qemu-e2k/hw/usb/hcd-uhci.c

1379 lines
36 KiB
C

/*
* USB UHCI controller emulation
*
* Copyright (c) 2005 Fabrice Bellard
*
* Copyright (c) 2008 Max Krasnyansky
* Magor rewrite of the UHCI data structures parser and frame processor
* Support for fully async operation and multiple outstanding transactions
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw/hw.h"
#include "hw/usb.h"
#include "hw/pci.h"
#include "qemu-timer.h"
#include "iov.h"
#include "dma.h"
#include "trace.h"
//#define DEBUG
//#define DEBUG_DUMP_DATA
#define UHCI_CMD_FGR (1 << 4)
#define UHCI_CMD_EGSM (1 << 3)
#define UHCI_CMD_GRESET (1 << 2)
#define UHCI_CMD_HCRESET (1 << 1)
#define UHCI_CMD_RS (1 << 0)
#define UHCI_STS_HCHALTED (1 << 5)
#define UHCI_STS_HCPERR (1 << 4)
#define UHCI_STS_HSERR (1 << 3)
#define UHCI_STS_RD (1 << 2)
#define UHCI_STS_USBERR (1 << 1)
#define UHCI_STS_USBINT (1 << 0)
#define TD_CTRL_SPD (1 << 29)
#define TD_CTRL_ERROR_SHIFT 27
#define TD_CTRL_IOS (1 << 25)
#define TD_CTRL_IOC (1 << 24)
#define TD_CTRL_ACTIVE (1 << 23)
#define TD_CTRL_STALL (1 << 22)
#define TD_CTRL_BABBLE (1 << 20)
#define TD_CTRL_NAK (1 << 19)
#define TD_CTRL_TIMEOUT (1 << 18)
#define UHCI_PORT_SUSPEND (1 << 12)
#define UHCI_PORT_RESET (1 << 9)
#define UHCI_PORT_LSDA (1 << 8)
#define UHCI_PORT_RD (1 << 6)
#define UHCI_PORT_ENC (1 << 3)
#define UHCI_PORT_EN (1 << 2)
#define UHCI_PORT_CSC (1 << 1)
#define UHCI_PORT_CCS (1 << 0)
#define UHCI_PORT_READ_ONLY (0x1bb)
#define UHCI_PORT_WRITE_CLEAR (UHCI_PORT_CSC | UHCI_PORT_ENC)
#define FRAME_TIMER_FREQ 1000
#define FRAME_MAX_LOOPS 256
#define NB_PORTS 2
enum {
TD_RESULT_STOP_FRAME = 10,
TD_RESULT_COMPLETE,
TD_RESULT_NEXT_QH,
TD_RESULT_ASYNC_START,
TD_RESULT_ASYNC_CONT,
};
typedef struct UHCIState UHCIState;
typedef struct UHCIAsync UHCIAsync;
typedef struct UHCIQueue UHCIQueue;
/*
* Pending async transaction.
* 'packet' must be the first field because completion
* handler does "(UHCIAsync *) pkt" cast.
*/
struct UHCIAsync {
USBPacket packet;
QEMUSGList sgl;
UHCIQueue *queue;
QTAILQ_ENTRY(UHCIAsync) next;
uint32_t td;
uint8_t isoc;
uint8_t done;
};
struct UHCIQueue {
uint32_t token;
UHCIState *uhci;
QTAILQ_ENTRY(UHCIQueue) next;
QTAILQ_HEAD(, UHCIAsync) asyncs;
int8_t valid;
};
typedef struct UHCIPort {
USBPort port;
uint16_t ctrl;
} UHCIPort;
struct UHCIState {
PCIDevice dev;
MemoryRegion io_bar;
USBBus bus; /* Note unused when we're a companion controller */
uint16_t cmd; /* cmd register */
uint16_t status;
uint16_t intr; /* interrupt enable register */
uint16_t frnum; /* frame number */
uint32_t fl_base_addr; /* frame list base address */
uint8_t sof_timing;
uint8_t status2; /* bit 0 and 1 are used to generate UHCI_STS_USBINT */
int64_t expire_time;
QEMUTimer *frame_timer;
UHCIPort ports[NB_PORTS];
/* Interrupts that should be raised at the end of the current frame. */
uint32_t pending_int_mask;
/* Active packets */
QTAILQ_HEAD(, UHCIQueue) queues;
uint8_t num_ports_vmstate;
/* Properties */
char *masterbus;
uint32_t firstport;
};
typedef struct UHCI_TD {
uint32_t link;
uint32_t ctrl; /* see TD_CTRL_xxx */
uint32_t token;
uint32_t buffer;
} UHCI_TD;
typedef struct UHCI_QH {
uint32_t link;
uint32_t el_link;
} UHCI_QH;
static inline int32_t uhci_queue_token(UHCI_TD *td)
{
/* covers ep, dev, pid -> identifies the endpoint */
return td->token & 0x7ffff;
}
