10849c2623
We create a new generator that creates an analyze_<tag> function for each instruction. Currently, these functions record the writes to R, P, and C registers by calling ctx_log_reg_write[_pair] or ctx_log_pred_write. During gen_start_packet, we invoke the analyze_<tag> function for each instruction in the packet, and we mark the implicit register and predicate writes. Doing the analysis up front has several advantages - We remove calls to ctx_log_* from gen_tcg_funcs.py and genptr.c - After the analysis is performed, we can initialize hex_new_value for each of the predicated assignments rather than during TCG generation for the instructions - This is a stepping stone for future work where the analysis will include the set of registers that are read. In cases where the packet doesn't have an overlap between the registers that are written and registers that are read, we can avoid the intermediate step of writing to hex_new_value. Note that other checks will also be needed (e.g., no instructions can raise an exception). Signed-off-by: Taylor Simpson <tsimpson@quicinc.com> Reviewed-by: Anton Johansson <anjo@rev.ng> Message-Id: <20230307025828.1612809-6-tsimpson@quicinc.com>
1110 lines
35 KiB
C
1110 lines
35 KiB
C
/*
|
|
* Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#define QEMU_GENERATE
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "tcg/tcg-op.h"
|
|
#include "tcg/tcg-op-gvec.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "exec/log.h"
|
|
#include "internal.h"
|
|
#include "attribs.h"
|
|
#include "insn.h"
|
|
#include "decode.h"
|
|
#include "translate.h"
|
|
#include "printinsn.h"
|
|
|
|
#include "analyze_funcs_generated.c.inc"
|
|
|
|
typedef void (*AnalyzeInsn)(DisasContext *ctx);
|
|
static const AnalyzeInsn opcode_analyze[XX_LAST_OPCODE] = {
|
|
#define OPCODE(X) [X] = analyze_##X
|
|
#include "opcodes_def_generated.h.inc"
|
|
#undef OPCODE
|
|
};
|
|
|
|
TCGv hex_gpr[TOTAL_PER_THREAD_REGS];
|
|
TCGv hex_pred[NUM_PREGS];
|
|
TCGv hex_this_PC;
|
|
TCGv hex_slot_cancelled;
|
|
TCGv hex_branch_taken;
|
|
TCGv hex_new_value[TOTAL_PER_THREAD_REGS];
|
|
TCGv hex_reg_written[TOTAL_PER_THREAD_REGS];
|
|
TCGv hex_new_pred_value[NUM_PREGS];
|
|
TCGv hex_pred_written;
|
|
TCGv hex_store_addr[STORES_MAX];
|
|
TCGv hex_store_width[STORES_MAX];
|
|
TCGv hex_store_val32[STORES_MAX];
|
|
TCGv_i64 hex_store_val64[STORES_MAX];
|
|
TCGv hex_pkt_has_store_s1;
|
|
TCGv hex_dczero_addr;
|
|
TCGv hex_llsc_addr;
|
|
TCGv hex_llsc_val;
|
|
TCGv_i64 hex_llsc_val_i64;
|
|
TCGv hex_VRegs_updated;
|
|
TCGv hex_QRegs_updated;
|
|
TCGv hex_vstore_addr[VSTORES_MAX];
|
|
TCGv hex_vstore_size[VSTORES_MAX];
|
|
TCGv hex_vstore_pending[VSTORES_MAX];
|
|
|
|
static const char * const hexagon_prednames[] = {
|
|
"p0", "p1", "p2", "p3"
|
|
};
|
|
|
|
intptr_t ctx_future_vreg_off(DisasContext *ctx, int regnum,
|
|
int num, bool alloc_ok)
|
|
{
|
|
intptr_t offset;
|
|
|
|
/* See if it is already allocated */
|
|
for (int i = 0; i < ctx->future_vregs_idx; i++) {
|
|
if (ctx->future_vregs_num[i] == regnum) {
|
|
return offsetof(CPUHexagonState, future_VRegs[i]);
|
|
}
|
|
}
|
|
|
|
g_assert(alloc_ok);
|
|
offset = offsetof(CPUHexagonState, future_VRegs[ctx->future_vregs_idx]);
|
|
for (int i = 0; i < num; i++) {
|
|
ctx->future_vregs_num[ctx->future_vregs_idx + i] = regnum++;
|
|
}
|
|
ctx->future_vregs_idx += num;
|
|
g_assert(ctx->future_vregs_idx <= VECTOR_TEMPS_MAX);
|
|
return offset;
|
|
}
|
|
|
|
intptr_t ctx_tmp_vreg_off(DisasContext *ctx, int regnum,
|
|
int num, bool alloc_ok)
|
|
{
|
|
intptr_t offset;
|
|
|
|
/* See if it is already allocated */
|
|
for (int i = 0; i < ctx->tmp_vregs_idx; i++) {
|
|
if (ctx->tmp_vregs_num[i] == regnum) {
|
|
return offsetof(CPUHexagonState, tmp_VRegs[i]);
|
|
}
|
|
}
|
|
|
|
g_assert(alloc_ok);
|
|
offset = offsetof(CPUHexagonState, tmp_VRegs[ctx->tmp_vregs_idx]);
|
|
for (int i = 0; i < num; i++) {
|
|
ctx->tmp_vregs_num[ctx->tmp_vregs_idx + i] = regnum++;
|
|
}
|
|
ctx->tmp_vregs_idx += num;
|
|
g_assert(ctx->tmp_vregs_idx <= VECTOR_TEMPS_MAX);
|
|
return offset;
|
|
}
|
|
|
|
static void gen_exception_raw(int excp)
