qemu-e2k/kvm-all.c
Anthony Liguori c3ab4c9cf2 Merge remote-tracking branch 'bonzini/iommu-for-anthony' into staging
# By Paolo Bonzini (50) and others
# Via Paolo Bonzini
* bonzini/iommu-for-anthony: (66 commits)
  exec: change some APIs to take AddressSpaceDispatch
  exec: remove cur_map
  exec: put memory map in AddressSpaceDispatch
  exec: separate current radix tree from the one being built
  exec: move listener from AddressSpaceDispatch to AddressSpace
  memory: move MemoryListener declaration earlier
  exec: separate current memory map from the one being built
  exec: change well-known physical sections to macros
  qom: Use atomics for object refcounting
  memory: add reference counting to FlatView
  memory: use a new FlatView pointer on every topology update
  memory: access FlatView from a local variable
  add a header file for atomic operations
  hw/[u-x]*: pass owner to memory_region_init* functions
  hw/t*: pass owner to memory_region_init* functions
  hw/s*: pass owner to memory_region_init* functions
  hw/p*: pass owner to memory_region_init* functions
  hw/n*: pass owner to memory_region_init* functions
  hw/m*: pass owner to memory_region_init* functions
  hw/i*: pass owner to memory_region_init* functions
  ...

Message-id: 1372950842-32422-1-git-send-email-pbonzini@redhat.com
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-07 11:19:28 -05:00

2073 lines
53 KiB
C

/*
* QEMU KVM support
*
* Copyright IBM, Corp. 2008
* Red Hat, Inc. 2008
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
* Glauber Costa <gcosta@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <stdarg.h>
#include <linux/kvm.h>
#include "qemu-common.h"
#include "qemu/atomic.h"
#include "qemu/option.h"
#include "qemu/config-file.h"
#include "sysemu/sysemu.h"
#include "hw/hw.h"
#include "hw/pci/msi.h"
#include "exec/gdbstub.h"
#include "sysemu/kvm.h"
#include "qemu/bswap.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "qemu/event_notifier.h"
#include "trace.h"
/* This check must be after config-host.h is included */
#ifdef CONFIG_EVENTFD
#include <sys/eventfd.h>
#endif
#ifdef CONFIG_VALGRIND_H
#include <valgrind/memcheck.h>
#endif
/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
#define PAGE_SIZE TARGET_PAGE_SIZE
//#define DEBUG_KVM
#ifdef DEBUG_KVM
#define DPRINTF(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
do { } while (0)
#endif
#define KVM_MSI_HASHTAB_SIZE 256
typedef struct KVMSlot
{
hwaddr start_addr;
ram_addr_t memory_size;
void *ram;
int slot;
int flags;
} KVMSlot;
typedef struct kvm_dirty_log KVMDirtyLog;
struct KVMState
{
KVMSlot slots[32];
int fd;
int vmfd;
int coalesced_mmio;
struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
bool coalesced_flush_in_progress;
int broken_set_mem_region;
int migration_log;
int vcpu_events;
int robust_singlestep;
int debugregs;
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
#endif
int pit_state2;
int xsave, xcrs;
int many_ioeventfds;
int intx_set_mask;
/* The man page (and posix) say ioctl numbers are signed int, but
* they're not. Linux, glibc and *BSD all treat ioctl numbers as
* unsigned, and treating them as signed here can break things */
unsigned irq_set_ioctl;
#ifdef KVM_CAP_IRQ_ROUTING
struct kvm_irq_routing *irq_routes;
int nr_allocated_irq_routes;
uint32_t *used_gsi_bitmap;
unsigned int gsi_count;
QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
bool direct_msi;
#endif
};
KVMState *kvm_state;
bool kvm_kernel_irqchip;
bool kvm_async_interrupts_allowed;
bool kvm_halt_in_kernel_allowed;
bool kvm_irqfds_allowed;
bool kvm_msi_via_irqfd_allowed;
bool kvm_gsi_routing_allowed;
bool kvm_allowed;
bool kvm_readonly_mem_allowed;
static const KVMCapabilityInfo kvm_required_capabilites[] = {
KVM_CAP_INFO(USER_MEMORY),
KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
KVM_CAP_LAST_INFO
};
static KVMSlot *kvm_alloc_slot(KVMState *s)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
if (s->slots[i].memory_size == 0) {
return &s->slots[i];
}
}
fprintf(stderr, "%s: no free slot available\n", __func__);
abort();
}
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
hwaddr start_addr,
hwaddr end_addr)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
if (start_addr == mem->start_addr &&
end_addr == mem->start_addr + mem->memory_size) {
return mem;
}
}
return NULL;
}
/*
* Find overlapping slot with lowest start address
*/
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
hwaddr start_addr,
hwaddr end_addr)
{
KVMSlot *found = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
if (mem->memory_size == 0 ||
(found && found->start_addr < mem->start_addr)) {
continue;
}
if (end_addr > mem->start_addr &&
start_addr < mem->start_addr + mem->memory_size) {
found = mem;
}
}
return found;
}
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
hwaddr *phys_addr)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
*phys_addr = mem->start_addr + (ram - mem->ram);
return 1;
}
}
return 0;
}
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
{
struct kvm_userspace_memory_region mem;
mem.slot = slot->slot;
mem.guest_phys_addr = slot->start_addr;
mem.userspace_addr = (unsigned long)slot->ram;
mem.flags = slot->flags;
if (s->migration_log) {
mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
/* Set the slot size to 0 before setting the slot to the desired