static UHCIQueue *uhci_queue_get(UHCIState *s, UHCI_TD *td)
{
uint32_t token = uhci_queue_token(td);
UHCIQueue *queue;
QTAILQ_FOREACH(queue, &s->queues, next) {
if (queue->token == token) {
return queue;
}
}
queue = g_new0(UHCIQueue, 1);
queue->uhci = s;
queue->token = token;
QTAILQ_INIT(&queue->asyncs);
QTAILQ_INSERT_HEAD(&s->queues, queue, next);
trace_usb_uhci_queue_add(queue->token);
return queue;
}
static void uhci_queue_free(UHCIQueue *queue)
{
UHCIState *s = queue->uhci;
trace_usb_uhci_queue_del(queue->token);
QTAILQ_REMOVE(&s->queues, queue, next);
g_free(queue);
}
static UHCIAsync *uhci_async_alloc(UHCIQueue *queue, uint32_t addr)
{
UHCIAsync *async = g_new0(UHCIAsync, 1);
async->queue = queue;
async->td = addr;
usb_packet_init(&async->packet);
pci_dma_sglist_init(&async->sgl, &queue->uhci->dev, 1);
trace_usb_uhci_packet_add(async->queue->token, async->td);
return async;
}
static void uhci_async_free(UHCIAsync *async)
{
trace_usb_uhci_packet_del(async->queue->token, async->td);
usb_packet_cleanup(&async->packet);
qemu_sglist_destroy(&async->sgl);
g_free(async);
}
static void uhci_async_link(UHCIAsync *async)
{
UHCIQueue *queue = async->queue;
QTAILQ_INSERT_TAIL(&queue->asyncs, async, next);
trace_usb_uhci_packet_link_async(async->queue->token, async->td);
}
static void uhci_async_unlink(UHCIAsync *async)
{
UHCIQueue *queue = async->queue;
QTAILQ_REMOVE(&queue->asyncs, async, next);
trace_usb_uhci_packet_unlink_async(async->queue->token, async->td);
}
static void uhci_async_cancel(UHCIAsync *async)
{
trace_usb_uhci_packet_cancel(async->queue->token, async->td, async->done);
if (!async->done)
usb_cancel_packet(&async->packet);
uhci_async_free(async);
}
/*
* Mark all outstanding async packets as invalid.
* This is used for canceling them when TDs are removed by the HCD.
*/
static void uhci_async_validate_begin(UHCIState *s)
{
UHCIQueue *queue;
QTAILQ_FOREACH(queue, &s->queues, next) {
queue->valid--;
}
}
/*
* Cancel async packets that are no longer valid
*/
static void uhci_async_validate_end(UHCIState *s)
{
UHCIQueue *queue, *n;
UHCIAsync *async;
QTAILQ_FOREACH_SAFE(queue, &s->queues, next, n) {
if (queue->valid > 0) {
continue;
}
while (!QTAILQ_EMPTY(&queue->asyncs)) {
async = QTAILQ_FIRST(&queue->asyncs);
uhci_async_unlink(async);
uhci_async_cancel(async);
}
uhci_queue_free(queue);
}
}
static void uhci_async_cancel_device(UHCIState *s, USBDevice *dev)
{
UHCIQueue *queue;
UHCIAsync *curr, *n;
QTAILQ_FOREACH(queue, &s->queues, next) {
QTAILQ_FOREACH_SAFE(curr, &queue->asyncs, next, n) {
if (!usb_packet_is_inflight(&curr->packet) ||
curr->packet.ep->dev != dev) {
continue;
}
uhci_async_unlink(curr);
uhci_async_cancel(curr);
}
}
}
static void uhci_async_cancel_all(UHCIState *s)
{
UHCIQueue *queue;
UHCIAsync *curr, *n;
QTAILQ_FOREACH(queue, &s->queues, next) {
QTAILQ_FOREACH_SAFE(curr, &queue->asyncs, next, n) {
uhci_async_unlink(curr);
uhci_async_cancel(curr);
}
uhci_queue_free(queue);
}
}
static UHCIAsync *uhci_async_find_td(UHCIState *s, uint32_t addr, UHCI_TD *td)
{
uint32_t token = uhci_queue_token(td);
UHCIQueue *queue;
UHCIAsync *async;
QTAILQ_FOREACH(queue, &s->queues, next) {
if (queue->token == token) {
break;
}
}
if (queue == NULL) {
return NULL;
}
QTAILQ_FOREACH(async, &queue->asyncs, next) {
if (async->td == addr) {
return async;
}
}
return NULL;
}
static void uhci_update_irq(UHCIState *s)
{
int level;