|
|
{
|
|
gen_helper_raise_exception(cpu_env, tcg_constant_i32(excp));
|
|
}
|
|
|
|
static void gen_exec_counters(DisasContext *ctx)
|
|
{
|
|
tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_PKT_CNT],
|
|
hex_gpr[HEX_REG_QEMU_PKT_CNT], ctx->num_packets);
|
|
tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_INSN_CNT],
|
|
hex_gpr[HEX_REG_QEMU_INSN_CNT], ctx->num_insns);
|
|
tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_HVX_CNT],
|
|
hex_gpr[HEX_REG_QEMU_HVX_CNT], ctx->num_hvx_insns);
|
|
}
|
|
|
|
static bool use_goto_tb(DisasContext *ctx, target_ulong dest)
|
|
{
|
|
return translator_use_goto_tb(&ctx->base, dest);
|
|
}
|
|
|
|
static void gen_goto_tb(DisasContext *ctx, int idx, target_ulong dest)
|
|
{
|
|
if (use_goto_tb(ctx, dest)) {
|
|
tcg_gen_goto_tb(idx);
|
|
tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest);
|
|
tcg_gen_exit_tb(ctx->base.tb, idx);
|
|
} else {
|
|
tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest);
|
|
tcg_gen_lookup_and_goto_ptr();
|
|
}
|
|
}
|
|
|
|
static void gen_end_tb(DisasContext *ctx)
|
|
{
|
|
Packet *pkt = ctx->pkt;
|
|
|
|
gen_exec_counters(ctx);
|
|
|
|
if (ctx->branch_cond != TCG_COND_NEVER) {
|
|
if (ctx->branch_cond != TCG_COND_ALWAYS) {
|
|
TCGLabel *skip = gen_new_label();
|
|
tcg_gen_brcondi_tl(ctx->branch_cond, hex_branch_taken, 0, skip);
|
|
gen_goto_tb(ctx, 0, ctx->branch_dest);
|
|
gen_set_label(skip);
|
|
gen_goto_tb(ctx, 1, ctx->next_PC);
|
|
} else {
|
|
gen_goto_tb(ctx, 0, ctx->branch_dest);
|
|
}
|
|
} else if (ctx->is_tight_loop &&
|
|
pkt->insn[pkt->num_insns - 1].opcode == J2_endloop0) {
|
|
/*
|
|
* When we're in a tight loop, we defer the endloop0 processing
|
|
* to take advantage of direct block chaining
|
|
*/
|
|
TCGLabel *skip = gen_new_label();
|
|
tcg_gen_brcondi_tl(TCG_COND_LEU, hex_gpr[HEX_REG_LC0], 1, skip);
|
|
tcg_gen_subi_tl(hex_gpr[HEX_REG_LC0], hex_gpr[HEX_REG_LC0], 1);
|
|
gen_goto_tb(ctx, 0, ctx->base.tb->pc);
|
|
gen_set_label(skip);
|
|
gen_goto_tb(ctx, 1, ctx->next_PC);
|
|
} else {
|
|
tcg_gen_lookup_and_goto_ptr();
|
|
}
|
|
|
|
ctx->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
static void gen_exception_end_tb(DisasContext *ctx, int excp)
|
|
{
|
|
gen_exec_counters(ctx);
|
|
tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->next_PC);
|
|
gen_exception_raw(excp);
|
|
ctx->base.is_jmp = DISAS_NORETURN;
|
|
|
|
}
|
|
|
|
#define PACKET_BUFFER_LEN 1028
|
|
static void print_pkt(Packet *pkt)
|
|
{
|
|
GString *buf = g_string_sized_new(PACKET_BUFFER_LEN);
|
|
snprint_a_pkt_debug(buf, pkt);
|
|
HEX_DEBUG_LOG("%s", buf->str);
|
|
g_string_free(buf, true);
|
|
}
|
|
#define HEX_DEBUG_PRINT_PKT(pkt) \
|
|
do { \
|
|
if (HEX_DEBUG) { \
|
|
print_pkt(pkt); \
|
|
} \
|
|
} while (0)
|
|
|
|
static int read_packet_words(CPUHexagonState *env, DisasContext *ctx,
|
|
uint32_t words[])
|
|
{
|
|
bool found_end = false;
|
|
int nwords, max_words;
|
|
|
|
memset(words, 0, PACKET_WORDS_MAX * sizeof(uint32_t));
|
|
for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) {
|
|
words[nwords] =
|
|
translator_ldl(env, &ctx->base,
|
|
ctx->base.pc_next + nwords * sizeof(uint32_t));
|
|
found_end = is_packet_end(words[nwords]);
|
|
}
|
|
if (!found_end) {
|
|
/* Read too many words without finding the end */
|
|
return 0;
|
|
}
|
|
|
|
/* Check for page boundary crossing */
|
|
max_words = -(ctx->base.pc_next | TARGET_PAGE_MASK) / sizeof(uint32_t);
|
|
if (nwords > max_words) {
|
|
/* We can only cross a page boundary at the beginning of a TB */
|
|
g_assert(ctx->base.num_insns == 1);
|
|
}
|
|
|
|
HEX_DEBUG_LOG("decode_packet: pc = 0x%x\n", ctx->base.pc_next);
|
|
HEX_DEBUG_LOG(" words = { ");
|
|
for (int i = 0; i < nwords; i++) {
|
|
HEX_DEBUG_LOG("0x%x, ", words[i]);
|
|
}
|
|
HEX_DEBUG_LOG("}\n");
|
|
|
|
return nwords;
|
|
}
|
|
|
|
static bool check_for_attrib(Packet *pkt, int attrib)
|
|
{
|
|
for (int i = 0; i < pkt->num_insns; i++) {
|
|
if (GET_ATTRIB(pkt->insn[i].opcode, attrib)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool need_slot_cancelled(Packet *pkt)
|
|
{
|
|
return check_for_attrib(pkt, A_CONDEXEC);
|
|
}
|
|
|