* value. This is needed based on KVM commit 75d61fbc. */
mem.memory_size = 0;
kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
}
mem.memory_size = slot->memory_size;
return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
}
static void kvm_reset_vcpu(void *opaque)
{
CPUState *cpu = opaque;
kvm_arch_reset_vcpu(cpu);
}
int kvm_init_vcpu(CPUState *cpu)
{
KVMState *s = kvm_state;
long mmap_size;
int ret;
DPRINTF("kvm_init_vcpu\n");
ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
if (ret < 0) {
DPRINTF("kvm_create_vcpu failed\n");
goto err;
}
cpu->kvm_fd = ret;
cpu->kvm_state = s;
cpu->kvm_vcpu_dirty = true;
mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
if (mmap_size < 0) {
ret = mmap_size;
DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
goto err;
}
cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
cpu->kvm_fd, 0);
if (cpu->kvm_run == MAP_FAILED) {
ret = -errno;
DPRINTF("mmap'ing vcpu state failed\n");
goto err;
}
if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
s->coalesced_mmio_ring =
(void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
}
ret = kvm_arch_init_vcpu(cpu);
if (ret == 0) {
qemu_register_reset(kvm_reset_vcpu, cpu);
kvm_arch_reset_vcpu(cpu);
}
err:
return ret;
}
/*
* dirty pages logging control
*/
static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
{
int flags = 0;
flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
if (readonly && kvm_readonly_mem_allowed) {
flags |= KVM_MEM_READONLY;
}
return flags;
}
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
{
KVMState *s = kvm_state;
int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
int old_flags;
old_flags = mem->flags;
flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
mem->flags = flags;
/* If nothing changed effectively, no need to issue ioctl */
if (s->migration_log) {
flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
if (flags == old_flags) {
return 0;
}
return kvm_set_user_memory_region(s, mem);
}
static int kvm_dirty_pages_log_change(hwaddr phys_addr,
ram_addr_t size, bool log_dirty)
{
KVMState *s = kvm_state;
KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
if (mem == NULL) {
fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
TARGET_FMT_plx "\n", __func__, phys_addr,
(hwaddr)(phys_addr + size - 1));
return -EINVAL;
}
return kvm_slot_dirty_pages_log_change(mem, log_dirty);
}
static void kvm_log_start(MemoryListener *listener,
MemoryRegionSection *section)
{
int r;
r = kvm_dirty_pages_log_change(section->offset_within_address_space,
int128_get64(section->size), true);
if (r < 0) {
abort();
}
}
static void kvm_log_stop(MemoryListener *listener,
MemoryRegionSection *section)
{
int r;
r = kvm_dirty_pages_log_change(section->offset_within_address_space,
int128_get64(section->size), false);
if (r < 0) {
abort();
}
}
static int kvm_set_migration_log(int enable)
{
KVMState *s = kvm_state;
KVMSlot *mem;
int i, err;
s->migration_log = enable;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
mem = &s->slots[i];
if (!mem->memory_size) {
continue;
}
if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
continue;
}
err = kvm_set_user_memory_region(s, mem);
if (err) {
return err;
}
}
return 0;
}
/* get kvm's dirty pages bitmap and update qemu's */
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
unsigned long *bitmap)
{
unsigned int i, j;
unsigned long page_number, c;
hwaddr addr, addr1;
unsigned int pages = int128_get64(section->size) / getpagesize();
unsigned int len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
/*
* bitmap-traveling is faster than memory-traveling (for addr...)
* especially when most of the memory is not dirty.
*/
for (i = 0; i < len; i++) {
if (bitmap[i] != 0) {
c = leul_to_cpu(bitmap[i]);
do {
j = ffsl(c) - 1;
c &= ~(1ul << j);
page_number = (i * HOST_LONG_BITS + j) * hpratio;
addr1 = page_number * TARGET_PAGE_SIZE;
addr = section->offset_within_region + addr1;
memory_region_set_dirty(section->mr, addr,
TARGET_PAGE_SIZE * hpratio);
} while (c != 0);
}
}
return 0;
}
#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
/**
* kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
* This function updates qemu's dirty bitmap using
* memory_region_set_dirty(). This means all bits are set
* to dirty.
*
* @start_add: start of logged region.
* @end_addr: end of logged region.
*/
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
{
KVMState *s = kvm_state;
unsigned long size, allocated_size = 0;
KVMDirtyLog d;
KVMSlot *mem;
int ret = 0;
hwaddr start_addr = section->offset_within_address_space;
hwaddr end_addr = start_addr + int128_get64(section->size);
d.dirty_bitmap = NULL;
while (start_addr < end_addr) {
mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
if (mem == NULL) {
break;
}
/* XXX bad kernel interface alert
* For dirty bitmap, kernel allocates array of size aligned to
* bits-per-long. But for case when the kernel is 64bits and
* the userspace is 32bits, userspace can't align to the same
* bits-per-long, since sizeof(long) is different between kernel
* and user space. This way, userspace will provide buffer which
* may be 4 bytes less than the kernel will use, resulting in
* userspace memory corruption (which is not detectable by valgrind
* too, in most cases).
* So for now, let's align to 64 instead of HOST_LONG_BITS here, in
* a hope that sizeof(long) wont become >8 any time soon.
