qemu-e2k/hw/intc/arm_gicv3_its.c
Shashi Mallela 17fb5e36aa hw/intc: GICv3 redistributor ITS processing
Implemented lpi processing at redistributor to get lpi config info
from lpi configuration table,determine priority,set pending state in
lpi pending table and forward the lpi to cpuif.Added logic to invoke
redistributor lpi processing with translated LPI which set/clear LPI
from ITS device as part of ITS INT,CLEAR,DISCARD command and
GITS_TRANSLATER processing.

Signed-off-by: Shashi Mallela <shashi.mallela@linaro.org>
Tested-by: Neil Armstrong <narmstrong@baylibre.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20210910143951.92242-7-shashi.mallela@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2021-09-13 21:01:08 +01:00

1323 lines
39 KiB
C

/*
* ITS emulation for a GICv3-based system
*
* Copyright Linaro.org 2021
*
* Authors:
* Shashi Mallela <shashi.mallela@linaro.org>
*
* This work is licensed under the terms of the GNU GPL, version 2 or (at your
* option) any later version. See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "hw/qdev-properties.h"
#include "hw/intc/arm_gicv3_its_common.h"
#include "gicv3_internal.h"
#include "qom/object.h"
#include "qapi/error.h"
typedef struct GICv3ITSClass GICv3ITSClass;
/* This is reusing the GICv3ITSState typedef from ARM_GICV3_ITS_COMMON */
DECLARE_OBJ_CHECKERS(GICv3ITSState, GICv3ITSClass,
ARM_GICV3_ITS, TYPE_ARM_GICV3_ITS)
struct GICv3ITSClass {
GICv3ITSCommonClass parent_class;
void (*parent_reset)(DeviceState *dev);
};
/*
* This is an internal enum used to distinguish between LPI triggered
* via command queue and LPI triggered via gits_translater write.
*/
typedef enum ItsCmdType {
NONE = 0, /* internal indication for GITS_TRANSLATER write */
CLEAR = 1,
DISCARD = 2,
INTERRUPT = 3,
} ItsCmdType;
typedef struct {
uint32_t iteh;
uint64_t itel;
} IteEntry;
static uint64_t baser_base_addr(uint64_t value, uint32_t page_sz)
{
uint64_t result = 0;
switch (page_sz) {
case GITS_PAGE_SIZE_4K:
case GITS_PAGE_SIZE_16K:
result = FIELD_EX64(value, GITS_BASER, PHYADDR) << 12;
break;
case GITS_PAGE_SIZE_64K:
result = FIELD_EX64(value, GITS_BASER, PHYADDRL_64K) << 16;
result |= FIELD_EX64(value, GITS_BASER, PHYADDRH_64K) << 48;
break;
default:
break;
}
return result;
}
static bool get_cte(GICv3ITSState *s, uint16_t icid, uint64_t *cte,
MemTxResult *res)
{
AddressSpace *as = &s->gicv3->dma_as;
uint64_t l2t_addr;
uint64_t value;
bool valid_l2t;
uint32_t l2t_id;
uint32_t max_l2_entries;
if (s->ct.indirect) {
l2t_id = icid / (s->ct.page_sz / L1TABLE_ENTRY_SIZE);
value = address_space_ldq_le(as,
s->ct.base_addr +
(l2t_id * L1TABLE_ENTRY_SIZE),
MEMTXATTRS_UNSPECIFIED, res);
if (*res == MEMTX_OK) {
valid_l2t = (value & L2_TABLE_VALID_MASK) != 0;
if (valid_l2t) {
max_l2_entries = s->ct.page_sz / s->ct.entry_sz;
l2t_addr = value & ((1ULL << 51) - 1);
*cte = address_space_ldq_le(as, l2t_addr +
((icid % max_l2_entries) * GITS_CTE_SIZE),
MEMTXATTRS_UNSPECIFIED, res);
}
}
} else {
/* Flat level table */
*cte = address_space_ldq_le(as, s->ct.base_addr +
(icid * GITS_CTE_SIZE),
MEMTXATTRS_UNSPECIFIED, res);
}
return (*cte & TABLE_ENTRY_VALID_MASK) != 0;
}
static bool update_ite(GICv3ITSState *s, uint32_t eventid, uint64_t dte,
IteEntry ite)
{
AddressSpace *as = &s->gicv3->dma_as;
uint64_t itt_addr;
MemTxResult res = MEMTX_OK;
itt_addr = (dte & GITS_DTE_ITTADDR_MASK) >> GITS_DTE_ITTADDR_SHIFT;
itt_addr <<= ITTADDR_SHIFT; /* 256 byte aligned */
address_space_stq_le(as, itt_addr + (eventid * (sizeof(uint64_t) +
sizeof(uint32_t))), ite.itel, MEMTXATTRS_UNSPECIFIED,