|
static bool need_pred_written(Packet *pkt)
|
|
{
|
|
return check_for_attrib(pkt, A_WRITES_PRED_REG);
|
|
}
|
|
|
|
static bool need_next_PC(DisasContext *ctx)
|
|
{
|
|
Packet *pkt = ctx->pkt;
|
|
|
|
/* Check for conditional control flow or HW loop end */
|
|
for (int i = 0; i < pkt->num_insns; i++) {
|
|
uint16_t opcode = pkt->insn[i].opcode;
|
|
if (GET_ATTRIB(opcode, A_CONDEXEC) && GET_ATTRIB(opcode, A_COF)) {
|
|
return true;
|
|
}
|
|
if (GET_ATTRIB(opcode, A_HWLOOP0_END) ||
|
|
GET_ATTRIB(opcode, A_HWLOOP1_END)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* The opcode_analyze functions mark most of the writes in a packet
|
|
* However, there are some implicit writes marked as attributes
|
|
* of the applicable instructions.
|
|
*/
|
|
static void mark_implicit_reg_write(DisasContext *ctx, int attrib, int rnum)
|
|
{
|
|
uint16_t opcode = ctx->insn->opcode;
|
|
if (GET_ATTRIB(opcode, attrib)) {
|
|
/*
|
|
* USR is used to set overflow and FP exceptions,
|
|
* so treat it as conditional
|
|
*/
|
|
bool is_predicated = GET_ATTRIB(opcode, A_CONDEXEC) ||
|
|
rnum == HEX_REG_USR;
|
|
|
|
/* LC0/LC1 is conditionally written by endloop instructions */
|
|
if ((rnum == HEX_REG_LC0 || rnum == HEX_REG_LC1) &&
|
|
(opcode == J2_endloop0 ||
|
|
opcode == J2_endloop1 ||
|
|
opcode == J2_endloop01)) {
|
|
is_predicated = true;
|
|
}
|
|
|
|
ctx_log_reg_write(ctx, rnum, is_predicated);
|
|
}
|
|
}
|
|
|
|
static void mark_implicit_reg_writes(DisasContext *ctx)
|
|
{
|
|
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_FP, HEX_REG_FP);
|
|
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SP, HEX_REG_SP);
|
|
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LR, HEX_REG_LR);
|
|
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC0, HEX_REG_LC0);
|
|
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA0, HEX_REG_SA0);
|
|
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC1, HEX_REG_LC1);
|
|
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA1, HEX_REG_SA1);
|
|
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_USR, HEX_REG_USR);
|
|
mark_implicit_reg_write(ctx, A_FPOP, HEX_REG_USR);
|
|
}
|
|
|
|
static void mark_implicit_pred_write(DisasContext *ctx, int attrib, int pnum)
|
|
{
|
|
if (GET_ATTRIB(ctx->insn->opcode, attrib)) {
|
|
ctx_log_pred_write(ctx, pnum);
|
|
}
|
|
}
|
|
|
|
static void mark_implicit_pred_writes(DisasContext *ctx)
|
|
{
|
|
mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P0, 0);
|
|
mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P1, 1);
|
|
mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P2, 2);
|
|
mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P3, 3);
|
|
}
|
|
|
|
static void analyze_packet(DisasContext *ctx)
|
|
{
|
|
Packet *pkt = ctx->pkt;
|
|
for (int i = 0; i < pkt->num_insns; i++) {
|
|
Insn *insn = &pkt->insn[i];
|
|
ctx->insn = insn;
|
|
if (opcode_analyze[insn->opcode]) {
|
|
opcode_analyze[insn->opcode](ctx);
|
|
}
|
|
mark_implicit_reg_writes(ctx);
|
|
mark_implicit_pred_writes(ctx);
|
|
}
|
|
}
|
|
|
|
static void gen_start_packet(DisasContext *ctx)
|
|
{
|
|
Packet *pkt = ctx->pkt;
|
|
target_ulong next_PC = ctx->base.pc_next + pkt->encod_pkt_size_in_bytes;
|
|
int i;
|
|
|
|
/* Clear out the disassembly context */
|
|
ctx->next_PC = next_PC;
|
|
ctx->reg_log_idx = 0;
|
|
bitmap_zero(ctx->regs_written, TOTAL_PER_THREAD_REGS);
|
|
bitmap_zero(ctx->predicated_regs, TOTAL_PER_THREAD_REGS);
|
|
ctx->preg_log_idx = 0;
|
|
bitmap_zero(ctx->pregs_written, NUM_PREGS);
|
|
ctx->future_vregs_idx = 0;
|
|
ctx->tmp_vregs_idx = 0;
|
|
ctx->vreg_log_idx = 0;
|
|
bitmap_zero(ctx->vregs_updated_tmp, NUM_VREGS);
|
|
bitmap_zero(ctx->vregs_updated, NUM_VREGS);
|
|
bitmap_zero(ctx->vregs_select, NUM_VREGS);
|
|
ctx->qreg_log_idx = 0;
|
|
for (i = 0; i < STORES_MAX; i++) {
|
|
ctx->store_width[i] = 0;
|
|
}
|
|
tcg_gen_movi_tl(hex_pkt_has_store_s1, pkt->pkt_has_store_s1);
|
|
ctx->s1_store_processed = false;
|
|
ctx->pre_commit = true;
|
|
|
|
analyze_packet(ctx);
|
|
|
|
/*
|
|
* pregs_written is used both in the analyze phase as well as the code
|
|
* gen phase, so clear it again.