if (((s->status2 & 1) && (s->intr & (1 << 2))) ||
((s->status2 & 2) && (s->intr & (1 << 3))) ||
((s->status & UHCI_STS_USBERR) && (s->intr & (1 << 0))) ||
((s->status & UHCI_STS_RD) && (s->intr & (1 << 1))) ||
(s->status & UHCI_STS_HSERR) ||
(s->status & UHCI_STS_HCPERR)) {
level = 1;
} else {
level = 0;
}
qemu_set_irq(s->dev.irq[3], level);
}
static void uhci_reset(void *opaque)
{
UHCIState *s = opaque;
uint8_t *pci_conf;
int i;
UHCIPort *port;
trace_usb_uhci_reset();
pci_conf = s->dev.config;
pci_conf[0x6a] = 0x01; /* usb clock */
pci_conf[0x6b] = 0x00;
s->cmd = 0;
s->status = 0;
s->status2 = 0;
s->intr = 0;
s->fl_base_addr = 0;
s->sof_timing = 64;
for(i = 0; i < NB_PORTS; i++) {
port = &s->ports[i];
port->ctrl = 0x0080;
if (port->port.dev && port->port.dev->attached) {
usb_port_reset(&port->port);
}
}
uhci_async_cancel_all(s);
}
static void uhci_pre_save(void *opaque)
{
UHCIState *s = opaque;
uhci_async_cancel_all(s);
}
static const VMStateDescription vmstate_uhci_port = {
.name = "uhci port",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_UINT16(ctrl, UHCIPort),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_uhci = {
.name = "uhci",
.version_id = 2,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.pre_save = uhci_pre_save,
.fields = (VMStateField []) {
VMSTATE_PCI_DEVICE(dev, UHCIState),
VMSTATE_UINT8_EQUAL(num_ports_vmstate, UHCIState),
VMSTATE_STRUCT_ARRAY(ports, UHCIState, NB_PORTS, 1,
vmstate_uhci_port, UHCIPort),
VMSTATE_UINT16(cmd, UHCIState),
VMSTATE_UINT16(status, UHCIState),
VMSTATE_UINT16(intr, UHCIState),
VMSTATE_UINT16(frnum, UHCIState),
VMSTATE_UINT32(fl_base_addr, UHCIState),
VMSTATE_UINT8(sof_timing, UHCIState),
VMSTATE_UINT8(status2, UHCIState),
VMSTATE_TIMER(frame_timer, UHCIState),
VMSTATE_INT64_V(expire_time, UHCIState, 2),
VMSTATE_END_OF_LIST()
}
};
static void uhci_ioport_writeb(void *opaque, uint32_t addr, uint32_t val)
{
UHCIState *s = opaque;
addr &= 0x1f;
switch(addr) {
case 0x0c:
s->sof_timing = val;
break;
}
}
static uint32_t uhci_ioport_readb(void *opaque, uint32_t addr)
{
UHCIState *s = opaque;
uint32_t val;
addr &= 0x1f;
switch(addr) {
case 0x0c:
val = s->sof_timing;
break;
default:
val = 0xff;
break;
}
return val;
}
static void uhci_ioport_writew(void *opaque, uint32_t addr, uint32_t val)
{
UHCIState *s = opaque;
addr &= 0x1f;
trace_usb_uhci_mmio_writew(addr, val);
switch(addr) {
case 0x00:
if ((val & UHCI_CMD_RS) && !(s->cmd & UHCI_CMD_RS)) {
/* start frame processing */
trace_usb_uhci_schedule_start();
s->expire_time = qemu_get_clock_ns(vm_clock) +
(get_ticks_per_sec() / FRAME_TIMER_FREQ);
qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
s->status &= ~UHCI_STS_HCHALTED;
} else if (!(val & UHCI_CMD_RS)) {
s->status |= UHCI_STS_HCHALTED;
}
if (val & UHCI_CMD_GRESET) {
UHCIPort *port;
int i;
/* send reset on the USB bus */
for(i = 0; i < NB_PORTS; i++) {
port = &s->ports[i];
usb_device_reset(port->port.dev);
}
uhci_reset(s);
return;
}
if (val & UHCI_CMD_HCRESET) {
uhci_reset(s);
return;
}
s->cmd = val;
break;
case 0x02:
s->status &= ~val;
/* XXX: the chip spec is not coherent, so we add a hidden
register to distinguish between IOC and SPD */
if (val & UHCI_STS_USBINT)
s->status2 = 0;
uhci_update_irq(s);
break;
case 0x04:
s->intr = val;
uhci_update_irq(s);
break;
case 0x06:
if (s->status & UHCI_STS_HCHALTED)
s->frnum = val & 0x7ff;