*/
size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
/*HOST_LONG_BITS*/ 64) / 8;
if (!d.dirty_bitmap) {
d.dirty_bitmap = g_malloc(size);
} else if (size > allocated_size) {
d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
}
allocated_size = size;
memset(d.dirty_bitmap, 0, allocated_size);
d.slot = mem->slot;
if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
DPRINTF("ioctl failed %d\n", errno);
ret = -1;
break;
}
kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
start_addr = mem->start_addr + mem->memory_size;
}
g_free(d.dirty_bitmap);
return ret;
}
static void kvm_coalesce_mmio_region(MemoryListener *listener,
MemoryRegionSection *secion,
hwaddr start, hwaddr size)
{
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
zone.pad = 0;
(void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
}
}
static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
MemoryRegionSection *secion,
hwaddr start, hwaddr size)
{
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
zone.pad = 0;
(void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
}
}
int kvm_check_extension(KVMState *s, unsigned int extension)
{
int ret;
ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
if (ret < 0) {
ret = 0;
}
return ret;
}
static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
bool assign, uint32_t size, bool datamatch)
{
int ret;
struct kvm_ioeventfd iofd;
iofd.datamatch = datamatch ? val : 0;
iofd.addr = addr;
iofd.len = size;
iofd.flags = 0;
iofd.fd = fd;
if (!kvm_enabled()) {
return -ENOSYS;
}
if (datamatch) {
iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
}
if (!assign) {
iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
}
ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
if (ret < 0) {
return -errno;
}
return 0;
}
static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
bool assign, uint32_t size, bool datamatch)
{
struct kvm_ioeventfd kick = {
.datamatch = datamatch ? val : 0,
.addr = addr,
.flags = KVM_IOEVENTFD_FLAG_PIO,
.len = size,
.fd = fd,
};
int r;
if (!kvm_enabled()) {
return -ENOSYS;
}
if (datamatch) {
kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
}
if (!assign) {
kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
}
r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
if (r < 0) {
return r;
}
return 0;
}
static int kvm_check_many_ioeventfds(void)
{
/* Userspace can use ioeventfd for io notification. This requires a host
* that supports eventfd(2) and an I/O thread; since eventfd does not
* support SIGIO it cannot interrupt the vcpu.
*
* Older kernels have a 6 device limit on the KVM io bus. Find out so we
* can avoid creating too many ioeventfds.
*/
#if defined(CONFIG_EVENTFD)
int ioeventfds[7];
int i, ret = 0;
for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
if (ioeventfds[i] < 0) {
break;
}
ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
if (ret < 0) {
close(ioeventfds[i]);
break;
}
}
/* Decide whether many devices are supported or not */
ret = i == ARRAY_SIZE(ioeventfds);
while (i-- > 0) {
kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
close(ioeventfds[i]);
}
return ret;
#else
return 0;
#endif
}
static const KVMCapabilityInfo *
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
{
while (list->name) {
if (!kvm_check_extension(s, list->value)) {
return list;
}
list++;
}
return NULL;
}
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
{
KVMState *s = kvm_state;
KVMSlot *mem, old;
int err;
MemoryRegion *mr = section->mr;
bool log_dirty = memory_region_is_logging(mr);
bool writeable = !mr->readonly && !mr->rom_device;
bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
hwaddr start_addr = section->offset_within_address_space;
ram_addr_t size = int128_get64(section->size);
void *ram = NULL;
unsigned delta;
/* kvm works in page size chunks, but the function may be called
with sub-page size and unaligned start address. */
delta = TARGET_PAGE_ALIGN(size) - size;
if (delta > size) {
return;
}
start_addr += delta;
size -= delta;
size &= TARGET_PAGE_MASK;
if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
return;
}
if (!memory_region_is_ram(mr)) {
if (writeable || !kvm_readonly_mem_allowed) {
return;
} else if (!mr->romd_mode) {
/* If the memory device is not in romd_mode, then we actually want
* to remove the kvm memory slot so all accesses will trap. */
add = false;
}
}
ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
while (1) {
mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
if (!mem) {
break;
}
if (add && start_addr >= mem->start_addr &&
(start_addr + size <= mem->start_addr + mem->memory_size) &&
(ram - start_addr == mem->ram - mem->start_addr)) {
/* The new slot fits into the existing one and comes with
* identical parameters - update flags and done. */
kvm_slot_dirty_pages_log_change(mem, log_dirty);
return;
}
old = *mem;
if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
kvm_physical_sync_dirty_bitmap(section);
}
/* unregister the overlapping slot */
mem->memory_size = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
__func__, strerror(-err));
abort();
}
/* Workaround for older KVM versions: we can't join slots, even not by
* unregistering the previous ones and then registering the larger
* slot. We have to maintain the existing fragmentation. Sigh.