|
|
*/
|
|
bitmap_zero(ctx->pregs_written, NUM_PREGS);
|
|
|
|
if (HEX_DEBUG) {
|
|
/* Handy place to set a breakpoint before the packet executes */
|
|
gen_helper_debug_start_packet(cpu_env);
|
|
tcg_gen_movi_tl(hex_this_PC, ctx->base.pc_next);
|
|
}
|
|
|
|
/* Initialize the runtime state for packet semantics */
|
|
if (need_slot_cancelled(pkt)) {
|
|
tcg_gen_movi_tl(hex_slot_cancelled, 0);
|
|
}
|
|
if (pkt->pkt_has_cof) {
|
|
if (pkt->pkt_has_multi_cof) {
|
|
tcg_gen_movi_tl(hex_branch_taken, 0);
|
|
}
|
|
if (need_next_PC(ctx)) {
|
|
tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], next_PC);
|
|
}
|
|
}
|
|
if (need_pred_written(pkt)) {
|
|
tcg_gen_movi_tl(hex_pred_written, 0);
|
|
}
|
|
|
|
/* Preload the predicated registers into hex_new_value[i] */
|
|
if (!bitmap_empty(ctx->predicated_regs, TOTAL_PER_THREAD_REGS)) {
|
|
int i = find_first_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS);
|
|
while (i < TOTAL_PER_THREAD_REGS) {
|
|
tcg_gen_mov_tl(hex_new_value[i], hex_gpr[i]);
|
|
i = find_next_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS,
|
|
i + 1);
|
|
}
|
|
}
|
|
|
|
if (pkt->pkt_has_hvx) {
|
|
tcg_gen_movi_tl(hex_VRegs_updated, 0);
|
|
tcg_gen_movi_tl(hex_QRegs_updated, 0);
|
|
}
|
|
}
|
|
|
|
bool is_gather_store_insn(DisasContext *ctx)
|
|
{
|
|
Packet *pkt = ctx->pkt;
|
|
Insn *insn = ctx->insn;
|
|
if (GET_ATTRIB(insn->opcode, A_CVI_NEW) &&
|
|
insn->new_value_producer_slot == 1) {
|
|
/* Look for gather instruction */
|
|
for (int i = 0; i < pkt->num_insns; i++) {
|
|
Insn *in = &pkt->insn[i];
|
|
if (GET_ATTRIB(in->opcode, A_CVI_GATHER) && in->slot == 1) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void mark_store_width(DisasContext *ctx)
|
|
{
|
|
uint16_t opcode = ctx->insn->opcode;
|
|
uint32_t slot = ctx->insn->slot;
|
|
uint8_t width = 0;
|
|
|
|
if (GET_ATTRIB(opcode, A_SCALAR_STORE)) {
|
|
if (GET_ATTRIB(opcode, A_MEMSIZE_1B)) {
|
|
width |= 1;
|
|
}
|
|
if (GET_ATTRIB(opcode, A_MEMSIZE_2B)) {
|
|
width |= 2;
|
|
}
|
|
if (GET_ATTRIB(opcode, A_MEMSIZE_4B)) {
|
|
width |= 4;
|
|
}
|
|
if (GET_ATTRIB(opcode, A_MEMSIZE_8B)) {
|
|
width |= 8;
|
|
}
|
|
tcg_debug_assert(is_power_of_2(width));
|
|
ctx->store_width[slot] = width;
|
|
}
|
|
}
|
|
|
|
static void gen_insn(DisasContext *ctx)
|
|
{
|
|
if (ctx->insn->generate) {
|
|
ctx->insn->generate(ctx);
|
|
mark_store_width(ctx);
|
|
} else {
|
|
gen_exception_end_tb(ctx, HEX_EXCP_INVALID_OPCODE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Helpers for generating the packet commit
|
|
*/
|
|
static void gen_reg_writes(DisasContext *ctx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ctx->reg_log_idx; i++) {
|
|
int reg_num = ctx->reg_log[i];
|
|
|
|
tcg_gen_mov_tl(hex_gpr[reg_num], hex_new_value[reg_num]);
|
|
|
|
/*
|
|
* ctx->is_tight_loop is set when SA0 points to the beginning of the TB.
