qemu-e2k/target-sh4/helper.c

873 lines
24 KiB
C

/*
* SH4 emulation
*
* Copyright (c) 2005 Samuel Tardieu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/log.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/sh4/sh_intc.h"
#endif
#if defined(CONFIG_USER_ONLY)
void superh_cpu_do_interrupt(CPUState *cs)
{
cs->exception_index = -1;
}
int superh_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
int mmu_idx)
{
SuperHCPU *cpu = SUPERH_CPU(cs);
CPUSH4State *env = &cpu->env;
env->tea = address;
cs->exception_index = -1;
switch (rw) {
case 0:
cs->exception_index = 0x0a0;
break;
case 1:
cs->exception_index = 0x0c0;
break;
case 2:
cs->exception_index = 0x0a0;
break;
}
return 1;
}
int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr)
{
/* For user mode, only U0 area is cacheable. */
return !(addr & 0x80000000);
}
#else /* !CONFIG_USER_ONLY */
#define MMU_OK 0
#define MMU_ITLB_MISS (-1)
#define MMU_ITLB_MULTIPLE (-2)
#define MMU_ITLB_VIOLATION (-3)
#define MMU_DTLB_MISS_READ (-4)
#define MMU_DTLB_MISS_WRITE (-5)
#define MMU_DTLB_INITIAL_WRITE (-6)
#define MMU_DTLB_VIOLATION_READ (-7)
#define MMU_DTLB_VIOLATION_WRITE (-8)
#define MMU_DTLB_MULTIPLE (-9)
#define MMU_DTLB_MISS (-10)
#define MMU_IADDR_ERROR (-11)
#define MMU_DADDR_ERROR_READ (-12)
#define MMU_DADDR_ERROR_WRITE (-13)
void superh_cpu_do_interrupt(CPUState *cs)
{
SuperHCPU *cpu = SUPERH_CPU(cs);
CPUSH4State *env = &cpu->env;
int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD;
int do_exp, irq_vector = cs->exception_index;
/* prioritize exceptions over interrupts */
do_exp = cs->exception_index != -1;
do_irq = do_irq && (cs->exception_index == -1);
if (env->sr & (1u << SR_BL)) {
if (do_exp && cs->exception_index != 0x1e0) {
cs->exception_index = 0x000; /* masked exception -> reset */
}
if (do_irq && !env->in_sleep) {
return; /* masked */
}
}
env->in_sleep = 0;
if (do_irq) {
irq_vector = sh_intc_get_pending_vector(env->intc_handle,
(env->sr >> 4) & 0xf);
if (irq_vector == -1) {
return; /* masked */
}
}
if (qemu_loglevel_mask(CPU_LOG_INT)) {
const char *expname;
switch (cs->exception_index) {
case 0x0e0:
expname = "addr_error";
break;
case 0x040:
expname = "tlb_miss";
break;
case 0x0a0:
expname = "tlb_violation";
break;
case 0x180:
expname = "illegal_instruction";
break;
case 0x1a0:
expname = "slot_illegal_instruction";
break;
case 0x800:
expname = "fpu_disable";
break;
case 0x820:
expname = "slot_fpu";
break;
case 0x100:
expname = "data_write";
break;
case 0x060:
expname = "dtlb_miss_write";
break;
case 0x0c0:
expname = "dtlb_violation_write";
break;
case 0x120:
expname = "fpu_exception";
break;
case 0x080:
expname = "initial_page_write";
break;
case 0x160:
expname = "trapa";
break;
default:
expname = do_irq ? "interrupt" : "???";
break;
}
qemu_log("exception 0x%03x [%s] raised\n",
irq_vector, expname);
log_cpu_state(cs, 0);
}
env->ssr = cpu_read_sr(env);
env->spc = env->pc;
env->sgr = env->gregs[15];
env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB);
if (env->flags & (DELAY_SLOT | DELAY_SLOT_CONDITIONAL)) {
/* Branch instruction should be executed again before delay slot. */
env->spc -= 2;
/* Clear flags for exception/interrupt routine. */
env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL | DELAY_SLOT_TRUE);
}
if (env->flags & DELAY_SLOT_CLEARME)
env->flags = 0;
if (do_exp) {
env->expevt = cs->exception_index;
switch (cs->exception_index) {
case 0x000:
case 0x020:
case 0x140:
