmdline, const char *initrd_filename,
const char *cpu_model, enum spitz_model_e model, int arm_id)
{
uint32_t spitz_ram = 0x04000000;
uint32_t spitz_rom = 0x00800000;
struct pxa2xx_state_s *cpu;
struct scoop_info_s *scp;
if (!cpu_model)
cpu_model = (model == terrier) ? "pxa270-c5" : "pxa270-c0";
/* Setup CPU & memory */
if (ram_size < spitz_ram + spitz_rom) {
fprintf(stderr, "This platform requires %i bytes of memory\n",
spitz_ram + spitz_rom);
exit(1);
}
cpu = pxa270_init(spitz_ram, ds, cpu_model);
sl_flash_register(cpu, (model == spitz) ? FLASH_128M : FLASH_1024M);
cpu_register_physical_memory(0, spitz_rom,
qemu_ram_alloc(spitz_rom) | IO_MEM_ROM);
/* Setup peripherals */
spitz_keyboard_register(cpu);
spitz_ssp_attach(cpu);
scp = spitz_scoop_init(cpu, (model == akita) ? 1 : 2);
spitz_scoop_gpio_setup(cpu, scp, (model == akita) ? 1 : 2);
spitz_gpio_setup(cpu, (model == akita) ? 1 : 2);
if (model == terrier)
/* A 6.0 GB microdrive is permanently sitting in CF slot 0. */
spitz_microdrive_attach(cpu);
else if (model != akita)
/* A 4.0 GB microdrive is permanently sitting in CF slot 0. */
spitz_microdrive_attach(cpu);
/* Setup initial (reset) machine state */
cpu->env->regs[15] = PXA2XX_SDRAM_BASE;
arm_load_kernel(cpu->env, spitz_ram, kernel_filename, kernel_cmdline,
initrd_filename, arm_id, PXA2XX_SDRAM_BASE);
sl_bootparam_write(SL_PXA_PARAM_BASE - PXA2XX_SDRAM_BASE);
}
static void spitz_init(int ram_size, int vga_ram_size, int boot_device,
DisplayState *ds, const char **fd_filename, int snapshot,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
spitz_common_init(ram_size, vga_ram_size, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model, spitz, 0x2c9);
}
static void borzoi_init(int ram_size, int vga_ram_size, int boot_device,
DisplayState *ds, const char **fd_filename, int snapshot,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
spitz_common_init(ram_size, vga_ram_size, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model, borzoi, 0x33f);
}
static void akita_init(int ram_size, int vga_ram_size, int boot_device,
DisplayState *ds, const char **fd_filename, int snapshot,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
spitz_common_init(ram_size, vga_ram_size, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model, akita, 0x2e8);
}
static void terrier_init(int ram_size, int vga_ram_size, int boot_device,
DisplayState *ds, const char **fd_filename, int snapshot,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
spitz_common_init(ram_size, vga_ram_size, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model, terrier, 0x33f);
}
QEMUMachine akitapda_machine = {
"akita",
"Akita PDA (PXA270)",
akita_init,
};
QEMUMachine spitzpda_machine = {
"spitz",
"Spitz PDA (PXA270)",
spitz_init,
};
QEMUMachine borzoipda_machine = {
"borzoi",
"Borzoi PDA (PXA270)",
borzoi_init,
};
QEMUMachine terrierpda_machine = {
"terrier",
"Terrier PDA (PXA270)",
terrier_init,
};