|
|
* If we write to SA0, we have to turn off tight loop handling.
|
|
*/
|
|
if (reg_num == HEX_REG_SA0) {
|
|
ctx->is_tight_loop = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gen_pred_writes(DisasContext *ctx)
|
|
{
|
|
int i;
|
|
|
|
/* Early exit if the log is empty */
|
|
if (!ctx->preg_log_idx) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Only endloop instructions will conditionally
|
|
* write a predicate. If there are no endloop
|
|
* instructions, we can use the non-conditional
|
|
* write of the predicates.
|
|
*/
|
|
if (ctx->pkt->pkt_has_endloop) {
|
|
TCGv zero = tcg_constant_tl(0);
|
|
TCGv pred_written = tcg_temp_new();
|
|
for (i = 0; i < ctx->preg_log_idx; i++) {
|
|
int pred_num = ctx->preg_log[i];
|
|
|
|
tcg_gen_andi_tl(pred_written, hex_pred_written, 1 << pred_num);
|
|
tcg_gen_movcond_tl(TCG_COND_NE, hex_pred[pred_num],
|
|
pred_written, zero,
|
|
hex_new_pred_value[pred_num],
|
|
hex_pred[pred_num]);
|
|
}
|
|
} else {
|
|
for (i = 0; i < ctx->preg_log_idx; i++) {
|
|
int pred_num = ctx->preg_log[i];
|
|
tcg_gen_mov_tl(hex_pred[pred_num], hex_new_pred_value[pred_num]);
|
|
if (HEX_DEBUG) {
|
|
/* Do this so HELPER(debug_commit_end) will know */
|
|
tcg_gen_ori_tl(hex_pred_written, hex_pred_written,
|
|
1 << pred_num);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gen_check_store_width(DisasContext *ctx, int slot_num)
|
|
{
|
|
if (HEX_DEBUG) {
|
|
TCGv slot = tcg_constant_tl(slot_num);
|
|
TCGv check = tcg_constant_tl(ctx->store_width[slot_num]);
|
|
gen_helper_debug_check_store_width(cpu_env, slot, check);
|
|
}
|
|
}
|
|
|
|
static bool slot_is_predicated(Packet *pkt, int slot_num)
|
|
{
|
|
for (int i = 0; i < pkt->num_insns; i++) {
|
|
if (pkt->insn[i].slot == slot_num) {
|
|
return GET_ATTRIB(pkt->insn[i].opcode, A_CONDEXEC);
|
|
}
|
|
}
|
|
/* If we get to here, we didn't find an instruction in the requested slot */
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
void process_store(DisasContext *ctx, int slot_num)
|
|
{
|
|
bool is_predicated = slot_is_predicated(ctx->pkt, slot_num);
|
|
TCGLabel *label_end = NULL;
|
|
|
|
/*
|
|
* We may have already processed this store
|
|
* See CHECK_NOSHUF in macros.h
|
|
*/
|
|
if (slot_num == 1 && ctx->s1_store_processed) {
|
|
return;
|
|
}
|
|
ctx->s1_store_processed = true;
|
|
|
|
if (is_predicated) {
|
|
TCGv cancelled = tcg_temp_new();
|
|
label_end = gen_new_label();
|
|
|
|
/* Don't do anything if the slot was cancelled */
|
|
tcg_gen_extract_tl(cancelled, hex_slot_cancelled, slot_num, 1);
|
|
tcg_gen_brcondi_tl(TCG_COND_NE, cancelled, 0, label_end);
|
|
}
|
|
{
|
|
TCGv address = tcg_temp_new();
|
|
tcg_gen_mov_tl(address, hex_store_addr[slot_num]);
|
|
|
|
/*
|
|
* If we know the width from the DisasContext, we can
|
|
* generate much cleaner code.
|
|
* Unfortunately, not all instructions execute the fSTORE
|
|
* macro during code generation. Anything that uses the
|
|
* generic helper will have this problem. Instructions
|
|
* that use fWRAP to generate proper TCG code will be OK.
|
|
*/
|
|
switch (ctx->store_width[slot_num]) {
|
|
case 1:
|
|
gen_check_store_width(ctx, slot_num);
|
|
tcg_gen_qemu_st8(hex_store_val32[slot_num],
|
|
hex_store_addr[slot_num],
|
|
ctx->mem_idx);
|
|
break;
|
|
case 2:
|
|
gen_check_store_width(ctx, slot_num);
|
|
tcg_gen_qemu_st16(hex_store_val32[slot_num],
|
|
hex_store_addr[slot_num],
|
|
ctx->mem_idx);
|
|
break;
|
|
case 4:
|
|
gen_check_store_width(ctx, slot_num);
|
|
tcg_gen_qemu_st32(hex_store_val32[slot_num],
|
|
hex_store_addr[slot_num],
|
|
ctx->mem_idx);
|
|
break;
|
|
case 8:
|
|
gen_check_store_width(ctx, slot_num);
|
|
tcg_gen_qemu_st64(hex_store_val64[slot_num],
|
|
hex_store_addr[slot_num],
|
|
ctx->mem_idx);
|
|
break;
|
|
default:
|
|
{
|
|
/*
|
|
* If we get to here, we don't know the width at
|
|
* TCG generation time, we'll use a helper to
|
|
* avoid branching based on the width at runtime.