&res);
if (res == MEMTX_OK) {
address_space_stl_le(as, itt_addr + (eventid * (sizeof(uint64_t) +
sizeof(uint32_t))) + sizeof(uint32_t), ite.iteh,
MEMTXATTRS_UNSPECIFIED, &res);
}
if (res != MEMTX_OK) {
return false;
} else {
return true;
}
}
static bool get_ite(GICv3ITSState *s, uint32_t eventid, uint64_t dte,
uint16_t *icid, uint32_t *pIntid, MemTxResult *res)
{
AddressSpace *as = &s->gicv3->dma_as;
uint64_t itt_addr;
bool status = false;
IteEntry ite = {};
itt_addr = (dte & GITS_DTE_ITTADDR_MASK) >> GITS_DTE_ITTADDR_SHIFT;
itt_addr <<= ITTADDR_SHIFT; /* 256 byte aligned */
ite.itel = address_space_ldq_le(as, itt_addr +
(eventid * (sizeof(uint64_t) +
sizeof(uint32_t))), MEMTXATTRS_UNSPECIFIED,
res);
if (*res == MEMTX_OK) {
ite.iteh = address_space_ldl_le(as, itt_addr +
(eventid * (sizeof(uint64_t) +
sizeof(uint32_t))) + sizeof(uint32_t),
MEMTXATTRS_UNSPECIFIED, res);
if (*res == MEMTX_OK) {
if (ite.itel & TABLE_ENTRY_VALID_MASK) {
if ((ite.itel >> ITE_ENTRY_INTTYPE_SHIFT) &
GITS_TYPE_PHYSICAL) {
*pIntid = (ite.itel & ITE_ENTRY_INTID_MASK) >>
ITE_ENTRY_INTID_SHIFT;
*icid = ite.iteh & ITE_ENTRY_ICID_MASK;
status = true;
}
}
}
}
return status;
}
static uint64_t get_dte(GICv3ITSState *s, uint32_t devid, MemTxResult *res)
{
AddressSpace *as = &s->gicv3->dma_as;
uint64_t l2t_addr;
uint64_t value;
bool valid_l2t;
uint32_t l2t_id;
uint32_t max_l2_entries;
if (s->dt.indirect) {
l2t_id = devid / (s->dt.page_sz / L1TABLE_ENTRY_SIZE);
value = address_space_ldq_le(as,
s->dt.base_addr +
(l2t_id * L1TABLE_ENTRY_SIZE),
MEMTXATTRS_UNSPECIFIED, res);
if (*res == MEMTX_OK) {
valid_l2t = (value & L2_TABLE_VALID_MASK) != 0;
if (valid_l2t) {
max_l2_entries = s->dt.page_sz / s->dt.entry_sz;
l2t_addr = value & ((1ULL << 51) - 1);
value = address_space_ldq_le(as, l2t_addr +
((devid % max_l2_entries) * GITS_DTE_SIZE),
MEMTXATTRS_UNSPECIFIED, res);
}
}
} else {
/* Flat level table */
value = address_space_ldq_le(as, s->dt.base_addr +
(devid * GITS_DTE_SIZE),
MEMTXATTRS_UNSPECIFIED, res);
}
return value;
}
/*
* This function handles the processing of following commands based on
* the ItsCmdType parameter passed:-
* 1. triggering of lpi interrupt translation via ITS INT command
* 2. triggering of lpi interrupt translation via gits_translater register
* 3. handling of ITS CLEAR command
* 4. handling of ITS DISCARD command
*/
static bool process_its_cmd(GICv3ITSState *s, uint64_t value, uint32_t offset,
ItsCmdType cmd)
{
AddressSpace *as = &s->gicv3->dma_as;
uint32_t devid, eventid;
MemTxResult res = MEMTX_OK;
bool dte_valid;
uint64_t dte = 0;
uint32_t max_eventid;
uint16_t icid = 0;
uint32_t pIntid = 0;
bool ite_valid = false;
uint64_t cte = 0;
bool cte_valid = false;
bool result = false;
uint64_t rdbase;
if (cmd == NONE) {
devid = offset;
} else {
devid = ((value & DEVID_MASK) >> DEVID_SHIFT);
offset += NUM_BYTES_IN_DW;
value = address_space_ldq_le(as, s->cq.base_addr + offset,
MEMTXATTRS_UNSPECIFIED, &res);
}
if (res != MEMTX_OK) {
return result;
}
eventid = (value & EVENTID_MASK);
dte = get_dte(s, devid, &res);
if (res != MEMTX_OK) {
return result;
}
dte_valid = dte & TABLE_ENTRY_VALID_MASK;
if (dte_valid) {
max_eventid = (1UL << (((dte >> 1U) & SIZE_MASK) + 1));
ite_valid = get_ite(s, eventid, dte, &icid, &pIntid, &res);
if (res != MEMTX_OK) {
return result;
}
if (ite_valid) {
cte_valid = get_cte(s, icid, &cte, &res);
}
if (res != MEMTX_OK) {
return result;
}
}
if ((devid > s->dt.maxids.max_devids) || !dte_valid || !ite_valid ||