*
* This workaround assumes that the new slot starts at the same
* address as the first existing one. If not or if some overlapping
* slot comes around later, we will fail (not seen in practice so far)
* - and actually require a recent KVM version. */
if (s->broken_set_mem_region &&
old.start_addr == start_addr && old.memory_size < size && add) {
mem = kvm_alloc_slot(s);
mem->memory_size = old.memory_size;
mem->start_addr = old.start_addr;
mem->ram = old.ram;
mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error updating slot: %s\n", __func__,
strerror(-err));
abort();
}
start_addr += old.memory_size;
ram += old.memory_size;
size -= old.memory_size;
continue;
}
/* register prefix slot */
if (old.start_addr < start_addr) {
mem = kvm_alloc_slot(s);
mem->memory_size = start_addr - old.start_addr;
mem->start_addr = old.start_addr;
mem->ram = old.ram;
mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering prefix slot: %s\n",
__func__, strerror(-err));
#ifdef TARGET_PPC
fprintf(stderr, "%s: This is probably because your kernel's " \
"PAGE_SIZE is too big. Please try to use 4k " \
"PAGE_SIZE!\n", __func__);
#endif
abort();
}
}
/* register suffix slot */
if (old.start_addr + old.memory_size > start_addr + size) {
ram_addr_t size_delta;
mem = kvm_alloc_slot(s);
mem->start_addr = start_addr + size;
size_delta = mem->start_addr - old.start_addr;
mem->memory_size = old.memory_size - size_delta;
mem->ram = old.ram + size_delta;
mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering suffix slot: %s\n",
__func__, strerror(-err));
abort();
}
}
}
/* in case the KVM bug workaround already "consumed" the new slot */
if (!size) {
return;
}
if (!add) {
return;
}
mem = kvm_alloc_slot(s);
mem->memory_size = size;
mem->start_addr = start_addr;
mem->ram = ram;
mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering slot: %s\n", __func__,
strerror(-err));
abort();
}
}
static void kvm_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
memory_region_ref(section->mr);
kvm_set_phys_mem(section, true);
}
static void kvm_region_del(MemoryListener *listener,
MemoryRegionSection *section)
{
kvm_set_phys_mem(section, false);
memory_region_unref(section->mr);
}
static void kvm_log_sync(MemoryListener *listener,
MemoryRegionSection *section)
{
int r;
r = kvm_physical_sync_dirty_bitmap(section);
if (r < 0) {
abort();
}
}
static void kvm_log_global_start(struct MemoryListener *listener)
{
int r;
r = kvm_set_migration_log(1);
assert(r >= 0);
}
static void kvm_log_global_stop(struct MemoryListener *listener)
{
int r;
r = kvm_set_migration_log(0);
assert(r >= 0);
}
static void kvm_mem_ioeventfd_add(MemoryListener *listener,
MemoryRegionSection *section,
bool match_data, uint64_t data,
EventNotifier *e)
{
int fd = event_notifier_get_fd(e);
int r;
r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
data, true, int128_get64(section->size),
match_data);
if (r < 0) {
fprintf(stderr, "%s: error adding ioeventfd: %s\n",
__func__, strerror(-r));
abort();
}
}
static void kvm_mem_ioeventfd_del(MemoryListener *listener,
MemoryRegionSection *section,
bool match_data, uint64_t data,
EventNotifier *e)
{
int fd = event_notifier_get_fd(e);
int r;
r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
data, false, int128_get64(section->size),
match_data);
if (r < 0) {
abort();
}
}
static void kvm_io_ioeventfd_add(MemoryListener *listener,
MemoryRegionSection *section,
bool match_data, uint64_t data,
EventNotifier *e)
{
int fd = event_notifier_get_fd(e);
int r;
r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
data, true, int128_get64(section->size),
match_data);
if (r < 0) {
fprintf(stderr, "%s: error adding ioeventfd: %s\n",
__func__, strerror(-r));
abort();
}
}
static void kvm_io_ioeventfd_del(MemoryListener *listener,
MemoryRegionSection *section,
bool match_data, uint64_t data,
EventNotifier *e)
{
int fd = event_notifier_get_fd(e);
int r;
r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
data, false, int128_get64(section->size),
match_data);
if (r < 0) {
abort();
}
}
static MemoryListener kvm_memory_listener = {
.region_add = kvm_region_add,
.region_del = kvm_region_del,
.log_start = kvm_log_start,
.log_stop = kvm_log_stop,
.log_sync = kvm_log_sync,
.log_global_start = kvm_log_global_start,
.log_global_stop = kvm_log_global_stop,
.eventfd_add = kvm_mem_ioeventfd_add,
.eventfd_del = kvm_mem_ioeventfd_del,
.coalesced_mmio_add = kvm_coalesce_mmio_region,
.coalesced_mmio_del = kvm_uncoalesce_mmio_region,
.priority = 10,
};
static MemoryListener kvm_io_listener = {
.eventfd_add = kvm_io_ioeventfd_add,
.eventfd_del = kvm_io_ioeventfd_del,
.priority = 10,
};
static void kvm_handle_interrupt(CPUState *cpu, int mask)
{
cpu->interrupt_request |= mask;
if (!qemu_cpu_is_self(cpu)) {
qemu_cpu_kick(cpu);
}
}
int kvm_set_irq(KVMState *s, int irq, int level)
{
struct kvm_irq_level event;
int ret;
assert(kvm_async_interrupts_enabled());
event.level = level;
event.irq = irq;
ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
if (ret < 0) {
perror("kvm_set_irq");
abort();
}
return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
}
#ifdef KVM_CAP_IRQ_ROUTING
typedef struct KVMMSIRoute {
struct kvm_irq_routing_entry kroute;
QTAILQ_ENTRY(KVMMSIRoute) entry;
} KVMMSIRoute;
static void set_gsi(KVMState *s, unsigned int gsi)
{
s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
}
static void clear_gsi(KVMState *s, unsigned int gsi)
{
s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
}
void kvm_init_irq_routing(KVMState *s)
{
int gsi_count, i;
gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
if (gsi_count > 0) {
unsigned int gsi_bits, i;
/* Round up so we can search ints using ffs */
gsi_bits = ALIGN(gsi_count, 32);
s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
s->gsi_count = gsi_count;
/* Mark any over-allocated bits as already in use */