|
|
*/
|
|
TCGv slot = tcg_constant_tl(slot_num);
|
|
gen_helper_commit_store(cpu_env, slot);
|
|
}
|
|
}
|
|
}
|
|
if (is_predicated) {
|
|
gen_set_label(label_end);
|
|
}
|
|
}
|
|
|
|
static void process_store_log(DisasContext *ctx)
|
|
{
|
|
/*
|
|
* When a packet has two stores, the hardware processes
|
|
* slot 1 and then slot 0. This will be important when
|
|
* the memory accesses overlap.
|
|
*/
|
|
Packet *pkt = ctx->pkt;
|
|
if (pkt->pkt_has_store_s1) {
|
|
g_assert(!pkt->pkt_has_dczeroa);
|
|
process_store(ctx, 1);
|
|
}
|
|
if (pkt->pkt_has_store_s0) {
|
|
g_assert(!pkt->pkt_has_dczeroa);
|
|
process_store(ctx, 0);
|
|
}
|
|
}
|
|
|
|
/* Zero out a 32-bit cache line */
|
|
static void process_dczeroa(DisasContext *ctx)
|
|
{
|
|
if (ctx->pkt->pkt_has_dczeroa) {
|
|
/* Store 32 bytes of zero starting at (addr & ~0x1f) */
|
|
TCGv addr = tcg_temp_new();
|
|
TCGv_i64 zero = tcg_constant_i64(0);
|
|
|
|
tcg_gen_andi_tl(addr, hex_dczero_addr, ~0x1f);
|
|
tcg_gen_qemu_st64(zero, addr, ctx->mem_idx);
|
|
tcg_gen_addi_tl(addr, addr, 8);
|
|
tcg_gen_qemu_st64(zero, addr, ctx->mem_idx);
|
|
tcg_gen_addi_tl(addr, addr, 8);
|
|
tcg_gen_qemu_st64(zero, addr, ctx->mem_idx);
|
|
tcg_gen_addi_tl(addr, addr, 8);
|
|
tcg_gen_qemu_st64(zero, addr, ctx->mem_idx);
|
|
}
|
|
}
|
|
|
|
static bool pkt_has_hvx_store(Packet *pkt)
|
|
{
|
|
int i;
|
|
for (i = 0; i < pkt->num_insns; i++) {
|
|
int opcode = pkt->insn[i].opcode;
|
|
if (GET_ATTRIB(opcode, A_CVI) && GET_ATTRIB(opcode, A_STORE)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void gen_commit_hvx(DisasContext *ctx)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* for (i = 0; i < ctx->vreg_log_idx; i++) {
|
|
* int rnum = ctx->vreg_log[i];
|
|
* if (ctx->vreg_is_predicated[i]) {
|
|
* if (env->VRegs_updated & (1 << rnum)) {
|
|
* env->VRegs[rnum] = env->future_VRegs[rnum];
|
|
* }
|
|
* } else {
|
|
* env->VRegs[rnum] = env->future_VRegs[rnum];
|
|
* }
|
|
* }
|
|
*/
|
|
for (i = 0; i < ctx->vreg_log_idx; i++) {
|
|
int rnum = ctx->vreg_log[i];
|
|
bool is_predicated = ctx->vreg_is_predicated[i];
|
|
intptr_t dstoff = offsetof(CPUHexagonState, VRegs[rnum]);
|
|
intptr_t srcoff = ctx_future_vreg_off(ctx, rnum, 1, false);
|
|
size_t size = sizeof(MMVector);
|
|
|
|
if (is_predicated) {
|
|
TCGv cmp = tcg_temp_new();
|
|
TCGLabel *label_skip = gen_new_label();
|
|
|
|
tcg_gen_andi_tl(cmp, hex_VRegs_updated, 1 << rnum);
|
|
tcg_gen_brcondi_tl(TCG_COND_EQ, cmp, 0, label_skip);
|
|
tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
|
|
gen_set_label(label_skip);
|
|
} else {
|
|
tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* for (i = 0; i < ctx->qreg_log_idx; i++) {
|
|
* int rnum = ctx->qreg_log[i];
|
|
* if (ctx->qreg_is_predicated[i]) {
|
|
* if (env->QRegs_updated) & (1 << rnum)) {
|
|
* env->QRegs[rnum] = env->future_QRegs[rnum];
|
|
* }
|
|
* } else {
|
|
* env->QRegs[rnum] = env->future_QRegs[rnum];
|
|
* }
|
|
* }
|
|
*/
|
|
for (i = 0; i < ctx->qreg_log_idx; i++) {
|
|
int rnum = ctx->qreg_log[i];
|
|
bool is_predicated = ctx->qreg_is_predicated[i];
|
|
intptr_t dstoff = offsetof(CPUHexagonState, QRegs[rnum]);
|
|
intptr_t srcoff = offsetof(CPUHexagonState, future_QRegs[rnum]);
|
|
size_t size = sizeof(MMQReg);
|
|
|
|
if (is_predicated) {
|
|
TCGv cmp = tcg_temp_new();
|
|
TCGLabel *label_skip = gen_new_label();
|
|
|
|
tcg_gen_andi_tl(cmp, hex_QRegs_updated, 1 << rnum);
|
|
tcg_gen_brcondi_tl(TCG_COND_EQ, cmp, 0, label_skip);
|
|
tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
|
|
gen_set_label(label_skip);
|