break;
case 0x10 ... 0x1f:
{
UHCIPort *port;
USBDevice *dev;
int n;
n = (addr >> 1) & 7;
if (n >= NB_PORTS)
return;
port = &s->ports[n];
dev = port->port.dev;
if (dev && dev->attached) {
/* port reset */
if ( (val & UHCI_PORT_RESET) &&
!(port->ctrl & UHCI_PORT_RESET) ) {
usb_device_reset(dev);
}
}
port->ctrl &= UHCI_PORT_READ_ONLY;
port->ctrl |= (val & ~UHCI_PORT_READ_ONLY);
/* some bits are reset when a '1' is written to them */
port->ctrl &= ~(val & UHCI_PORT_WRITE_CLEAR);
}
break;
}
}
static uint32_t uhci_ioport_readw(void *opaque, uint32_t addr)
{
UHCIState *s = opaque;
uint32_t val;
addr &= 0x1f;
switch(addr) {
case 0x00:
val = s->cmd;
break;
case 0x02:
val = s->status;
break;
case 0x04:
val = s->intr;
break;
case 0x06:
val = s->frnum;
break;
case 0x10 ... 0x1f:
{
UHCIPort *port;
int n;
n = (addr >> 1) & 7;
if (n >= NB_PORTS)
goto read_default;
port = &s->ports[n];
val = port->ctrl;
}
break;
default:
read_default:
val = 0xff7f; /* disabled port */
break;
}
trace_usb_uhci_mmio_readw(addr, val);
return val;
}
static void uhci_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
{
UHCIState *s = opaque;
addr &= 0x1f;
trace_usb_uhci_mmio_writel(addr, val);
switch(addr) {
case 0x08:
s->fl_base_addr = val & ~0xfff;
break;
}
}
static uint32_t uhci_ioport_readl(void *opaque, uint32_t addr)
{
UHCIState *s = opaque;
uint32_t val;
addr &= 0x1f;
switch(addr) {
case 0x08:
val = s->fl_base_addr;
break;
default:
val = 0xffffffff;
break;
}
trace_usb_uhci_mmio_readl(addr, val);
return val;
}
/* signal resume if controller suspended */
static void uhci_resume (void *opaque)
{
UHCIState *s = (UHCIState *)opaque;
if (!s)
return;
if (s->cmd & UHCI_CMD_EGSM) {
s->cmd |= UHCI_CMD_FGR;
s->status |= UHCI_STS_RD;
uhci_update_irq(s);
}
}
static void uhci_attach(USBPort *port1)
{
UHCIState *s = port1->opaque;
UHCIPort *port = &s->ports[port1->index];
/* set connect status */
port->ctrl |= UHCI_PORT_CCS | UHCI_PORT_CSC;
/* update speed */
if (port->port.dev->speed == USB_SPEED_LOW) {
port->ctrl |= UHCI_PORT_LSDA;
} else {
port->ctrl &= ~UHCI_PORT_LSDA;
}
uhci_resume(s);
}
static void uhci_detach(USBPort *port1)
{
UHCIState *s = port1->opaque;
UHCIPort *port = &s->ports[port1->index];
uhci_async_cancel_device(s, port1->dev);
/* set connect status */
if (port->ctrl & UHCI_PORT_CCS) {
port->ctrl &= ~UHCI_PORT_CCS;
port->ctrl |= UHCI_PORT_CSC;
}
/* disable port */
if (port->ctrl & UHCI_PORT_EN) {
port->ctrl &= ~UHCI_PORT_EN;
port->ctrl |= UHCI_PORT_ENC;
}
uhci_resume(s);
}
static void uhci_child_detach(USBPort *port1, USBDevice *child)
{
UHCIState *s = port1->opaque;
uhci_async_cancel_device(s, child);
}
static void uhci_wakeup(USBPort *port1)
{
UHCIState *s = port1->opaque;
UHCIPort *port = &s->ports[port1->index];
if (port->ctrl & UHCI_PORT_SUSPEND && !(port->ctrl & UHCI_PORT_RD)) {
port->ctrl |= UHCI_PORT_RD;
uhci_resume(s);
}
}
static USBDevice *uhci_find_device(UHCIState *s, uint8_t addr)
{
USBDevice *dev;
int i;
for (i = 0; i < NB_PORTS; i++) {
UHCIPort *port = &s->ports[i];
if (!(port->ctrl & UHCI_PORT_EN)) {
continue;
}
dev = usb_find_device(&port->port, addr);
if (dev != NULL) {
return dev;
}
}
return NULL;
}
static void uhci_async_complete(USBPort *port, USBPacket *packet);
static void uhci_process_frame(UHCIState *s);
/* return -1 if fatal error (frame must be stopped)
0 if TD successful
1 if TD unsuccessful or inactive
