qemu-e2k/hw/intc/arm_gic_common.c
Marc-André Lureau 4f67d30b5e qdev: set properties with device_class_set_props()
The following patch will need to handle properties registration during
class_init time. Let's use a device_class_set_props() setter.

spatch --macro-file scripts/cocci-macro-file.h  --sp-file
./scripts/coccinelle/qdev-set-props.cocci --keep-comments --in-place
--dir .

@@
typedef DeviceClass;
DeviceClass *d;
expression val;
@@
- d->props = val
+ device_class_set_props(d, val)

Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-Id: <20200110153039.1379601-20-marcandre.lureau@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 20:59:15 +01:00

394 lines
13 KiB
C

/*
* ARM GIC support - common bits of emulated and KVM kernel model
*
* Copyright (c) 2012 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/module.h"
#include "gic_internal.h"
#include "hw/arm/linux-boot-if.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
static int gic_pre_save(void *opaque)
{
GICState *s = (GICState *)opaque;
ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s);
if (c->pre_save) {
c->pre_save(s);
}
return 0;
}
static int gic_post_load(void *opaque, int version_id)
{
GICState *s = (GICState *)opaque;
ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s);
if (c->post_load) {
c->post_load(s);
}
return 0;
}
static bool gic_virt_state_needed(void *opaque)
{
GICState *s = (GICState *)opaque;
return s->virt_extn;
}
static const VMStateDescription vmstate_gic_irq_state = {
.name = "arm_gic_irq_state",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(enabled, gic_irq_state),
VMSTATE_UINT8(pending, gic_irq_state),
VMSTATE_UINT8(active, gic_irq_state),
VMSTATE_UINT8(level, gic_irq_state),
VMSTATE_BOOL(model, gic_irq_state),
VMSTATE_BOOL(edge_trigger, gic_irq_state),
VMSTATE_UINT8(group, gic_irq_state),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_gic_virt_state = {
.name = "arm_gic_virt_state",
.version_id = 1,
.minimum_version_id = 1,
.needed = gic_virt_state_needed,
.fields = (VMStateField[]) {
/* Virtual interface */
VMSTATE_UINT32_ARRAY(h_hcr, GICState, GIC_NCPU),
VMSTATE_UINT32_ARRAY(h_misr, GICState, GIC_NCPU),
VMSTATE_UINT32_2DARRAY(h_lr, GICState, GIC_MAX_LR, GIC_NCPU),
VMSTATE_UINT32_ARRAY(h_apr, GICState, GIC_NCPU),
/* Virtual CPU interfaces */
VMSTATE_UINT32_SUB_ARRAY(cpu_ctlr, GICState, GIC_NCPU, GIC_NCPU),
VMSTATE_UINT16_SUB_ARRAY(priority_mask, GICState, GIC_NCPU, GIC_NCPU),
VMSTATE_UINT16_SUB_ARRAY(running_priority, GICState, GIC_NCPU, GIC_NCPU),
VMSTATE_UINT16_SUB_ARRAY(current_pending, GICState, GIC_NCPU, GIC_NCPU),
VMSTATE_UINT8_SUB_ARRAY(bpr, GICState, GIC_NCPU, GIC_NCPU),
VMSTATE_UINT8_SUB_ARRAY(abpr, GICState, GIC_NCPU, GIC_NCPU),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_gic = {
.name = "arm_gic",
.version_id = 12,
.minimum_version_id = 12,
.pre_save = gic_pre_save,
.post_load = gic_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(ctlr, GICState),
VMSTATE_UINT32_SUB_ARRAY(cpu_ctlr, GICState, 0, GIC_NCPU),
VMSTATE_STRUCT_ARRAY(irq_state, GICState, GIC_MAXIRQ, 1,
vmstate_gic_irq_state, gic_irq_state),
VMSTATE_UINT8_ARRAY(irq_target, GICState, GIC_MAXIRQ),
VMSTATE_UINT8_2DARRAY(priority1, GICState, GIC_INTERNAL, GIC_NCPU),
VMSTATE_UINT8_ARRAY(priority2, GICState, GIC_MAXIRQ - GIC_INTERNAL),
VMSTATE_UINT8_2DARRAY(sgi_pending, GICState, GIC_NR_SGIS, GIC_NCPU),
VMSTATE_UINT16_SUB_ARRAY(priority_mask, GICState, 0, GIC_NCPU),
VMSTATE_UINT16_SUB_ARRAY(running_priority, GICState, 0, GIC_NCPU),
VMSTATE_UINT16_SUB_ARRAY(current_pending, GICState, 0, GIC_NCPU),
VMSTATE_UINT8_SUB_ARRAY(bpr, GICState, 0, GIC_NCPU),