env->sr &= ~(1u << SR_FD);
env->sr |= 0xf << 4; /* IMASK */
env->pc = 0xa0000000;
break;
case 0x040:
case 0x060:
env->pc = env->vbr + 0x400;
break;
case 0x160:
env->spc += 2; /* special case for TRAPA */
/* fall through */
default:
env->pc = env->vbr + 0x100;
break;
}
return;
}
if (do_irq) {
env->intevt = irq_vector;
env->pc = env->vbr + 0x600;
return;
}
}
static void update_itlb_use(CPUSH4State * env, int itlbnb)
{
uint8_t or_mask = 0, and_mask = (uint8_t) - 1;
switch (itlbnb) {
case 0:
and_mask = 0x1f;
break;
case 1:
and_mask = 0xe7;
or_mask = 0x80;
break;
case 2:
and_mask = 0xfb;
or_mask = 0x50;
break;
case 3:
or_mask = 0x2c;
break;
}
env->mmucr &= (and_mask << 24) | 0x00ffffff;
env->mmucr |= (or_mask << 24);
}
static int itlb_replacement(CPUSH4State * env)
{
SuperHCPU *cpu = sh_env_get_cpu(env);
if ((env->mmucr & 0xe0000000) == 0xe0000000) {
return 0;
}
if ((env->mmucr & 0x98000000) == 0x18000000) {
return 1;
}
if ((env->mmucr & 0x54000000) == 0x04000000) {
return 2;
}
if ((env->mmucr & 0x2c000000) == 0x00000000) {
return 3;
}
cpu_abort(CPU(cpu), "Unhandled itlb_replacement");
}
/* Find the corresponding entry in the right TLB
Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE
*/
static int find_tlb_entry(CPUSH4State * env, target_ulong address,
tlb_t * entries, uint8_t nbtlb, int use_asid)
{
int match = MMU_DTLB_MISS;
uint32_t start, end;
uint8_t asid;
int i;
asid = env->pteh & 0xff;
for (i = 0; i < nbtlb; i++) {
if (!entries[i].v)
continue; /* Invalid entry */
if (!entries[i].sh && use_asid && entries[i].asid != asid)
continue; /* Bad ASID */
start = (entries[i].vpn << 10) & ~(entries[i].size - 1);
end = start + entries[i].size - 1;
if (address >= start && address <= end) { /* Match */
if (match != MMU_DTLB_MISS)
return MMU_DTLB_MULTIPLE; /* Multiple match */
match = i;
}
}
return match;
}
static void increment_urc(CPUSH4State * env)
{
uint8_t urb, urc;
/* Increment URC */
urb = ((env->mmucr) >> 18) & 0x3f;
urc = ((env->mmucr) >> 10) & 0x3f;
urc++;
if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1))
urc = 0;
env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10);
}
/* Copy and utlb entry into itlb
Return entry
*/
static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb)
{
int itlb;
tlb_t * ientry;
itlb = itlb_replacement(env);
ientry = &env->itlb[itlb];
if (ientry->v) {
tlb_flush_page(CPU(sh_env_get_cpu(env)), ientry->vpn << 10);
}
*ientry = env->utlb[utlb];
update_itlb_use(env, itlb);
return itlb;
}
/* Find itlb entry
Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE
*/
static int find_itlb_entry(CPUSH4State * env, target_ulong address,
int use_asid)
{
int e;
e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid);
if (e == MMU_DTLB_MULTIPLE) {
e = MMU_ITLB_MULTIPLE;
} else if (e == MMU_DTLB_MISS) {
e = MMU_ITLB_MISS;
} else if (e >= 0) {
update_itlb_use(env, e);
}
return e;
}
/* Find utlb entry
Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */
static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid)
{
/* per utlb access */
increment_urc(env);
/* Return entry */
return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid);
}
/* Match address against MMU
Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE,
MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ,
MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS,
MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION,
MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE.