!cte_valid || (eventid > max_eventid)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid command attributes "
"devid %d or eventid %d or invalid dte %d or"
"invalid cte %d or invalid ite %d\n",
__func__, devid, eventid, dte_valid, cte_valid,
ite_valid);
/*
* in this implementation, in case of error
* we ignore this command and move onto the next
* command in the queue
*/
} else {
/*
* Current implementation only supports rdbase == procnum
* Hence rdbase physical address is ignored
*/
rdbase = (cte & GITS_CTE_RDBASE_PROCNUM_MASK) >> 1U;
if (rdbase > s->gicv3->num_cpu) {
return result;
}
if ((cmd == CLEAR) || (cmd == DISCARD)) {
gicv3_redist_process_lpi(&s->gicv3->cpu[rdbase], pIntid, 0);
} else {
gicv3_redist_process_lpi(&s->gicv3->cpu[rdbase], pIntid, 1);
}
if (cmd == DISCARD) {
IteEntry ite = {};
/* remove mapping from interrupt translation table */
result = update_ite(s, eventid, dte, ite);
}
}
return result;
}
static bool process_mapti(GICv3ITSState *s, uint64_t value, uint32_t offset,
bool ignore_pInt)
{
AddressSpace *as = &s->gicv3->dma_as;
uint32_t devid, eventid;
uint32_t pIntid = 0;
uint32_t max_eventid, max_Intid;
bool dte_valid;
MemTxResult res = MEMTX_OK;
uint16_t icid = 0;
uint64_t dte = 0;
IteEntry ite;
uint32_t int_spurious = INTID_SPURIOUS;
bool result = false;
devid = ((value & DEVID_MASK) >> DEVID_SHIFT);
offset += NUM_BYTES_IN_DW;
value = address_space_ldq_le(as, s->cq.base_addr + offset,
MEMTXATTRS_UNSPECIFIED, &res);
if (res != MEMTX_OK) {
return result;
}
eventid = (value & EVENTID_MASK);
if (!ignore_pInt) {
pIntid = ((value & pINTID_MASK) >> pINTID_SHIFT);
}
offset += NUM_BYTES_IN_DW;
value = address_space_ldq_le(as, s->cq.base_addr + offset,
MEMTXATTRS_UNSPECIFIED, &res);
if (res != MEMTX_OK) {
return result;
}
icid = value & ICID_MASK;
dte = get_dte(s, devid, &res);
if (res != MEMTX_OK) {
return result;
}
dte_valid = dte & TABLE_ENTRY_VALID_MASK;
max_eventid = (1UL << (((dte >> 1U) & SIZE_MASK) + 1));
if (!ignore_pInt) {
max_Intid = (1ULL << (GICD_TYPER_IDBITS + 1)) - 1;
}
if ((devid > s->dt.maxids.max_devids) || (icid > s->ct.maxids.max_collids)
|| !dte_valid || (eventid > max_eventid) ||
(!ignore_pInt && (((pIntid < GICV3_LPI_INTID_START) ||
(pIntid > max_Intid)) && (pIntid != INTID_SPURIOUS)))) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid command attributes "
"devid %d or icid %d or eventid %d or pIntid %d or"
"unmapped dte %d\n", __func__, devid, icid, eventid,
pIntid, dte_valid);
/*
* in this implementation, in case of error
* we ignore this command and move onto the next
* command in the queue
*/
} else {
/* add ite entry to interrupt translation table */
ite.itel = (dte_valid & TABLE_ENTRY_VALID_MASK) |
(GITS_TYPE_PHYSICAL << ITE_ENTRY_INTTYPE_SHIFT);
if (ignore_pInt) {
ite.itel |= (eventid << ITE_ENTRY_INTID_SHIFT);
} else {
ite.itel |= (pIntid << ITE_ENTRY_INTID_SHIFT);
}
ite.itel |= (int_spurious << ITE_ENTRY_INTSP_SHIFT);
ite.iteh = icid;
result = update_ite(s, eventid, dte, ite);
}
return result;
}
static bool update_cte(GICv3ITSState *s, uint16_t icid, bool valid,
uint64_t rdbase)
{
AddressSpace *as = &s->gicv3->dma_as;
uint64_t value;
uint64_t l2t_addr;
bool valid_l2t;
uint32_t l2t_id;
uint32_t max_l2_entries;
uint64_t cte = 0;
MemTxResult res = MEMTX_OK;
if (!s->ct.valid) {
return true;
}
if (valid) {
/* add mapping entry to collection table */
cte = (valid & TABLE_ENTRY_VALID_MASK) | (rdbase << 1ULL);
}
/*
* The specification defines the format of level 1 entries of a
* 2-level table, but the format of level 2 entries and the format
* of flat-mapped tables is IMPDEF.