VMSTATE_UINT8_SUB_ARRAY(abpr, GICState, 0, GIC_NCPU),
VMSTATE_UINT32_2DARRAY(apr, GICState, GIC_NR_APRS, GIC_NCPU),
VMSTATE_UINT32_2DARRAY(nsapr, GICState, GIC_NR_APRS, GIC_NCPU),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription * []) {
&vmstate_gic_virt_state,
NULL
}
};
void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler,
const MemoryRegionOps *ops,
const MemoryRegionOps *virt_ops)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(s);
int i = s->num_irq - GIC_INTERNAL;
/* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
* GPIO array layout is thus:
* [0..N-1] SPIs
* [N..N+31] PPIs for CPU 0
* [N+32..N+63] PPIs for CPU 1
* ...
*/
i += (GIC_INTERNAL * s->num_cpu);
qdev_init_gpio_in(DEVICE(s), handler, i);
for (i = 0; i < s->num_cpu; i++) {
sysbus_init_irq(sbd, &s->parent_irq[i]);
}
for (i = 0; i < s->num_cpu; i++) {
sysbus_init_irq(sbd, &s->parent_fiq[i]);
}
for (i = 0; i < s->num_cpu; i++) {
sysbus_init_irq(sbd, &s->parent_virq[i]);
}
for (i = 0; i < s->num_cpu; i++) {
sysbus_init_irq(sbd, &s->parent_vfiq[i]);
}
if (s->virt_extn) {
for (i = 0; i < s->num_cpu; i++) {
sysbus_init_irq(sbd, &s->maintenance_irq[i]);
}
}
/* Distributor */
memory_region_init_io(&s->iomem, OBJECT(s), ops, s, "gic_dist", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
/* This is the main CPU interface "for this core". It is always
* present because it is required by both software emulation and KVM.
*/
memory_region_init_io(&s->cpuiomem[0], OBJECT(s), ops ? &ops[1] : NULL,
s, "gic_cpu", s->revision == 2 ? 0x2000 : 0x100);
sysbus_init_mmio(sbd, &s->cpuiomem[0]);
if (s->virt_extn) {
memory_region_init_io(&s->vifaceiomem[0], OBJECT(s), virt_ops,
s, "gic_viface", 0x1000);
sysbus_init_mmio(sbd, &s->vifaceiomem[0]);
memory_region_init_io(&s->vcpuiomem, OBJECT(s),
virt_ops ? &virt_ops[1] : NULL,
s, "gic_vcpu", 0x2000);
sysbus_init_mmio(sbd, &s->vcpuiomem);
}
}
static void arm_gic_common_realize(DeviceState *dev, Error **errp)
{
GICState *s = ARM_GIC_COMMON(dev);
int num_irq = s->num_irq;
if (s->num_cpu > GIC_NCPU) {
error_setg(errp, "requested %u CPUs exceeds GIC maximum %d",
s->num_cpu, GIC_NCPU);
return;
}
if (s->num_irq > GIC_MAXIRQ) {
error_setg(errp,
"requested %u interrupt lines exceeds GIC maximum %d",
num_irq, GIC_MAXIRQ);
return;
}
/* ITLinesNumber is represented as (N / 32) - 1 (see
* gic_dist_readb) so this is an implementation imposed
* restriction, not an architectural one:
*/
if (s->num_irq < 32 || (s->num_irq % 32)) {
error_setg(errp,
"%d interrupt lines unsupported: not divisible by 32",
num_irq);
return;
}
if (s->security_extn &&
(s->revision == REV_11MPCORE)) {
error_setg(errp, "this GIC revision does not implement "
"the security extensions");
return;
}
if (s->virt_extn) {
if (s->revision != 2) {
error_setg(errp, "GIC virtualization extensions are only "
"supported by revision 2");
return;
}
/* For now, set the number of implemented LRs to 4, as found in most
* real GICv2. This could be promoted as a QOM property if we need to
* emulate a variant with another num_lrs.
*/
s->num_lrs = 4;
}
}
static inline void arm_gic_common_reset_irq_state(GICState *s, int first_cpu,
int resetprio)
{
int i, j;
for (i = first_cpu; i < first_cpu + s->num_cpu; i++) {
if (s->revision == REV_11MPCORE) {
s->priority_mask[i] = 0xf0;
} else {
s->priority_mask[i] = resetprio;
}
s->current_pending[i] = 1023;
s->running_priority[i] = 0x100;
s->cpu_ctlr[i] = 0;
s->bpr[i] = gic_is_vcpu(i) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
s->abpr[i] = gic_is_vcpu(i) ? GIC_VIRT_MIN_ABPR : GIC_MIN_ABPR;
if (!gic_is_vcpu(i)) {