for (i = gsi_count; i < gsi_bits; i++) {
set_gsi(s, i);
}
}
s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
s->nr_allocated_irq_routes = 0;
if (!s->direct_msi) {
for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
QTAILQ_INIT(&s->msi_hashtab[i]);
}
}
kvm_arch_init_irq_routing(s);
}
void kvm_irqchip_commit_routes(KVMState *s)
{
int ret;
s->irq_routes->flags = 0;
ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
assert(ret == 0);
}
static void kvm_add_routing_entry(KVMState *s,
struct kvm_irq_routing_entry *entry)
{
struct kvm_irq_routing_entry *new;
int n, size;
if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
n = s->nr_allocated_irq_routes * 2;
if (n < 64) {
n = 64;
}
size = sizeof(struct kvm_irq_routing);
size += n * sizeof(*new);
s->irq_routes = g_realloc(s->irq_routes, size);
s->nr_allocated_irq_routes = n;
}
n = s->irq_routes->nr++;
new = &s->irq_routes->entries[n];
*new = *entry;
set_gsi(s, entry->gsi);
}
static int kvm_update_routing_entry(KVMState *s,
struct kvm_irq_routing_entry *new_entry)
{
struct kvm_irq_routing_entry *entry;
int n;
for (n = 0; n < s->irq_routes->nr; n++) {
entry = &s->irq_routes->entries[n];
if (entry->gsi != new_entry->gsi) {
continue;
}
if(!memcmp(entry, new_entry, sizeof *entry)) {
return 0;
}
*entry = *new_entry;
kvm_irqchip_commit_routes(s);
return 0;
}
return -ESRCH;
}
void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
{
struct kvm_irq_routing_entry e = {};
assert(pin < s->gsi_count);
e.gsi = irq;
e.type = KVM_IRQ_ROUTING_IRQCHIP;
e.flags = 0;
e.u.irqchip.irqchip = irqchip;
e.u.irqchip.pin = pin;
kvm_add_routing_entry(s, &e);
}
void kvm_irqchip_release_virq(KVMState *s, int virq)
{
struct kvm_irq_routing_entry *e;
int i;
for (i = 0; i < s->irq_routes->nr; i++) {
e = &s->irq_routes->entries[i];
if (e->gsi == virq) {
s->irq_routes->nr--;
*e = s->irq_routes->entries[s->irq_routes->nr];
}
}
clear_gsi(s, virq);
}
static unsigned int kvm_hash_msi(uint32_t data)
{
/* This is optimized for IA32 MSI layout. However, no other arch shall
* repeat the mistake of not providing a direct MSI injection API. */
return data & 0xff;
}
static void kvm_flush_dynamic_msi_routes(KVMState *s)
{
KVMMSIRoute *route, *next;
unsigned int hash;
for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
kvm_irqchip_release_virq(s, route->kroute.gsi);
QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
g_free(route);
}
}
}
static int kvm_irqchip_get_virq(KVMState *s)
{
uint32_t *word = s->used_gsi_bitmap;
int max_words = ALIGN(s->gsi_count, 32) / 32;
int i, bit;
bool retry = true;
again:
/* Return the lowest unused GSI in the bitmap */
for (i = 0; i < max_words; i++) {
bit = ffs(~word[i]);
if (!bit) {
continue;
}
return bit - 1 + i * 32;
}
if (!s->direct_msi && retry) {
retry = false;
kvm_flush_dynamic_msi_routes(s);
goto again;
}
return -ENOSPC;
}
static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
{
unsigned int hash = kvm_hash_msi(msg.data);
KVMMSIRoute *route;
QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
route->kroute.u.msi.address_hi == (msg.address >> 32) &&
route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
return route;
}
}
return NULL;
}
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
{
struct kvm_msi msi;
KVMMSIRoute *route;
if (s->direct_msi) {
msi.address_lo = (uint32_t)msg.address;
msi.address_hi = msg.address >> 32;
msi.data = le32_to_cpu(msg.data);
msi.flags = 0;
memset(msi.pad, 0, sizeof(msi.pad));
return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
}
route = kvm_lookup_msi_route(s, msg);
if (!route) {
int virq;
virq = kvm_irqchip_get_virq(s);
if (virq < 0) {
return virq;
}
route = g_malloc0(sizeof(KVMMSIRoute));
route->kroute.gsi = virq;
route->kroute.type = KVM_IRQ_ROUTING_MSI;
route->kroute.flags = 0;
route->kroute.u.msi.address_lo = (uint32_t)msg.address;
route->kroute.u.msi.address_hi = msg.address >> 32;
route->kroute.u.msi.data = le32_to_cpu(msg.data);
kvm_add_routing_entry(s, &route->kroute);
kvm_irqchip_commit_routes(s);
QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
entry);
}
assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
return kvm_set_irq(s, route->kroute.gsi, 1);
}
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
{
struct kvm_irq_routing_entry kroute = {};
int virq;
if (!kvm_gsi_routing_enabled()) {
return -ENOSYS;
}
virq = kvm_irqchip_get_virq(s);
if (virq < 0) {
return virq;
}
kroute.gsi = virq;
kroute.type = KVM_IRQ_ROUTING_MSI;
kroute.flags = 0;
kroute.u.msi.address_lo = (uint32_t)msg.address;
kroute.u.msi.address_hi = msg.address >> 32;
kroute.u.msi.data = le32_to_cpu(msg.data);
kvm_add_routing_entry(s, &kroute);
kvm_irqchip_commit_routes(s);
return virq;
}
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
{
struct kvm_irq_routing_entry kroute = {};
if (!kvm_irqchip_in_kernel()) {
return -ENOSYS;
}
kroute.gsi = virq;
kroute.type = KVM_IRQ_ROUTING_MSI;
kroute.flags = 0;
kroute.u.msi.address_lo = (uint32_t)msg.address;
kroute.u.msi.address_hi = msg.address >> 32;
kroute.u.msi.data = le32_to_cpu(msg.data);
return kvm_update_routing_entry(s, &kroute);
}
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
{
struct kvm_irqfd irqfd = {
.fd = fd,
.gsi = virq,
.flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
};
if (!kvm_irqfds_enabled()) {
return -ENOSYS;
}
return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
}
#else /* !KVM_CAP_IRQ_ROUTING */
void kvm_init_irq_routing(KVMState *s)
{
}
void kvm_irqchip_release_virq(KVMState *s, int virq)
{
}
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
{
abort();
}
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
{
return -ENOSYS;
}
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
{
abort();
}
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
{
return -ENOSYS;
}
#endif /* !KVM_CAP_IRQ_ROUTING */