*/
if (s->ct.indirect) {
l2t_id = icid / (s->ct.page_sz / L1TABLE_ENTRY_SIZE);
value = address_space_ldq_le(as,
s->ct.base_addr +
(l2t_id * L1TABLE_ENTRY_SIZE),
MEMTXATTRS_UNSPECIFIED, &res);
if (res != MEMTX_OK) {
return false;
}
valid_l2t = (value & L2_TABLE_VALID_MASK) != 0;
if (valid_l2t) {
max_l2_entries = s->ct.page_sz / s->ct.entry_sz;
l2t_addr = value & ((1ULL << 51) - 1);
address_space_stq_le(as, l2t_addr +
((icid % max_l2_entries) * GITS_CTE_SIZE),
cte, MEMTXATTRS_UNSPECIFIED, &res);
}
} else {
/* Flat level table */
address_space_stq_le(as, s->ct.base_addr + (icid * GITS_CTE_SIZE),
cte, MEMTXATTRS_UNSPECIFIED, &res);
}
if (res != MEMTX_OK) {
return false;
} else {
return true;
}
}
static bool process_mapc(GICv3ITSState *s, uint32_t offset)
{
AddressSpace *as = &s->gicv3->dma_as;
uint16_t icid;
uint64_t rdbase;
bool valid;
MemTxResult res = MEMTX_OK;
bool result = false;
uint64_t value;
offset += NUM_BYTES_IN_DW;
offset += NUM_BYTES_IN_DW;
value = address_space_ldq_le(as, s->cq.base_addr + offset,
MEMTXATTRS_UNSPECIFIED, &res);
if (res != MEMTX_OK) {
return result;
}
icid = value & ICID_MASK;
rdbase = (value & R_MAPC_RDBASE_MASK) >> R_MAPC_RDBASE_SHIFT;
rdbase &= RDBASE_PROCNUM_MASK;
valid = (value & CMD_FIELD_VALID_MASK);
if ((icid > s->ct.maxids.max_collids) || (rdbase > s->gicv3->num_cpu)) {
qemu_log_mask(LOG_GUEST_ERROR,
"ITS MAPC: invalid collection table attributes "
"icid %d rdbase %" PRIu64 "\n", icid, rdbase);
/*
* in this implementation, in case of error
* we ignore this command and move onto the next
* command in the queue
*/
} else {
result = update_cte(s, icid, valid, rdbase);
}
return result;
}
static bool update_dte(GICv3ITSState *s, uint32_t devid, bool valid,
uint8_t size, uint64_t itt_addr)
{
AddressSpace *as = &s->gicv3->dma_as;
uint64_t value;
uint64_t l2t_addr;
bool valid_l2t;
uint32_t l2t_id;
uint32_t max_l2_entries;
uint64_t dte = 0;
MemTxResult res = MEMTX_OK;
if (s->dt.valid) {
if (valid) {
/* add mapping entry to device table */
dte = (valid & TABLE_ENTRY_VALID_MASK) |
((size & SIZE_MASK) << 1U) |
(itt_addr << GITS_DTE_ITTADDR_SHIFT);
}
} else {
return true;
}
/*
* The specification defines the format of level 1 entries of a
* 2-level table, but the format of level 2 entries and the format
* of flat-mapped tables is IMPDEF.
*/
if (s->dt.indirect) {
l2t_id = devid / (s->dt.page_sz / L1TABLE_ENTRY_SIZE);
value = address_space_ldq_le(as,
s->dt.base_addr +
(l2t_id * L1TABLE_ENTRY_SIZE),
MEMTXATTRS_UNSPECIFIED, &res);
if (res != MEMTX_OK) {
return false;
}
valid_l2t = (value & L2_TABLE_VALID_MASK) != 0;
if (valid_l2t) {
max_l2_entries = s->dt.page_sz / s->dt.entry_sz;
l2t_addr = value & ((1ULL << 51) - 1);
address_space_stq_le(as, l2t_addr +
((devid % max_l2_entries) * GITS_DTE_SIZE),
dte, MEMTXATTRS_UNSPECIFIED, &res);
}
} else {
/* Flat level table */
address_space_stq_le(as, s->dt.base_addr + (devid * GITS_DTE_SIZE),
dte, MEMTXATTRS_UNSPECIFIED, &res);
}
if (res != MEMTX_OK) {
return false;
} else {
return true;
}
}
static bool process_mapd(GICv3ITSState *s, uint64_t value, uint32_t offset)
{
AddressSpace *as = &s->gicv3->dma_as;
uint32_t devid;
uint8_t size;
uint64_t itt_addr;
bool valid;
MemTxResult res = MEMTX_OK;
bool result = false;
devid = ((value & DEVID_MASK) >> DEVID_SHIFT);
offset += NUM_BYTES_IN_DW;
value = address_space_ldq_le(as, s->cq.base_addr + offset,
MEMTXATTRS_UNSPECIFIED, &res);
if (res != MEMTX_OK) {
return result;
}
size = (value & SIZE_MASK);
offset += NUM_BYTES_IN_DW;
value = address_space_ldq_le(as, s->cq.base_addr + offset,
MEMTXATTRS_UNSPECIFIED, &res);
if (res != MEMTX_OK) {
return result;
}
itt_addr = (value & ITTADDR_MASK) >> ITTADDR_SHIFT;
valid = (value & CMD_FIELD_VALID_MASK);
if ((devid > s->dt.maxids.max_devids) ||
(size > FIELD_EX64(s->typer, GITS_TYPER, IDBITS))) {
qemu_log_mask(LOG_GUEST_ERROR,
"ITS MAPD: invalid device table attributes "
"devid %d or size %d\n", devid, size);
/*
* in this implementation, in case of error
* we ignore this command and move onto the next
* command in the queue
*/
} else {
result = update_dte(s, devid, valid, size, itt_addr);
}
return result;
}
/*
* Current implementation blocks until all
* commands are processed
*/
static void process_cmdq(GICv3ITSState *s)
{
uint32_t wr_offset = 0;
uint32_t rd_offset = 0;
uint32_t cq_offset = 0;
uint64_t data;
AddressSpace *as = &s->gicv3->dma_as;
MemTxResult res = MEMTX_OK;
bool result = true;
uint8_t cmd;
int i;
if (!(s->ctlr & ITS_CTLR_ENABLED)) {
return;
}
wr_offset = FIELD_EX64(s->cwriter, GITS_CWRITER, OFFSET);
if (wr_offset > s->cq.max_entries) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid write offset "
"%d\n", __func__, wr_offset);
return;
}
rd_offset = FIELD_EX64(s->creadr, GITS_CREADR, OFFSET);
if (rd_offset > s->cq.max_entries) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid read offset "
"%d\n", __func__, rd_offset);
return;
}
while (wr_offset != rd_offset) {
cq_offset = (rd_offset * GITS_CMDQ_ENTRY_SIZE);
data = address_space_ldq_le(as, s->cq.base_addr + cq_offset,
MEMTXATTRS_UNSPECIFIED, &res);
if (res != MEMTX_OK) {
result = false;
}
cmd = (data & CMD_MASK);
switch (cmd) {
case GITS_CMD_INT:
res = process_its_cmd(s, data, cq_offset, INTERRUPT);
break;
case GITS_CMD_CLEAR:
res = process_its_cmd(s, data, cq_offset, CLEAR);
break;
case GITS_CMD_SYNC:
/*
* Current implementation makes a blocking synchronous call
* for every command issued earlier, hence the internal state
* is already consistent by the time SYNC command is executed.