*/
static int get_mmu_address(CPUSH4State * env, target_ulong * physical,
int *prot, target_ulong address,
int rw, int access_type)
{
int use_asid, n;
tlb_t *matching = NULL;
use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
if (rw == 2) {
n = find_itlb_entry(env, address, use_asid);
if (n >= 0) {
matching = &env->itlb[n];
if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
n = MMU_ITLB_VIOLATION;
} else {
*prot = PAGE_EXEC;
}
} else {
n = find_utlb_entry(env, address, use_asid);
if (n >= 0) {
n = copy_utlb_entry_itlb(env, n);
matching = &env->itlb[n];
if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
n = MMU_ITLB_VIOLATION;
} else {
*prot = PAGE_READ | PAGE_EXEC;
if ((matching->pr & 1) && matching->d) {
*prot |= PAGE_WRITE;
}
}
} else if (n == MMU_DTLB_MULTIPLE) {
n = MMU_ITLB_MULTIPLE;
} else if (n == MMU_DTLB_MISS) {
n = MMU_ITLB_MISS;
}
}
} else {
n = find_utlb_entry(env, address, use_asid);
if (n >= 0) {
matching = &env->utlb[n];
if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
n = (rw == 1) ? MMU_DTLB_VIOLATION_WRITE :
MMU_DTLB_VIOLATION_READ;
} else if ((rw == 1) && !(matching->pr & 1)) {
n = MMU_DTLB_VIOLATION_WRITE;
} else if ((rw == 1) && !matching->d) {
n = MMU_DTLB_INITIAL_WRITE;
} else {
*prot = PAGE_READ;
if ((matching->pr & 1) && matching->d) {
*prot |= PAGE_WRITE;
}
}
} else if (n == MMU_DTLB_MISS) {
n = (rw == 1) ? MMU_DTLB_MISS_WRITE :
MMU_DTLB_MISS_READ;
}
}
if (n >= 0) {
n = MMU_OK;
*physical = ((matching->ppn << 10) & ~(matching->size - 1)) |
(address & (matching->size - 1));
}
return n;
}
static int get_physical_address(CPUSH4State * env, target_ulong * physical,
int *prot, target_ulong address,
int rw, int access_type)
{
/* P1, P2 and P4 areas do not use translation */
if ((address >= 0x80000000 && address < 0xc0000000) ||
address >= 0xe0000000) {
if (!(env->sr & (1u << SR_MD))
&& (address < 0xe0000000 || address >= 0xe4000000)) {
/* Unauthorized access in user mode (only store queues are available) */
fprintf(stderr, "Unauthorized access\n");
if (rw == 0)
return MMU_DADDR_ERROR_READ;
else if (rw == 1)
return MMU_DADDR_ERROR_WRITE;
else
return MMU_IADDR_ERROR;
}
if (address >= 0x80000000 && address < 0xc0000000) {
/* Mask upper 3 bits for P1 and P2 areas */
*physical = address & 0x1fffffff;
} else {
*physical = address;
}
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return MMU_OK;
}
/* If MMU is disabled, return the corresponding physical page */
if (!(env->mmucr & MMUCR_AT)) {
*physical = address & 0x1FFFFFFF;
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return MMU_OK;
}
/* We need to resort to the MMU */
return get_mmu_address(env, physical, prot, address, rw, access_type);
}
int superh_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
int mmu_idx)
{
SuperHCPU *cpu = SUPERH_CPU(cs);
CPUSH4State *env = &cpu->env;
target_ulong physical;
int prot, ret, access_type;
access_type = ACCESS_INT;
ret =
get_physical_address(env, &physical, &prot, address, rw,
access_type);
if (ret != MMU_OK) {
env->tea = address;
if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) {
env->pteh = (env->pteh & PTEH_ASID_MASK) |
(address & PTEH_VPN_MASK);
}
switch (ret) {
case MMU_ITLB_MISS:
case MMU_DTLB_MISS_READ:
cs->exception_index = 0x040;
break;
case MMU_DTLB_MULTIPLE:
case MMU_ITLB_MULTIPLE:
cs->exception_index = 0x140;
break;
case MMU_ITLB_VIOLATION:
cs->exception_index = 0x0a0;
break;
case MMU_DTLB_MISS_WRITE:
cs->exception_index = 0x060;
break;
case MMU_DTLB_INITIAL_WRITE:
cs->exception_index = 0x080;
break;
case MMU_DTLB_VIOLATION_READ:
cs->exception_index = 0x0a0;
break;
case MMU_DTLB_VIOLATION_WRITE:
cs->exception_index = 0x0c0;
break;
case MMU_IADDR_ERROR:
case MMU_DADDR_ERROR_READ:
cs->exception_index = 0x0e0;
break;
case MMU_DADDR_ERROR_WRITE:
cs->exception_index = 0x100;
break;
default:
cpu_abort(cs, "Unhandled MMU fault");
}
return 1;
}
address &= TARGET_PAGE_MASK;
physical &= TARGET_PAGE_MASK;
tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE);
return 0;
}
hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
SuperHCPU *cpu = SUPERH_CPU(cs);
target_ulong physical;
int prot;
get_physical_address(&cpu->env, &physical, &prot, addr, 0, 0);
return physical;
}
void cpu_load_tlb(CPUSH4State * env)
{
SuperHCPU *cpu = sh_env_get_cpu(env);
int n = cpu_mmucr_urc(env->mmucr);
tlb_t * entry = &env->utlb[n];
if (entry->v) {
/* Overwriting valid entry in utlb. */
target_ulong address = entry->vpn << 10;
tlb_flush_page(CPU(cpu), address);
}
/* Take values into cpu status from registers. */
entry->asid = (uint8_t)cpu_pteh_asid(env->pteh);
entry->vpn = cpu_pteh_vpn(env->pteh);
entry->v = (uint8_t)cpu_ptel_v(env->ptel);
entry->ppn = cpu_ptel_ppn(env->ptel);
entry->sz = (uint8_t)cpu_ptel_sz(env->ptel);
switch (entry->sz) {
case 0: /* 00 */
entry->size = 1024; /* 1K */
break;
case 1: /* 01 */
entry->size = 1024 * 4; /* 4K */
break;
case 2: /* 10 */
entry->size = 1024 * 64; /* 64K */
break;
case 3: /* 11 */
entry->size = 1024 * 1024; /* 1M */
break;
default:
cpu_abort(CPU(cpu), "Unhandled load_tlb");
break;
}
entry->sh = (uint8_t)cpu_ptel_sh(env->ptel);
entry->c = (uint8_t)cpu_ptel_c(env->ptel);
entry->pr = (uint8_t)cpu_ptel_pr(env->ptel);
entry->d = (uint8_t)cpu_ptel_d(env->ptel);
entry->wt = (uint8_t)cpu_ptel_wt(env->ptel);
entry->sa = (uint8_t)cpu_ptea_sa(env->ptea);
entry->tc = (uint8_t)cpu_ptea_tc(env->ptea);
}
void cpu_sh4_invalidate_tlb(CPUSH4State *s)
{
int i;
/* UTLB */
for (i = 0; i < UTLB_SIZE; i++) {
tlb_t * entry = &s->utlb[i];
entry->v = 0;
}
/* ITLB */
for (i = 0; i < ITLB_SIZE; i++) {
tlb_t * entry = &s->itlb[i];
entry->v = 0;
}
tlb_flush(CPU(sh_env_get_cpu(s)), 1);
}
uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s,
hwaddr addr)
{
int index = (addr & 0x00000300) >> 8;
tlb_t * entry = &s->itlb[index];
return (entry->vpn << 10) |
(entry->v << 8) |
(entry->asid);
}
void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr,
uint32_t mem_value)
{
uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
int index = (addr & 0x00000300) >> 8;
tlb_t * entry = &s->itlb[index];
if (entry->v) {
/* Overwriting valid entry in itlb. */
target_ulong address = entry->vpn << 10;
tlb_flush_page(CPU(sh_env_get_cpu(s)), address);
}
entry->asid = asid;
entry->vpn = vpn;
entry->v = v;
}
uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s,
hwaddr addr)
{
int array = (addr & 0x00800000) >> 23;
int index = (addr & 0x00000300) >> 8;
tlb_t * entry = &s->itlb[index];
if (array == 0) {
/* ITLB Data Array 1 */
return (entry->ppn << 10) |
(entry->v << 8) |
(entry->pr << 5) |
((entry->sz & 1) << 6) |
((entry->sz & 2) << 4) |
(entry->c << 3) |
(entry->sh << 1);
} else {
/* ITLB Data Array 2 */
return (entry->tc << 1) |
(entry->sa);
}
}
void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr,
uint32_t mem_value)
{
int array = (addr & 0x00800000) >> 23;
int index = (addr & 0x00000300) >> 8;
tlb_t * entry = &s->itlb[index];
if (array == 0) {
/* ITLB Data Array 1 */
if (entry->v) {
/* Overwriting valid entry in utlb. */
target_ulong address = entry->vpn << 10;
tlb_flush_page(CPU(sh_env_get_cpu(s)), address);
}
entry->ppn = (mem_value & 0x1ffffc00) >> 10;
entry->v = (mem_value & 0x00000100) >> 8;
entry->sz = (mem_value & 0x00000080) >> 6 |
(mem_value & 0x00000010) >> 4;
entry->pr = (mem_value & 0x00000040) >> 5;
entry->c = (mem_value & 0x00000008) >> 3;
entry->sh = (mem_value & 0x00000002) >> 1;
} else {
/* ITLB Data Array 2 */
entry->tc = (mem_value & 0x00000008) >> 3;
entry->sa = (mem_value & 0x00000007);
}
}
uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s,
hwaddr addr)
{
int index = (addr & 0x00003f00) >> 8;
tlb_t * entry = &s->utlb[index];
increment_urc(s); /* per utlb access */
return (entry->vpn << 10) |
(entry->v << 8) |
(entry->asid);
}
void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr,
uint32_t mem_value)
{
int associate = addr & 0x0000080;
uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9);
uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD));
if (associate) {
int i;
tlb_t * utlb_match_entry = NULL;
int needs_tlb_flush = 0;
/* search UTLB */
for (i = 0; i < UTLB_SIZE; i++) {
tlb_t * entry = &s->utlb[i];
if (!entry->v)
continue;
if (entry->vpn == vpn
&& (!use_asid || entry->asid == asid || entry->sh)) {
if (utlb_match_entry) {
CPUState *cs = CPU(sh_env_get_cpu(s));
/* Multiple TLB Exception */
cs->exception_index = 0x140;
s->tea = addr;
break;
}
if (entry->v && !v)
needs_tlb_flush = 1;
entry->v = v;
entry->d = d;
utlb_match_entry = entry;
}
increment_urc(s); /* per utlb access */
}
/* search ITLB */
for (i = 0; i < ITLB_SIZE; i++) {
tlb_t * entry = &s->itlb[i];
if (entry->vpn == vpn
&& (!use_asid || entry->asid == asid || entry->sh)) {
if (entry->v && !v)
needs_tlb_flush = 1;
if (utlb_match_entry)
*entry = *utlb_match_entry;
else
entry->v = v;
break;
}
}
if (needs_tlb_flush) {
tlb_flush_page(CPU(sh_env_get_cpu(s)), vpn << 10);
}
} else {
int index = (addr & 0x00003f00) >> 8;
tlb_t * entry = &s->utlb[index];
if (entry->v) {
CPUState *cs = CPU(sh_env_get_cpu(s));
/* Overwriting valid entry in utlb. */
target_ulong address = entry->vpn << 10;
tlb_flush_page(cs, address);
}
entry->asid = asid;
entry->vpn = vpn;
entry->d = d;
entry->v = v;
increment_urc(s);
}
}
uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s,
hwaddr addr)
{
int array = (addr & 0x00800000) >> 23;
int index = (addr & 0x00003f00) >> 8;
tlb_t * entry = &s->utlb[index];
increment_urc(s); /* per utlb access */
if (array == 0) {
/* ITLB Data Array 1 */
return (entry->ppn << 10) |
(entry->v << 8) |
(entry->pr << 5) |
((entry->sz & 1) << 6) |
((entry->sz & 2) << 4) |
(entry->c << 3) |
(entry->d << 2) |
(entry->sh << 1) |
(entry->wt);
} else {
/* ITLB Data Array 2 */
return (entry->tc << 1) |
(entry->sa);
}
}
void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr,
uint32_t mem_value)
{
int array = (addr & 0x00800000) >> 23;
int index = (addr & 0x00003f00) >> 8;
tlb_t * entry = &s->utlb[index];
increment_urc(s); /* per utlb access */
if (array == 0) {
/* UTLB Data Array 1 */
if (entry->v) {
/* Overwriting valid entry in utlb. */
target_ulong address = entry->vpn << 10;
tlb_flush_page(CPU(sh_env_get_cpu(s)), address);
}
entry->ppn = (mem_value & 0x1ffffc00) >> 10;
entry->v = (mem_value & 0x00000100) >> 8;
entry->sz = (mem_value & 0x00000080) >> 6 |
(mem_value & 0x00000010) >> 4;
entry->pr = (mem_value & 0x00000060) >> 5;
entry->c = (mem_value & 0x00000008) >> 3;
entry->d = (mem_value & 0x00000004) >> 2;
entry->sh = (mem_value & 0x00000002) >> 1;
entry->wt = (mem_value & 0x00000001);
} else {
/* UTLB Data Array 2 */
entry->tc = (mem_value & 0x00000008) >> 3;
entry->sa = (mem_value & 0x00000007);
}
}
int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr)
{
int n;
int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
/* check area */
if (env->sr & (1u << SR_MD)) {
/* For privileged mode, P2 and P4 area is not cacheable. */
if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr)
return 0;
} else {
/* For user mode, only U0 area is cacheable. */
if (0x80000000 <= addr)
return 0;
}
/*
* TODO : Evaluate CCR and check if the cache is on or off.
* Now CCR is not in CPUSH4State, but in SH7750State.
* When you move the ccr into CPUSH4State, the code will be
* as follows.
*/
#if 0
/* check if operand cache is enabled or not. */
if (!(env->ccr & 1))
return 0;
#endif
/* if MMU is off, no check for TLB. */
if (env->mmucr & MMUCR_AT)
return 1;
/* check TLB */
n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid);
if (n >= 0)
return env->itlb[n].c;
n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid);
if (n >= 0)
return env->utlb[n].c;
return 0;
}
#endif
bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
if (interrupt_request & CPU_INTERRUPT_HARD) {
superh_cpu_do_interrupt(cs);
return true;
}
return false;
}