int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
{
return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
}
int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
{
return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
}
static int kvm_irqchip_create(KVMState *s)
{
QemuOptsList *list = qemu_find_opts("machine");
int ret;
if (QTAILQ_EMPTY(&list->head) ||
!qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
"kernel_irqchip", true) ||
!kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
return 0;
}
ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
if (ret < 0) {
fprintf(stderr, "Create kernel irqchip failed\n");
return ret;
}
kvm_kernel_irqchip = true;
/* If we have an in-kernel IRQ chip then we must have asynchronous
* interrupt delivery (though the reverse is not necessarily true)
*/
kvm_async_interrupts_allowed = true;
kvm_halt_in_kernel_allowed = true;
kvm_init_irq_routing(s);
return 0;
}
static int kvm_max_vcpus(KVMState *s)
{
int ret;
/* Find number of supported CPUs using the recommended
* procedure from the kernel API documentation to cope with
* older kernels that may be missing capabilities.
*/
ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
if (ret) {
return ret;
}
ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
if (ret) {
return ret;
}
return 4;
}
int kvm_init(void)
{
static const char upgrade_note[] =
"Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
"(see http://sourceforge.net/projects/kvm).\n";
KVMState *s;
const KVMCapabilityInfo *missing_cap;
int ret;
int i;
int max_vcpus;
s = g_malloc0(sizeof(KVMState));
/*
* On systems where the kernel can support different base page
* sizes, host page size may be different from TARGET_PAGE_SIZE,
* even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
* page size for the system though.
*/
assert(TARGET_PAGE_SIZE <= getpagesize());
#ifdef KVM_CAP_SET_GUEST_DEBUG
QTAILQ_INIT(&s->kvm_sw_breakpoints);
#endif
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
s->slots[i].slot = i;
}
s->vmfd = -1;
s->fd = qemu_open("/dev/kvm", O_RDWR);
if (s->fd == -1) {
fprintf(stderr, "Could not access KVM kernel module: %m\n");
ret = -errno;
goto err;
}
ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
if (ret < KVM_API_VERSION) {
if (ret > 0) {
ret = -EINVAL;
}
fprintf(stderr, "kvm version too old\n");
goto err;
}
if (ret > KVM_API_VERSION) {
ret = -EINVAL;
fprintf(stderr, "kvm version not supported\n");
goto err;
}
max_vcpus = kvm_max_vcpus(s);
if (smp_cpus > max_vcpus) {
ret = -EINVAL;
fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
"supported by KVM (%d)\n", smp_cpus, max_vcpus);
goto err;
}
s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
if (s->vmfd < 0) {
#ifdef TARGET_S390X
fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
"your host kernel command line\n");
#endif
ret = s->vmfd;
goto err;
}
missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
if (!missing_cap) {
missing_cap =
kvm_check_extension_list(s, kvm_arch_required_capabilities);
}
if (missing_cap) {
ret = -EINVAL;
fprintf(stderr, "kvm does not support %s\n%s",
missing_cap->name, upgrade_note);
goto err;
}
s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
s->broken_set_mem_region = 1;
ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
if (ret > 0) {
s->broken_set_mem_region = 0;
}
#ifdef KVM_CAP_VCPU_EVENTS
s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
#endif
s->robust_singlestep =
kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
#ifdef KVM_CAP_DEBUGREGS
s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
#endif
#ifdef KVM_CAP_XSAVE
s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
#endif
#ifdef KVM_CAP_XCRS
s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
#endif
#ifdef KVM_CAP_PIT_STATE2
s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
#endif
#ifdef KVM_CAP_IRQ_ROUTING
s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
#endif
s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
s->irq_set_ioctl = KVM_IRQ_LINE;
if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
}
#ifdef KVM_CAP_READONLY_MEM
kvm_readonly_mem_allowed =
(kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
#endif
ret = kvm_arch_init(s);
if (ret < 0) {
goto err;
}
ret = kvm_irqchip_create(s);
if (ret < 0) {
goto err;
}
kvm_state = s;
memory_listener_register(&kvm_memory_listener, &address_space_memory);
memory_listener_register(&kvm_io_listener, &address_space_io);
s->many_ioeventfds = kvm_check_many_ioeventfds();
cpu_interrupt_handler = kvm_handle_interrupt;
return 0;
err:
if (s->vmfd >= 0) {
close(s->vmfd);
}
if (s->fd != -1) {
close(s->fd);
}
g_free(s);
return ret;
}
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
uint32_t count)
{
int i;
uint8_t *ptr = data;
for (i = 0; i < count; i++) {
if (direction == KVM_EXIT_IO_IN) {
switch (size) {
case 1:
stb_p(ptr, cpu_inb(port));
break;
case 2:
stw_p(ptr, cpu_inw(port));
break;
case 4:
stl_p(ptr, cpu_inl(port));
break;
}
} else {
switch (size) {
case 1:
cpu_outb(port, ldub_p(ptr));
break;
case 2:
cpu_outw(port, lduw_p(ptr));
break;
case 4:
cpu_outl(port, ldl_p(ptr));
break;
}
}
ptr += size;
}
}
static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
{
fprintf(stderr, "KVM internal error.");
if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
int i;
fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
for (i = 0; i < run->internal.ndata; ++i) {
fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
i, (uint64_t)run->internal.data[i]);
}
} else {
fprintf(stderr, "\n");
}
if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
fprintf(stderr, "emulation failure\n");
if (!kvm_arch_stop_on_emulation_error(cpu)) {
cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
return EXCP_INTERRUPT;
}
}
/* FIXME: Should trigger a qmp message to let management know
* something went wrong.