* Hence no further processing is required for SYNC command.
*/
break;
case GITS_CMD_MAPD:
result = process_mapd(s, data, cq_offset);
break;
case GITS_CMD_MAPC:
result = process_mapc(s, cq_offset);
break;
case GITS_CMD_MAPTI:
result = process_mapti(s, data, cq_offset, false);
break;
case GITS_CMD_MAPI:
result = process_mapti(s, data, cq_offset, true);
break;
case GITS_CMD_DISCARD:
result = process_its_cmd(s, data, cq_offset, DISCARD);
break;
case GITS_CMD_INV:
case GITS_CMD_INVALL:
/*
* Current implementation doesn't cache any ITS tables,
* but the calculated lpi priority information. We only
* need to trigger lpi priority re-calculation to be in
* sync with LPI config table or pending table changes.
*/
for (i = 0; i < s->gicv3->num_cpu; i++) {
gicv3_redist_update_lpi(&s->gicv3->cpu[i]);
}
break;
default:
break;
}
if (result) {
rd_offset++;
rd_offset %= s->cq.max_entries;
s->creadr = FIELD_DP64(s->creadr, GITS_CREADR, OFFSET, rd_offset);
} else {
/*
* in this implementation, in case of dma read/write error
* we stall the command processing
*/
s->creadr = FIELD_DP64(s->creadr, GITS_CREADR, STALLED, 1);
qemu_log_mask(LOG_GUEST_ERROR,
"%s: %x cmd processing failed\n", __func__, cmd);
break;
}
}
}
/*
* This function extracts the ITS Device and Collection table specific
* parameters (like base_addr, size etc) from GITS_BASER register.
* It is called during ITS enable and also during post_load migration
*/
static void extract_table_params(GICv3ITSState *s)
{
uint16_t num_pages = 0;
uint8_t page_sz_type;
uint8_t type;
uint32_t page_sz = 0;
uint64_t value;
for (int i = 0; i < 8; i++) {
value = s->baser[i];
if (!value) {
continue;
}
page_sz_type = FIELD_EX64(value, GITS_BASER, PAGESIZE);
switch (page_sz_type) {
case 0:
page_sz = GITS_PAGE_SIZE_4K;
break;
case 1:
page_sz = GITS_PAGE_SIZE_16K;
break;
case 2:
case 3:
page_sz = GITS_PAGE_SIZE_64K;
break;
default:
g_assert_not_reached();
}
num_pages = FIELD_EX64(value, GITS_BASER, SIZE) + 1;
type = FIELD_EX64(value, GITS_BASER, TYPE);
switch (type) {
case GITS_BASER_TYPE_DEVICE:
memset(&s->dt, 0 , sizeof(s->dt));
s->dt.valid = FIELD_EX64(value, GITS_BASER, VALID);
if (!s->dt.valid) {
return;
}
s->dt.page_sz = page_sz;
s->dt.indirect = FIELD_EX64(value, GITS_BASER, INDIRECT);
s->dt.entry_sz = FIELD_EX64(value, GITS_BASER, ENTRYSIZE);
if (!s->dt.indirect) {
s->dt.max_entries = (num_pages * page_sz) / s->dt.entry_sz;
} else {
s->dt.max_entries = (((num_pages * page_sz) /
L1TABLE_ENTRY_SIZE) *
(page_sz / s->dt.entry_sz));
}
s->dt.maxids.max_devids = (1UL << (FIELD_EX64(s->typer, GITS_TYPER,
DEVBITS) + 1));
s->dt.base_addr = baser_base_addr(value, page_sz);
break;
case GITS_BASER_TYPE_COLLECTION:
memset(&s->ct, 0 , sizeof(s->ct));
s->ct.valid = FIELD_EX64(value, GITS_BASER, VALID);
/*
* GITS_TYPER.HCC is 0 for this implementation
* hence writes are discarded if ct.valid is 0
*/
if (!s->ct.valid) {
return;
}
s->ct.page_sz = page_sz;
s->ct.indirect = FIELD_EX64(value, GITS_BASER, INDIRECT);
s->ct.entry_sz = FIELD_EX64(value, GITS_BASER, ENTRYSIZE);
if (!s->ct.indirect) {
s->ct.max_entries = (num_pages * page_sz) / s->ct.entry_sz;
} else {
s->ct.max_entries = (((num_pages * page_sz) /
L1TABLE_ENTRY_SIZE) *
(page_sz / s->ct.entry_sz));
}
if (FIELD_EX64(s->typer, GITS_TYPER, CIL)) {
s->ct.maxids.max_collids = (1UL << (FIELD_EX64(s->typer,
GITS_TYPER, CIDBITS) + 1));
} else {
/* 16-bit CollectionId supported when CIL == 0 */
s->ct.maxids.max_collids = (1UL << 16);
}
s->ct.base_addr = baser_base_addr(value, page_sz);
break;
default:
break;
}
}
}
static void extract_cmdq_params(GICv3ITSState *s)
{
uint16_t num_pages = 0;
uint64_t value = s->cbaser;
num_pages = FIELD_EX64(value, GITS_CBASER, SIZE) + 1;
memset(&s->cq, 0 , sizeof(s->cq));