for (j = 0; j < GIC_INTERNAL; j++) {
s->priority1[j][i] = resetprio;
}
for (j = 0; j < GIC_NR_SGIS; j++) {
s->sgi_pending[j][i] = 0;
}
}
}
}
static void arm_gic_common_reset(DeviceState *dev)
{
GICState *s = ARM_GIC_COMMON(dev);
int i, j;
int resetprio;
/* If we're resetting a TZ-aware GIC as if secure firmware
* had set it up ready to start a kernel in non-secure,
* we need to set interrupt priorities to a "zero for the
* NS view" value. This is particularly critical for the
* priority_mask[] values, because if they are zero then NS
* code cannot ever rewrite the priority to anything else.
*/
if (s->security_extn && s->irq_reset_nonsecure) {
resetprio = 0x80;
} else {
resetprio = 0;
}
memset(s->irq_state, 0, GIC_MAXIRQ * sizeof(gic_irq_state));
arm_gic_common_reset_irq_state(s, 0, resetprio);
if (s->virt_extn) {
/* vCPU states are stored at indexes GIC_NCPU .. GIC_NCPU+num_cpu.
* The exposed vCPU interface does not have security extensions.
*/
arm_gic_common_reset_irq_state(s, GIC_NCPU, 0);
}
for (i = 0; i < GIC_NR_SGIS; i++) {
GIC_DIST_SET_ENABLED(i, ALL_CPU_MASK);
GIC_DIST_SET_EDGE_TRIGGER(i);
}
for (i = 0; i < ARRAY_SIZE(s->priority2); i++) {
s->priority2[i] = resetprio;
}
for (i = 0; i < GIC_MAXIRQ; i++) {
/* For uniprocessor GICs all interrupts always target the sole CPU */
if (s->num_cpu == 1) {
s->irq_target[i] = 1;
} else {
s->irq_target[i] = 0;
}
}
if (s->security_extn && s->irq_reset_nonsecure) {
for (i = 0; i < GIC_MAXIRQ; i++) {
GIC_DIST_SET_GROUP(i, ALL_CPU_MASK);
}
}
if (s->virt_extn) {
for (i = 0; i < s->num_lrs; i++) {
for (j = 0; j < s->num_cpu; j++) {
s->h_lr[i][j] = 0;
}
}
for (i = 0; i < s->num_cpu; i++) {
s->h_hcr[i] = 0;
s->h_misr[i] = 0;
}
}
s->ctlr = 0;
}
static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
bool secure_boot)
{
GICState *s = ARM_GIC_COMMON(obj);
if (s->security_extn && !secure_boot) {
/* We're directly booting a kernel into NonSecure. If this GIC
* implements the security extensions then we must configure it
* to have all the interrupts be NonSecure (this is a job that
* is done by the Secure boot firmware in real hardware, and in
* this mode QEMU is acting as a minimalist firmware-and-bootloader
* equivalent).
*/
s->irq_reset_nonsecure = true;
}
}
static Property arm_gic_common_properties[] = {
DEFINE_PROP_UINT32("num-cpu", GICState, num_cpu, 1),
DEFINE_PROP_UINT32("num-irq", GICState, num_irq, 32),
/* Revision can be 1 or 2 for GIC architecture specification
* versions 1 or 2, or 0 to indicate the legacy 11MPCore GIC.
*/
DEFINE_PROP_UINT32("revision", GICState, revision, 1),
/* True if the GIC should implement the security extensions */
DEFINE_PROP_BOOL("has-security-extensions", GICState, security_extn, 0),
/* True if the GIC should implement the virtualization extensions */
DEFINE_PROP_BOOL("has-virtualization-extensions", GICState, virt_extn, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void arm_gic_common_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
dc->reset = arm_gic_common_reset;
dc->realize = arm_gic_common_realize;
device_class_set_props(dc, arm_gic_common_properties);
dc->vmsd = &vmstate_gic;
albifc->arm_linux_init = arm_gic_common_linux_init;
}
static const TypeInfo arm_gic_common_type = {
.name = TYPE_ARM_GIC_COMMON,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(GICState),
.class_size = sizeof(ARMGICCommonClass),
.class_init = arm_gic_common_class_init,
.abstract = true,
.interfaces = (InterfaceInfo []) {
{ TYPE_ARM_LINUX_BOOT_IF },
{ },
},
};
static void register_types(void)
{
type_register_static(&arm_gic_common_type);
}
type_init(register_types)