*/
static int uhci_complete_td(UHCIState *s, UHCI_TD *td, UHCIAsync *async, uint32_t *int_mask)
{
int len = 0, max_len, err, ret;
uint8_t pid;
max_len = ((td->token >> 21) + 1) & 0x7ff;
pid = td->token & 0xff;
ret = async->packet.result;
if (td->ctrl & TD_CTRL_IOS)
td->ctrl &= ~TD_CTRL_ACTIVE;
if (ret < 0)
goto out;
len = async->packet.result;
td->ctrl = (td->ctrl & ~0x7ff) | ((len - 1) & 0x7ff);
/* The NAK bit may have been set by a previous frame, so clear it
here. The docs are somewhat unclear, but win2k relies on this
behavior. */
td->ctrl &= ~(TD_CTRL_ACTIVE | TD_CTRL_NAK);
if (td->ctrl & TD_CTRL_IOC)
*int_mask |= 0x01;
if (pid == USB_TOKEN_IN) {
if (len > max_len) {
ret = USB_RET_BABBLE;
goto out;
}
if ((td->ctrl & TD_CTRL_SPD) && len < max_len) {
*int_mask |= 0x02;
/* short packet: do not update QH */
trace_usb_uhci_packet_complete_shortxfer(async->queue->token,
async->td);
return TD_RESULT_NEXT_QH;
}
}
/* success */
trace_usb_uhci_packet_complete_success(async->queue->token, async->td);
return TD_RESULT_COMPLETE;
out:
switch(ret) {
case USB_RET_STALL:
td->ctrl |= TD_CTRL_STALL;
td->ctrl &= ~TD_CTRL_ACTIVE;
s->status |= UHCI_STS_USBERR;
if (td->ctrl & TD_CTRL_IOC) {
*int_mask |= 0x01;
}
uhci_update_irq(s);
trace_usb_uhci_packet_complete_stall(async->queue->token, async->td);
return TD_RESULT_NEXT_QH;
case USB_RET_BABBLE:
td->ctrl |= TD_CTRL_BABBLE | TD_CTRL_STALL;
td->ctrl &= ~TD_CTRL_ACTIVE;
s->status |= UHCI_STS_USBERR;
if (td->ctrl & TD_CTRL_IOC) {
*int_mask |= 0x01;
}
uhci_update_irq(s);
/* frame interrupted */
trace_usb_uhci_packet_complete_babble(async->queue->token, async->td);
return TD_RESULT_STOP_FRAME;
case USB_RET_NAK:
td->ctrl |= TD_CTRL_NAK;
if (pid == USB_TOKEN_SETUP)
break;
return TD_RESULT_NEXT_QH;
case USB_RET_IOERROR:
case USB_RET_NODEV:
default:
break;
}
/* Retry the TD if error count is not zero */
td->ctrl |= TD_CTRL_TIMEOUT;
err = (td->ctrl >> TD_CTRL_ERROR_SHIFT) & 3;
if (err != 0) {
err--;
if (err == 0) {
td->ctrl &= ~TD_CTRL_ACTIVE;
s->status |= UHCI_STS_USBERR;
if (td->ctrl & TD_CTRL_IOC)
*int_mask |= 0x01;
uhci_update_irq(s);
trace_usb_uhci_packet_complete_error(async->queue->token,
async->td);
}
}
td->ctrl = (td->ctrl & ~(3 << TD_CTRL_ERROR_SHIFT)) |
(err << TD_CTRL_ERROR_SHIFT);
return TD_RESULT_NEXT_QH;
}
static int uhci_handle_td(UHCIState *s, uint32_t addr, UHCI_TD *td, uint32_t *int_mask)
{
UHCIAsync *async;
int len = 0, max_len;
uint8_t pid;
USBDevice *dev;
USBEndpoint *ep;
/* Is active ? */
if (!(td->ctrl & TD_CTRL_ACTIVE))
return TD_RESULT_NEXT_QH;
async = uhci_async_find_td(s, addr, td);
if (async) {
/* Already submitted */
async->queue->valid = 32;
if (!async->done)
return TD_RESULT_ASYNC_CONT;
uhci_async_unlink(async);
goto done;
}
/* Allocate new packet */
async = uhci_async_alloc(uhci_queue_get(s, td), addr);
/* valid needs to be large enough to handle 10 frame delay
* for initial isochronous requests
*/
async->queue->valid = 32;
async->isoc = td->ctrl & TD_CTRL_IOS;
max_len = ((td->token >> 21) + 1) & 0x7ff;
pid = td->token & 0xff;
dev = uhci_find_device(s, (td->token >> 8) & 0x7f);
ep = usb_ep_get(dev, pid, (td->token >> 15) & 0xf);
usb_packet_setup(&async->packet, pid, ep);
qemu_sglist_add(&async->sgl, td->buffer, max_len);
usb_packet_map(&async->packet, &async->sgl);
switch(pid) {
case USB_TOKEN_OUT:
case USB_TOKEN_SETUP:
len = usb_handle_packet(dev, &async->packet);
if (len >= 0)
len = max_len;
break;
case USB_TOKEN_IN:
len = usb_handle_packet(dev, &async->packet);
break;
default:
/* invalid pid : frame interrupted */
uhci_async_free(async);
s->status |= UHCI_STS_HCPERR;
uhci_update_irq(s);
return TD_RESULT_STOP_FRAME;
}
if (len == USB_RET_ASYNC) {
uhci_async_link(async);
return TD_RESULT_ASYNC_START;
}
async->packet.result = len;
done:
len = uhci_complete_td(s, td, async, int_mask);
usb_packet_unmap(&async->packet);
uhci_async_free(async);
return len;
}
static void uhci_async_complete(USBPort *port, USBPacket *packet)
{
UHCIAsync *async = container_of(packet, UHCIAsync, packet);
UHCIState *s = async->queue->uhci;
if (async->isoc) {
UHCI_TD td;
uint32_t link = async->td;
uint32_t int_mask = 0, val;
pci_dma_read(&s->dev, link & ~0xf, &td, sizeof(td));
le32_to_cpus(&td.link);
le32_to_cpus(&td.ctrl);
le32_to_cpus(&td.token);
le32_to_cpus(&td.buffer);
uhci_async_unlink(async);
uhci_complete_td(s, &td, async, &int_mask);
s->pending_int_mask |= int_mask;
/* update the status bits of the TD */
val = cpu_to_le32(td.ctrl);
pci_dma_write(&s->dev, (link & ~0xf) + 4, &val, sizeof(val));
uhci_async_free(async);
} else {
async->done = 1;
uhci_process_frame(s);
}
}
static int is_valid(uint32_t link)
{
return (link & 1) == 0;
}
static int is_qh(uint32_t link)
{
return (link & 2) != 0;
}
static int depth_first(uint32_t link)
{
return (link & 4) != 0;
}
/* QH DB used for detecting QH loops */
#define UHCI_MAX_QUEUES 128
typedef struct {
uint32_t addr[UHCI_MAX_QUEUES];
int count;
} QhDb;
static void qhdb_reset(QhDb *db)
{
db->count = 0;
}
/* Add QH to DB. Returns 1 if already present or DB is full. */
static int qhdb_insert(QhDb *db, uint32_t addr)
{
int i;
for (i = 0; i < db->count; i++)
if (db->addr[i] == addr)
return 1;
if (db->count >= UHCI_MAX_QUEUES)
return 1;
db->addr[db->count++] = addr;
return 0;
}
static void uhci_fill_queue(UHCIState *s, UHCI_TD *td)
{
uint32_t int_mask = 0;
uint32_t plink = td->link;
uint32_t token = uhci_queue_token(td);
UHCI_TD ptd;
int ret;
while (is_valid(plink)) {
pci_dma_read(&s->dev, plink & ~0xf, &ptd, sizeof(ptd));
le32_to_cpus(&ptd.link);
le32_to_cpus(&ptd.ctrl);
le32_to_cpus(&ptd.token);
le32_to_cpus(&ptd.buffer);
if (!(ptd.ctrl & TD_CTRL_ACTIVE)) {
break;
}
if (uhci_queue_token(&ptd) != token) {
break;
}
trace_usb_uhci_td_queue(plink & ~0xf, ptd.ctrl, ptd.token);
ret = uhci_handle_td(s, plink, &ptd, &int_mask);
assert(ret == TD_RESULT_ASYNC_START);
assert(int_mask == 0);
plink = ptd.link;
}
}
static void uhci_process_frame(UHCIState *s)
{
uint32_t frame_addr, link, old_td_ctrl, val, int_mask;
uint32_t curr_qh, td_count = 0, bytes_count = 0;
int cnt, ret;
UHCI_TD td;
UHCI_QH qh;
QhDb qhdb;
frame_addr = s->fl_base_addr + ((s->frnum & 0x3ff) << 2);
pci_dma_read(&s->dev, frame_addr, &link, 4);
le32_to_cpus(&link);
int_mask = 0;
curr_qh = 0;
qhdb_reset(&qhdb);
for (cnt = FRAME_MAX_LOOPS; is_valid(link) && cnt; cnt--) {
if (is_qh(link)) {
/* QH */
trace_usb_uhci_qh_load(link & ~0xf);
if (qhdb_insert(&qhdb, link)) {
/*
* We're going in circles. Which is not a bug because
* HCD is allowed to do that as part of the BW management.
*
* Stop processing here if
* (a) no transaction has been done since we've been
* here last time, or
* (b) we've reached the usb 1.1 bandwidth, which is
* 1280 bytes/frame.