s->cq.valid = FIELD_EX64(value, GITS_CBASER, VALID);
if (s->cq.valid) {
s->cq.max_entries = (num_pages * GITS_PAGE_SIZE_4K) /
GITS_CMDQ_ENTRY_SIZE;
s->cq.base_addr = FIELD_EX64(value, GITS_CBASER, PHYADDR);
s->cq.base_addr <<= R_GITS_CBASER_PHYADDR_SHIFT;
}
}
static MemTxResult gicv3_its_translation_write(void *opaque, hwaddr offset,
uint64_t data, unsigned size,
MemTxAttrs attrs)
{
GICv3ITSState *s = (GICv3ITSState *)opaque;
bool result = true;
uint32_t devid = 0;
switch (offset) {
case GITS_TRANSLATER:
if (s->ctlr & ITS_CTLR_ENABLED) {
devid = attrs.requester_id;
result = process_its_cmd(s, data, devid, NONE);
}
break;
default:
break;
}
if (result) {
return MEMTX_OK;
} else {
return MEMTX_ERROR;
}
}
static bool its_writel(GICv3ITSState *s, hwaddr offset,
uint64_t value, MemTxAttrs attrs)
{
bool result = true;
int index;
switch (offset) {
case GITS_CTLR:
s->ctlr |= (value & ~(s->ctlr));
if (s->ctlr & ITS_CTLR_ENABLED) {
extract_table_params(s);
extract_cmdq_params(s);
s->creadr = 0;
process_cmdq(s);
}
break;
case GITS_CBASER:
/*
* IMPDEF choice:- GITS_CBASER register becomes RO if ITS is
* already enabled
*/
if (!(s->ctlr & ITS_CTLR_ENABLED)) {
s->cbaser = deposit64(s->cbaser, 0, 32, value);
s->creadr = 0;
s->cwriter = s->creadr;
}
break;
case GITS_CBASER + 4:
/*
* IMPDEF choice:- GITS_CBASER register becomes RO if ITS is
* already enabled
*/
if (!(s->ctlr & ITS_CTLR_ENABLED)) {
s->cbaser = deposit64(s->cbaser, 32, 32, value);
s->creadr = 0;
s->cwriter = s->creadr;
}
break;
case GITS_CWRITER:
s->cwriter = deposit64(s->cwriter, 0, 32,
(value & ~R_GITS_CWRITER_RETRY_MASK));
if (s->cwriter != s->creadr) {
process_cmdq(s);
}
break;
case GITS_CWRITER + 4:
s->cwriter = deposit64(s->cwriter, 32, 32, value);
break;
case GITS_CREADR:
if (s->gicv3->gicd_ctlr & GICD_CTLR_DS) {
s->creadr = deposit64(s->creadr, 0, 32,
(value & ~R_GITS_CREADR_STALLED_MASK));
} else {
/* RO register, ignore the write */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write to RO register at offset "
TARGET_FMT_plx "\n", __func__, offset);
}
break;
case GITS_CREADR + 4:
if (s->gicv3->gicd_ctlr & GICD_CTLR_DS) {
s->creadr = deposit64(s->creadr, 32, 32, value);
} else {
/* RO register, ignore the write */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write to RO register at offset "
TARGET_FMT_plx "\n", __func__, offset);
}
break;
case GITS_BASER ... GITS_BASER + 0x3f:
/*
* IMPDEF choice:- GITS_BASERn register becomes RO if ITS is
* already enabled
*/
if (!(s->ctlr & ITS_CTLR_ENABLED)) {
index = (offset - GITS_BASER) / 8;
if (offset & 7) {
value <<= 32;
value &= ~GITS_BASER_RO_MASK;
s->baser[index] &= GITS_BASER_RO_MASK | MAKE_64BIT_MASK(0, 32);
s->baser[index] |= value;
} else {
value &= ~GITS_BASER_RO_MASK;
s->baser[index] &= GITS_BASER_RO_MASK | MAKE_64BIT_MASK(32, 32);
s->baser[index] |= value;
}
}
break;
case GITS_IIDR:
case GITS_IDREGS ... GITS_IDREGS + 0x2f:
/* RO registers, ignore the write */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write to RO register at offset "
TARGET_FMT_plx "\n", __func__, offset);
break;
default:
result = false;
break;
}
return result;
}
static bool its_readl(GICv3ITSState *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
bool result = true;
int index;
switch (offset) {
case GITS_CTLR:
*data = s->ctlr;
break;
case GITS_IIDR:
*data = gicv3_iidr();
break;
case GITS_IDREGS ... GITS_IDREGS + 0x2f:
/* ID registers */
*data = gicv3_idreg(offset - GITS_IDREGS);
break;
case GITS_TYPER:
*data = extract64(s->typer, 0, 32);
break;
case GITS_TYPER + 4:
*data = extract64(s->typer, 32, 32);
break;
case GITS_CBASER:
*data = extract64(s->cbaser, 0, 32);
break;
case GITS_CBASER + 4:
*data = extract64(s->cbaser, 32, 32);
break;