*/
return -1;
}
void kvm_flush_coalesced_mmio_buffer(void)
{
KVMState *s = kvm_state;
if (s->coalesced_flush_in_progress) {
return;
}
s->coalesced_flush_in_progress = true;
if (s->coalesced_mmio_ring) {
struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
while (ring->first != ring->last) {
struct kvm_coalesced_mmio *ent;
ent = &ring->coalesced_mmio[ring->first];
cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
smp_wmb();
ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
}
}
s->coalesced_flush_in_progress = false;
}
static void do_kvm_cpu_synchronize_state(void *arg)
{
CPUState *cpu = arg;
if (!cpu->kvm_vcpu_dirty) {
kvm_arch_get_registers(cpu);
cpu->kvm_vcpu_dirty = true;
}
}
void kvm_cpu_synchronize_state(CPUState *cpu)
{
if (!cpu->kvm_vcpu_dirty) {
run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
}
}
void kvm_cpu_synchronize_post_reset(CPUState *cpu)
{
kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
cpu->kvm_vcpu_dirty = false;
}
void kvm_cpu_synchronize_post_init(CPUState *cpu)
{
kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
cpu->kvm_vcpu_dirty = false;
}
int kvm_cpu_exec(CPUState *cpu)
{
struct kvm_run *run = cpu->kvm_run;
int ret, run_ret;
DPRINTF("kvm_cpu_exec()\n");
if (kvm_arch_process_async_events(cpu)) {
cpu->exit_request = 0;
return EXCP_HLT;
}
do {
if (cpu->kvm_vcpu_dirty) {
kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
cpu->kvm_vcpu_dirty = false;
}
kvm_arch_pre_run(cpu, run);
if (cpu->exit_request) {
DPRINTF("interrupt exit requested\n");
/*
* KVM requires us to reenter the kernel after IO exits to complete
* instruction emulation. This self-signal will ensure that we
* leave ASAP again.
*/
qemu_cpu_kick_self();
}
qemu_mutex_unlock_iothread();
run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
qemu_mutex_lock_iothread();
kvm_arch_post_run(cpu, run);
if (run_ret < 0) {
if (run_ret == -EINTR || run_ret == -EAGAIN) {
DPRINTF("io window exit\n");
ret = EXCP_INTERRUPT;
break;
}
fprintf(stderr, "error: kvm run failed %s\n",
strerror(-run_ret));
abort();
}
trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
switch (run->exit_reason) {
case KVM_EXIT_IO:
DPRINTF("handle_io\n");
kvm_handle_io(run->io.port,
(uint8_t *)run + run->io.data_offset,
run->io.direction,
run->io.size,
run->io.count);
ret = 0;
break;
case KVM_EXIT_MMIO:
DPRINTF("handle_mmio\n");
cpu_physical_memory_rw(run->mmio.phys_addr,
run->mmio.data,
run->mmio.len,
run->mmio.is_write);
ret = 0;
break;
case KVM_EXIT_IRQ_WINDOW_OPEN:
DPRINTF("irq_window_open\n");
ret = EXCP_INTERRUPT;
break;
case KVM_EXIT_SHUTDOWN:
DPRINTF("shutdown\n");
qemu_system_reset_request();
ret = EXCP_INTERRUPT;
break;
case KVM_EXIT_UNKNOWN:
fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
(uint64_t)run->hw.hardware_exit_reason);
ret = -1;
break;
case KVM_EXIT_INTERNAL_ERROR:
ret = kvm_handle_internal_error(cpu, run);
break;
default:
DPRINTF("kvm_arch_handle_exit\n");
ret = kvm_arch_handle_exit(cpu, run);
break;
}
} while (ret == 0);
if (ret < 0) {
cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
vm_stop(RUN_STATE_INTERNAL_ERROR);
}
cpu->exit_request = 0;
return ret;
}
int kvm_ioctl(KVMState *s, int type, ...)
{
int ret;
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
trace_kvm_ioctl(type, arg);
ret = ioctl(s->fd, type, arg);
if (ret == -1) {
ret = -errno;
}
return ret;
}
int kvm_vm_ioctl(KVMState *s, int type, ...)