*/
if (td_count == 0) {
trace_usb_uhci_frame_loop_stop_idle();
break;
} else if (bytes_count >= 1280) {
trace_usb_uhci_frame_loop_stop_bandwidth();
break;
} else {
trace_usb_uhci_frame_loop_continue();
td_count = 0;
qhdb_reset(&qhdb);
qhdb_insert(&qhdb, link);
}
}
pci_dma_read(&s->dev, link & ~0xf, &qh, sizeof(qh));
le32_to_cpus(&qh.link);
le32_to_cpus(&qh.el_link);
if (!is_valid(qh.el_link)) {
/* QH w/o elements */
curr_qh = 0;
link = qh.link;
} else {
/* QH with elements */
curr_qh = link;
link = qh.el_link;
}
continue;
}
/* TD */
pci_dma_read(&s->dev, link & ~0xf, &td, sizeof(td));
le32_to_cpus(&td.link);
le32_to_cpus(&td.ctrl);
le32_to_cpus(&td.token);
le32_to_cpus(&td.buffer);
trace_usb_uhci_td_load(curr_qh & ~0xf, link & ~0xf, td.ctrl, td.token);
old_td_ctrl = td.ctrl;
ret = uhci_handle_td(s, link, &td, &int_mask);
if (old_td_ctrl != td.ctrl) {
/* update the status bits of the TD */
val = cpu_to_le32(td.ctrl);
pci_dma_write(&s->dev, (link & ~0xf) + 4, &val, sizeof(val));
}
switch (ret) {
case TD_RESULT_STOP_FRAME: /* interrupted frame */
goto out;
case TD_RESULT_NEXT_QH:
case TD_RESULT_ASYNC_CONT:
trace_usb_uhci_td_nextqh(curr_qh & ~0xf, link & ~0xf);
link = curr_qh ? qh.link : td.link;
continue;
case TD_RESULT_ASYNC_START:
trace_usb_uhci_td_async(curr_qh & ~0xf, link & ~0xf);
if (is_valid(td.link)) {
uhci_fill_queue(s, &td);
}
link = curr_qh ? qh.link : td.link;
continue;
case TD_RESULT_COMPLETE:
trace_usb_uhci_td_complete(curr_qh & ~0xf, link & ~0xf);
link = td.link;
td_count++;
bytes_count += (td.ctrl & 0x7ff) + 1;
if (curr_qh) {
/* update QH element link */
qh.el_link = link;
val = cpu_to_le32(qh.el_link);
pci_dma_write(&s->dev, (curr_qh & ~0xf) + 4, &val, sizeof(val));
if (!depth_first(link)) {
/* done with this QH */
curr_qh = 0;
link = qh.link;
}
}
break;
default:
assert(!"unknown return code");
}
/* go to the next entry */
}
out:
s->pending_int_mask |= int_mask;
}
static void uhci_frame_timer(void *opaque)
{
UHCIState *s = opaque;
/* prepare the timer for the next frame */
s->expire_time += (get_ticks_per_sec() / FRAME_TIMER_FREQ);
if (!(s->cmd & UHCI_CMD_RS)) {
/* Full stop */
trace_usb_uhci_schedule_stop();
qemu_del_timer(s->frame_timer);
uhci_async_cancel_all(s);
/* set hchalted bit in status - UHCI11D 2.1.2 */
s->status |= UHCI_STS_HCHALTED;
return;
}
/* Complete the previous frame */
if (s->pending_int_mask) {
s->status2 |= s->pending_int_mask;
s->status |= UHCI_STS_USBINT;
uhci_update_irq(s);
}
s->pending_int_mask = 0;
/* Start new frame */
s->frnum = (s->frnum + 1) & 0x7ff;
trace_usb_uhci_frame_start(s->frnum);
uhci_async_validate_begin(s);
uhci_process_frame(s);
uhci_async_validate_end(s);
qemu_mod_timer(s->frame_timer, s->expire_time);
}
static const MemoryRegionPortio uhci_portio[] = {
{ 0, 32, 2, .write = uhci_ioport_writew, },
{ 0, 32, 2, .read = uhci_ioport_readw, },
{ 0, 32, 4, .write = uhci_ioport_writel, },
{ 0, 32, 4, .read = uhci_ioport_readl, },
{ 0, 32, 1, .write = uhci_ioport_writeb, },
{ 0, 32, 1, .read = uhci_ioport_readb, },
PORTIO_END_OF_LIST()
};
static const MemoryRegionOps uhci_ioport_ops = {
.old_portio = uhci_portio,
};
static USBPortOps uhci_port_ops = {
.attach = uhci_attach,
.detach = uhci_detach,
.child_detach = uhci_child_detach,
.wakeup = uhci_wakeup,
.complete = uhci_async_complete,
};
static USBBusOps uhci_bus_ops = {
};
static int usb_uhci_common_initfn(PCIDevice *dev)
{
UHCIState *s = DO_UPCAST(UHCIState, dev, dev);
uint8_t *pci_conf = s->dev.config;
int i;
pci_conf[PCI_CLASS_PROG] = 0x00;
/* TODO: reset value should be 0. */
pci_conf[PCI_INTERRUPT_PIN] = 4; /* interrupt pin D */
pci_conf[USB_SBRN] = USB_RELEASE_1; // release number
if (s->masterbus) {
USBPort *ports[NB_PORTS];
for(i = 0; i < NB_PORTS; i++) {
ports[i] = &s->ports[i].port;
}
if (usb_register_companion(s->masterbus, ports, NB_PORTS,
s->firstport, s, &uhci_port_ops,
USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL) != 0) {
return -1;
}
} else {
usb_bus_new(&s->bus, &uhci_bus_ops, &s->dev.qdev);
for (i = 0; i < NB_PORTS; i++) {
usb_register_port(&s->bus, &s->ports[i].port, s, i, &uhci_port_ops,
USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL);
}
}
s->frame_timer = qemu_new_timer_ns(vm_clock, uhci_frame_timer, s);