case GITS_CREADR:
*data = extract64(s->creadr, 0, 32);
break;
case GITS_CREADR + 4:
*data = extract64(s->creadr, 32, 32);
break;
case GITS_CWRITER:
*data = extract64(s->cwriter, 0, 32);
break;
case GITS_CWRITER + 4:
*data = extract64(s->cwriter, 32, 32);
break;
case GITS_BASER ... GITS_BASER + 0x3f:
index = (offset - GITS_BASER) / 8;
if (offset & 7) {
*data = extract64(s->baser[index], 32, 32);
} else {
*data = extract64(s->baser[index], 0, 32);
}
break;
default:
result = false;
break;
}
return result;
}
static bool its_writell(GICv3ITSState *s, hwaddr offset,
uint64_t value, MemTxAttrs attrs)
{
bool result = true;
int index;
switch (offset) {
case GITS_BASER ... GITS_BASER + 0x3f:
/*
* IMPDEF choice:- GITS_BASERn register becomes RO if ITS is
* already enabled
*/
if (!(s->ctlr & ITS_CTLR_ENABLED)) {
index = (offset - GITS_BASER) / 8;
s->baser[index] &= GITS_BASER_RO_MASK;
s->baser[index] |= (value & ~GITS_BASER_RO_MASK);
}
break;
case GITS_CBASER:
/*
* IMPDEF choice:- GITS_CBASER register becomes RO if ITS is
* already enabled
*/
if (!(s->ctlr & ITS_CTLR_ENABLED)) {
s->cbaser = value;
s->creadr = 0;
s->cwriter = s->creadr;
}
break;
case GITS_CWRITER:
s->cwriter = value & ~R_GITS_CWRITER_RETRY_MASK;
if (s->cwriter != s->creadr) {
process_cmdq(s);
}
break;
case GITS_CREADR:
if (s->gicv3->gicd_ctlr & GICD_CTLR_DS) {
s->creadr = value & ~R_GITS_CREADR_STALLED_MASK;
} else {
/* RO register, ignore the write */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write to RO register at offset "
TARGET_FMT_plx "\n", __func__, offset);
}
break;
case GITS_TYPER:
/* RO registers, ignore the write */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write to RO register at offset "
TARGET_FMT_plx "\n", __func__, offset);
break;
default:
result = false;
break;
}
return result;
}
static bool its_readll(GICv3ITSState *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
bool result = true;
int index;
switch (offset) {
case GITS_TYPER:
*data = s->typer;
break;
case GITS_BASER ... GITS_BASER + 0x3f:
index = (offset - GITS_BASER) / 8;
*data = s->baser[index];
break;
case GITS_CBASER:
*data = s->cbaser;
break;
case GITS_CREADR:
*data = s->creadr;
break;
case GITS_CWRITER:
*data = s->cwriter;
break;
default:
result = false;
break;
}
return result;
}
static MemTxResult gicv3_its_read(void *opaque, hwaddr offset, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
GICv3ITSState *s = (GICv3ITSState *)opaque;
bool result;
switch (size) {
case 4:
result = its_readl(s, offset, data, attrs);
break;
case 8:
result = its_readll(s, offset, data, attrs);
break;
default:
result = false;
break;
}
if (!result) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest read at offset " TARGET_FMT_plx
"size %u\n", __func__, offset, size);
/*
* The spec requires that reserved registers are RAZ/WI;
* so use false returns from leaf functions as a way to
* trigger the guest-error logging but don't return it to
* the caller, or we'll cause a spurious guest data abort.
*/
*data = 0;
}
return MEMTX_OK;
}
static MemTxResult gicv3_its_write(void *opaque, hwaddr offset, uint64_t data,
unsigned size, MemTxAttrs attrs)
{
GICv3ITSState *s = (GICv3ITSState *)opaque;
bool result;
switch (size) {
case 4:
result = its_writel(s, offset, data, attrs);
break;
case 8:
result = its_writell(s, offset, data, attrs);
break;
default:
result = false;
break;
}
if (!result) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write at offset " TARGET_FMT_plx
"size %u\n", __func__, offset, size);
/*
* The spec requires that reserved registers are RAZ/WI;
* so use false returns from leaf functions as a way to
* trigger the guest-error logging but don't return it to
* the caller, or we'll cause a spurious guest data abort.