|
} else {
|
|
tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
|
|
}
|
|
}
|
|
|
|
if (pkt_has_hvx_store(ctx->pkt)) {
|
|
gen_helper_commit_hvx_stores(cpu_env);
|
|
}
|
|
}
|
|
|
|
static void update_exec_counters(DisasContext *ctx)
|
|
{
|
|
Packet *pkt = ctx->pkt;
|
|
int num_insns = pkt->num_insns;
|
|
int num_real_insns = 0;
|
|
int num_hvx_insns = 0;
|
|
|
|
for (int i = 0; i < num_insns; i++) {
|
|
if (!pkt->insn[i].is_endloop &&
|
|
!pkt->insn[i].part1 &&
|
|
!GET_ATTRIB(pkt->insn[i].opcode, A_IT_NOP)) {
|
|
num_real_insns++;
|
|
}
|
|
if (GET_ATTRIB(pkt->insn[i].opcode, A_CVI)) {
|
|
num_hvx_insns++;
|
|
}
|
|
}
|
|
|
|
ctx->num_packets++;
|
|
ctx->num_insns += num_real_insns;
|
|
ctx->num_hvx_insns += num_hvx_insns;
|
|
}
|
|
|
|
static void gen_commit_packet(DisasContext *ctx)
|
|
{
|
|
/*
|
|
* If there is more than one store in a packet, make sure they are all OK
|
|
* before proceeding with the rest of the packet commit.
|
|
*
|
|
* dczeroa has to be the only store operation in the packet, so we go
|
|
* ahead and process that first.
|
|
*
|
|
* When there is an HVX store, there can also be a scalar store in either
|
|
* slot 0 or slot1, so we create a mask for the helper to indicate what
|
|
* work to do.
|
|
*
|
|
* When there are two scalar stores, we probe the one in slot 0.
|
|
*
|
|
* Note that we don't call the probe helper for packets with only one
|
|
* store. Therefore, we call process_store_log before anything else
|
|
* involved in committing the packet.
|
|
*/
|
|
Packet *pkt = ctx->pkt;
|
|
bool has_store_s0 = pkt->pkt_has_store_s0;
|
|
bool has_store_s1 = (pkt->pkt_has_store_s1 && !ctx->s1_store_processed);
|
|
bool has_hvx_store = pkt_has_hvx_store(pkt);
|
|
if (pkt->pkt_has_dczeroa) {
|
|
/*
|
|
* The dczeroa will be the store in slot 0, check that we don't have
|
|
* a store in slot 1 or an HVX store.
|
|
*/
|
|
g_assert(!has_store_s1 && !has_hvx_store);
|
|
process_dczeroa(ctx);
|
|
} else if (has_hvx_store) {
|
|
TCGv mem_idx = tcg_constant_tl(ctx->mem_idx);
|
|
|
|
if (!has_store_s0 && !has_store_s1) {
|
|
gen_helper_probe_hvx_stores(cpu_env, mem_idx);
|
|
} else {
|
|
int mask = 0;
|
|
TCGv mask_tcgv;
|
|
|
|
if (has_store_s0) {
|
|
mask |= (1 << 0);
|
|
}
|
|
if (has_store_s1) {
|
|
mask |= (1 << 1);
|
|
}
|
|
if (has_hvx_store) {
|
|
mask |= (1 << 2);
|
|
}
|
|
mask_tcgv = tcg_constant_tl(mask);
|
|
gen_helper_probe_pkt_scalar_hvx_stores(cpu_env, mask_tcgv, mem_idx);
|
|
}
|
|
} else if (has_store_s0 && has_store_s1) {
|
|
/*
|
|
* process_store_log will execute the slot 1 store first,
|
|
* so we only have to probe the store in slot 0
|
|
*/
|
|
TCGv mem_idx = tcg_constant_tl(ctx->mem_idx);
|
|
gen_helper_probe_pkt_scalar_store_s0(cpu_env, mem_idx);
|
|
}
|
|
|
|
process_store_log(ctx);
|
|
|
|
gen_reg_writes(ctx);
|
|
gen_pred_writes(ctx);
|
|
if (pkt->pkt_has_hvx) {
|
|
gen_commit_hvx(ctx);
|
|
}
|
|
update_exec_counters(ctx);
|
|
if (HEX_DEBUG) {
|
|
TCGv has_st0 =
|
|
tcg_constant_tl(pkt->pkt_has_store_s0 && !pkt->pkt_has_dczeroa);
|
|
TCGv has_st1 =
|
|
tcg_constant_tl(pkt->pkt_has_store_s1 && !pkt->pkt_has_dczeroa);
|
|
|
|
/* Handy place to set a breakpoint at the end of execution */
|
|
gen_helper_debug_commit_end(cpu_env, has_st0, has_st1);
|
|
}
|
|
|
|
if (pkt->vhist_insn != NULL) {
|
|
ctx->pre_commit = false;
|
|
ctx->insn = pkt->vhist_insn;
|
|
pkt->vhist_insn->generate(ctx);
|
|
}
|
|
|
|
if (pkt->pkt_has_cof) {
|
|
gen_end_tb(ctx);
|
|
}
|
|
}
|
|
|
|
static void decode_and_translate_packet(CPUHexagonState *env, DisasContext *ctx)