s->num_ports_vmstate = NB_PORTS;
QTAILQ_INIT(&s->queues);
qemu_register_reset(uhci_reset, s);
memory_region_init_io(&s->io_bar, &uhci_ioport_ops, s, "uhci", 0x20);
/* Use region 4 for consistency with real hardware. BSD guests seem
to rely on this. */
pci_register_bar(&s->dev, 4, PCI_BASE_ADDRESS_SPACE_IO, &s->io_bar);
return 0;
}
static int usb_uhci_vt82c686b_initfn(PCIDevice *dev)
{
UHCIState *s = DO_UPCAST(UHCIState, dev, dev);
uint8_t *pci_conf = s->dev.config;
/* USB misc control 1/2 */
pci_set_long(pci_conf + 0x40,0x00001000);
/* PM capability */
pci_set_long(pci_conf + 0x80,0x00020001);
/* USB legacy support */
pci_set_long(pci_conf + 0xc0,0x00002000);
return usb_uhci_common_initfn(dev);
}
static int usb_uhci_exit(PCIDevice *dev)
{
UHCIState *s = DO_UPCAST(UHCIState, dev, dev);
memory_region_destroy(&s->io_bar);
return 0;
}
static Property uhci_properties[] = {
DEFINE_PROP_STRING("masterbus", UHCIState, masterbus),
DEFINE_PROP_UINT32("firstport", UHCIState, firstport, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void piix3_uhci_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = usb_uhci_common_initfn;
k->exit = usb_uhci_exit;
k->vendor_id = PCI_VENDOR_ID_INTEL;
k->device_id = PCI_DEVICE_ID_INTEL_82371SB_2;
k->revision = 0x01;
k->class_id = PCI_CLASS_SERIAL_USB;
dc->vmsd = &vmstate_uhci;
dc->props = uhci_properties;
}
static TypeInfo piix3_uhci_info = {
.name = "piix3-usb-uhci",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(UHCIState),
.class_init = piix3_uhci_class_init,
};
static void piix4_uhci_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = usb_uhci_common_initfn;
k->exit = usb_uhci_exit;
k->vendor_id = PCI_VENDOR_ID_INTEL;
k->device_id = PCI_DEVICE_ID_INTEL_82371AB_2;
k->revision = 0x01;
k->class_id = PCI_CLASS_SERIAL_USB;
dc->vmsd = &vmstate_uhci;
dc->props = uhci_properties;
}
static TypeInfo piix4_uhci_info = {
.name = "piix4-usb-uhci",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(UHCIState),
.class_init = piix4_uhci_class_init,
};
static void vt82c686b_uhci_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = usb_uhci_vt82c686b_initfn;
k->exit = usb_uhci_exit;
k->vendor_id = PCI_VENDOR_ID_VIA;
k->device_id = PCI_DEVICE_ID_VIA_UHCI;
k->revision = 0x01;
k->class_id = PCI_CLASS_SERIAL_USB;
dc->vmsd = &vmstate_uhci;
dc->props = uhci_properties;
}
static TypeInfo vt82c686b_uhci_info = {
.name = "vt82c686b-usb-uhci",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(UHCIState),
.class_init = vt82c686b_uhci_class_init,
};
static void ich9_uhci1_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = usb_uhci_common_initfn;
k->vendor_id = PCI_VENDOR_ID_INTEL;
k->device_id = PCI_DEVICE_ID_INTEL_82801I_UHCI1;
k->revision = 0x03;
k->class_id = PCI_CLASS_SERIAL_USB;
dc->vmsd = &vmstate_uhci;
dc->props = uhci_properties;
}
static TypeInfo ich9_uhci1_info = {
.name = "ich9-usb-uhci1",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(UHCIState),
.class_init = ich9_uhci1_class_init,
};
static void ich9_uhci2_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = usb_uhci_common_initfn;
k->vendor_id = PCI_VENDOR_ID_INTEL;
k->device_id = PCI_DEVICE_ID_INTEL_82801I_UHCI2;
k->revision = 0x03;
k->class_id = PCI_CLASS_SERIAL_USB;
dc->vmsd = &vmstate_uhci;
dc->props = uhci_properties;
}
static TypeInfo ich9_uhci2_info = {
.name = "ich9-usb-uhci2",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(UHCIState),
.class_init = ich9_uhci2_class_init,
};
static void ich9_uhci3_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = usb_uhci_common_initfn;
k->vendor_id = PCI_VENDOR_ID_INTEL;
k->device_id = PCI_DEVICE_ID_INTEL_82801I_UHCI3;
k->revision = 0x03;
k->class_id = PCI_CLASS_SERIAL_USB;
dc->vmsd = &vmstate_uhci;
dc->props = uhci_properties;
}
static TypeInfo ich9_uhci3_info = {
.name = "ich9-usb-uhci3",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(UHCIState),
.class_init = ich9_uhci3_class_init,
};
static void uhci_register_types(void)
{
type_register_static(&piix3_uhci_info);
type_register_static(&piix4_uhci_info);
type_register_static(&vt82c686b_uhci_info);
type_register_static(&ich9_uhci1_info);
type_register_static(&ich9_uhci2_info);
type_register_static(&ich9_uhci3_info);
}
type_init(uhci_register_types)