*/
}
return MEMTX_OK;
}
static const MemoryRegionOps gicv3_its_control_ops = {
.read_with_attrs = gicv3_its_read,
.write_with_attrs = gicv3_its_write,
.valid.min_access_size = 4,
.valid.max_access_size = 8,
.impl.min_access_size = 4,
.impl.max_access_size = 8,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const MemoryRegionOps gicv3_its_translation_ops = {
.write_with_attrs = gicv3_its_translation_write,
.valid.min_access_size = 2,
.valid.max_access_size = 4,
.impl.min_access_size = 2,
.impl.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void gicv3_arm_its_realize(DeviceState *dev, Error **errp)
{
GICv3ITSState *s = ARM_GICV3_ITS_COMMON(dev);
int i;
for (i = 0; i < s->gicv3->num_cpu; i++) {
if (!(s->gicv3->cpu[i].gicr_typer & GICR_TYPER_PLPIS)) {
error_setg(errp, "Physical LPI not supported by CPU %d", i);
return;
}
}
gicv3_its_init_mmio(s, &gicv3_its_control_ops, &gicv3_its_translation_ops);
address_space_init(&s->gicv3->dma_as, s->gicv3->dma,
"gicv3-its-sysmem");
/* set the ITS default features supported */
s->typer = FIELD_DP64(s->typer, GITS_TYPER, PHYSICAL,
GITS_TYPE_PHYSICAL);
s->typer = FIELD_DP64(s->typer, GITS_TYPER, ITT_ENTRY_SIZE,
ITS_ITT_ENTRY_SIZE - 1);
s->typer = FIELD_DP64(s->typer, GITS_TYPER, IDBITS, ITS_IDBITS);
s->typer = FIELD_DP64(s->typer, GITS_TYPER, DEVBITS, ITS_DEVBITS);
s->typer = FIELD_DP64(s->typer, GITS_TYPER, CIL, 1);
s->typer = FIELD_DP64(s->typer, GITS_TYPER, CIDBITS, ITS_CIDBITS);
}
static void gicv3_its_reset(DeviceState *dev)
{
GICv3ITSState *s = ARM_GICV3_ITS_COMMON(dev);
GICv3ITSClass *c = ARM_GICV3_ITS_GET_CLASS(s);
c->parent_reset(dev);
/* Quiescent bit reset to 1 */
s->ctlr = FIELD_DP32(s->ctlr, GITS_CTLR, QUIESCENT, 1);
/*
* setting GITS_BASER0.Type = 0b001 (Device)
* GITS_BASER1.Type = 0b100 (Collection Table)
* GITS_BASER<n>.Type,where n = 3 to 7 are 0b00 (Unimplemented)
* GITS_BASER<0,1>.Page_Size = 64KB
* and default translation table entry size to 16 bytes
*/
s->baser[0] = FIELD_DP64(s->baser[0], GITS_BASER, TYPE,
GITS_BASER_TYPE_DEVICE);
s->baser[0] = FIELD_DP64(s->baser[0], GITS_BASER, PAGESIZE,
GITS_BASER_PAGESIZE_64K);
s->baser[0] = FIELD_DP64(s->baser[0], GITS_BASER, ENTRYSIZE,
GITS_DTE_SIZE - 1);
s->baser[1] = FIELD_DP64(s->baser[1], GITS_BASER, TYPE,
GITS_BASER_TYPE_COLLECTION);
s->baser[1] = FIELD_DP64(s->baser[1], GITS_BASER, PAGESIZE,
GITS_BASER_PAGESIZE_64K);
s->baser[1] = FIELD_DP64(s->baser[1], GITS_BASER, ENTRYSIZE,
GITS_CTE_SIZE - 1);
}
static void gicv3_its_post_load(GICv3ITSState *s)
{
if (s->ctlr & ITS_CTLR_ENABLED) {
extract_table_params(s);
extract_cmdq_params(s);
}
}
static Property gicv3_its_props[] = {
DEFINE_PROP_LINK("parent-gicv3", GICv3ITSState, gicv3, "arm-gicv3",
GICv3State *),
DEFINE_PROP_END_OF_LIST(),
};
static void gicv3_its_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
GICv3ITSClass *ic = ARM_GICV3_ITS_CLASS(klass);
GICv3ITSCommonClass *icc = ARM_GICV3_ITS_COMMON_CLASS(klass);
dc->realize = gicv3_arm_its_realize;
device_class_set_props(dc, gicv3_its_props);
device_class_set_parent_reset(dc, gicv3_its_reset, &ic->parent_reset);
icc->post_load = gicv3_its_post_load;
}
static const TypeInfo gicv3_its_info = {
.name = TYPE_ARM_GICV3_ITS,
.parent = TYPE_ARM_GICV3_ITS_COMMON,
.instance_size = sizeof(GICv3ITSState),
.class_init = gicv3_its_class_init,
.class_size = sizeof(GICv3ITSClass),
};
static void gicv3_its_register_types(void)
{
type_register_static(&gicv3_its_info);
}
type_init(gicv3_its_register_types)