{
int ret;
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
trace_kvm_vm_ioctl(type, arg);
ret = ioctl(s->vmfd, type, arg);
if (ret == -1) {
ret = -errno;
}
return ret;
}
int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
{
int ret;
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
ret = ioctl(cpu->kvm_fd, type, arg);
if (ret == -1) {
ret = -errno;
}
return ret;
}
int kvm_has_sync_mmu(void)
{
return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
}
int kvm_has_vcpu_events(void)
{
return kvm_state->vcpu_events;
}
int kvm_has_robust_singlestep(void)
{
return kvm_state->robust_singlestep;
}
int kvm_has_debugregs(void)
{
return kvm_state->debugregs;
}
int kvm_has_xsave(void)
{
return kvm_state->xsave;
}
int kvm_has_xcrs(void)
{
return kvm_state->xcrs;
}
int kvm_has_pit_state2(void)
{
return kvm_state->pit_state2;
}
int kvm_has_many_ioeventfds(void)
{
if (!kvm_enabled()) {
return 0;
}
return kvm_state->many_ioeventfds;
}
int kvm_has_gsi_routing(void)
{
#ifdef KVM_CAP_IRQ_ROUTING
return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
#else
return false;
#endif
}
int kvm_has_intx_set_mask(void)
{
return kvm_state->intx_set_mask;
}
void *kvm_ram_alloc(ram_addr_t size)
{
#ifdef TARGET_S390X
void *mem;
mem = kvm_arch_ram_alloc(size);
if (mem) {
return mem;
}
#endif
return qemu_anon_ram_alloc(size);
}
void kvm_setup_guest_memory(void *start, size_t size)
{
#ifdef CONFIG_VALGRIND_H
VALGRIND_MAKE_MEM_DEFINED(start, size);
#endif
if (!kvm_has_sync_mmu()) {
int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
if (ret) {
perror("qemu_madvise");
fprintf(stderr,
"Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
exit(1);
}
}
}
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
target_ulong pc)
{
struct kvm_sw_breakpoint *bp;
QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
if (bp->pc == pc) {
return bp;
}
}
return NULL;
}
int kvm_sw_breakpoints_active(CPUState *cpu)
{
return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
}
struct kvm_set_guest_debug_data {
struct kvm_guest_debug dbg;
CPUState *cpu;
int err;
};
static void kvm_invoke_set_guest_debug(void *data)
{
struct kvm_set_guest_debug_data *dbg_data = data;
dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
&dbg_data->dbg);
}
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
{
CPUState *cpu = ENV_GET_CPU(env);
struct kvm_set_guest_debug_data data;
data.dbg.control = reinject_trap;
if (env->singlestep_enabled) {
data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
}
kvm_arch_update_guest_debug(cpu, &data.dbg);
data.cpu = cpu;
run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
return data.err;
}
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
target_ulong len, int type)
{
CPUState *current_cpu = ENV_GET_CPU(current_env);
struct kvm_sw_breakpoint *bp;
CPUArchState *env;
int err;
if (type == GDB_BREAKPOINT_SW) {
bp = kvm_find_sw_breakpoint(current_cpu, addr);
if (bp) {
bp->use_count++;
return 0;
}
bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
if (!bp) {
return -ENOMEM;
}
bp->pc = addr;
bp->use_count = 1;
err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
if (err) {
g_free(bp);
return err;
}
QTAILQ_INSERT_HEAD(&current_cpu->kvm_state->kvm_sw_breakpoints,
bp, entry);
} else {
err = kvm_arch_insert_hw_breakpoint(addr, len, type);
if (err) {
return err;
}
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
err = kvm_update_guest_debug(env, 0);
if (err) {
return err;
}
}
return 0;
}
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
target_ulong len, int type)
{
CPUState *current_cpu = ENV_GET_CPU(current_env);
struct kvm_sw_breakpoint *bp;
CPUArchState *env;
int err;
if (type == GDB_BREAKPOINT_SW) {
bp = kvm_find_sw_breakpoint(current_cpu, addr);
if (!bp) {
return -ENOENT;
}
if (bp->use_count > 1) {
bp->use_count--;
return 0;
}
err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
if (err) {
return err;
}
QTAILQ_REMOVE(&current_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
g_free(bp);
} else {
err = kvm_arch_remove_hw_breakpoint(addr, len, type);
if (err) {
return err;
}
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
err = kvm_update_guest_debug(env, 0);
if (err) {
return err;
}
}
return 0;
}
void kvm_remove_all_breakpoints(CPUArchState *current_env)
{
CPUState *current_cpu = ENV_GET_CPU(current_env);
struct kvm_sw_breakpoint *bp, *next;
KVMState *s = current_cpu->kvm_state;
CPUArchState *env;
CPUState *cpu;
QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
/* Try harder to find a CPU that currently sees the breakpoint. */
for (env = first_cpu; env != NULL; env = env->next_cpu) {
cpu = ENV_GET_CPU(env);
if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
break;
}
}
}
QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
g_free(bp);
}
kvm_arch_remove_all_hw_breakpoints();
for (env = first_cpu; env != NULL; env = env->next_cpu) {
kvm_update_guest_debug(env, 0);
}
}
#else /* !KVM_CAP_SET_GUEST_DEBUG */
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
{
return -EINVAL;
}
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
target_ulong len, int type)
{
return -EINVAL;
}
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
target_ulong len, int type)
{
return -EINVAL;
}
void kvm_remove_all_breakpoints(CPUArchState *current_env)
{
}
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
{
struct kvm_signal_mask *sigmask;
int r;
if (!sigset) {
return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
}
sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
sigmask->len = 8;
memcpy(sigmask->sigset, sigset, sizeof(*sigset));
r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
g_free(sigmask);
return r;
}
int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
{
return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
}
int kvm_on_sigbus(int code, void *addr)
{
return kvm_arch_on_sigbus(code, addr);
}