|
|
{
|
|
uint32_t words[PACKET_WORDS_MAX];
|
|
int nwords;
|
|
Packet pkt;
|
|
int i;
|
|
|
|
nwords = read_packet_words(env, ctx, words);
|
|
if (!nwords) {
|
|
gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET);
|
|
return;
|
|
}
|
|
|
|
if (decode_packet(nwords, words, &pkt, false) > 0) {
|
|
pkt.pc = ctx->base.pc_next;
|
|
HEX_DEBUG_PRINT_PKT(&pkt);
|
|
ctx->pkt = &pkt;
|
|
gen_start_packet(ctx);
|
|
for (i = 0; i < pkt.num_insns; i++) {
|
|
ctx->insn = &pkt.insn[i];
|
|
gen_insn(ctx);
|
|
}
|
|
gen_commit_packet(ctx);
|
|
ctx->base.pc_next += pkt.encod_pkt_size_in_bytes;
|
|
} else {
|
|
gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET);
|
|
}
|
|
}
|
|
|
|
static void hexagon_tr_init_disas_context(DisasContextBase *dcbase,
|
|
CPUState *cs)
|
|
{
|
|
DisasContext *ctx = container_of(dcbase, DisasContext, base);
|
|
uint32_t hex_flags = dcbase->tb->flags;
|
|
|
|
ctx->mem_idx = MMU_USER_IDX;
|
|
ctx->num_packets = 0;
|
|
ctx->num_insns = 0;
|
|
ctx->num_hvx_insns = 0;
|
|
ctx->branch_cond = TCG_COND_NEVER;
|
|
ctx->is_tight_loop = FIELD_EX32(hex_flags, TB_FLAGS, IS_TIGHT_LOOP);
|
|
}
|
|
|
|
static void hexagon_tr_tb_start(DisasContextBase *db, CPUState *cpu)
|
|
{
|
|
}
|
|
|
|
static void hexagon_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *ctx = container_of(dcbase, DisasContext, base);
|
|
|
|
tcg_gen_insn_start(ctx->base.pc_next);
|
|
}
|
|
|
|
static bool pkt_crosses_page(CPUHexagonState *env, DisasContext *ctx)
|
|
{
|
|
target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
|
|
bool found_end = false;
|
|
int nwords;
|
|
|
|
for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) {
|
|
uint32_t word = cpu_ldl_code(env,
|
|
ctx->base.pc_next + nwords * sizeof(uint32_t));
|
|
found_end = is_packet_end(word);
|
|
}
|
|
uint32_t next_ptr = ctx->base.pc_next + nwords * sizeof(uint32_t);
|
|
return found_end && next_ptr - page_start >= TARGET_PAGE_SIZE;
|
|
}
|
|
|
|
static void hexagon_tr_translate_packet(DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *ctx = container_of(dcbase, DisasContext, base);
|
|
CPUHexagonState *env = cpu->env_ptr;
|
|
|
|
decode_and_translate_packet(env, ctx);
|
|
|
|
if (ctx->base.is_jmp == DISAS_NEXT) {
|
|
target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
|
|
target_ulong bytes_max = PACKET_WORDS_MAX * sizeof(target_ulong);
|
|
|
|
if (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE ||
|
|
(ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE - bytes_max &&
|
|
pkt_crosses_page(env, ctx))) {
|
|
ctx->base.is_jmp = DISAS_TOO_MANY;
|
|
}
|
|
|
|
/*
|
|
* The CPU log is used to compare against LLDB single stepping,
|
|
* so end the TLB after every packet.
|
|
*/
|
|
HexagonCPU *hex_cpu = env_archcpu(env);
|
|
if (hex_cpu->lldb_compat && qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
|
|
ctx->base.is_jmp = DISAS_TOO_MANY;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void hexagon_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *ctx = container_of(dcbase, DisasContext, base);
|
|
|
|
switch (ctx->base.is_jmp) {
|
|
case DISAS_TOO_MANY:
|
|
gen_exec_counters(ctx);
|
|
tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->base.pc_next);
|
|
tcg_gen_exit_tb(NULL, 0);
|
|
break;
|
|
case DISAS_NORETURN:
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void hexagon_tr_disas_log(const DisasContextBase *dcbase,
|
|
CPUState *cpu, FILE *logfile)
|
|
{
|
|
fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first));
|
|
target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size);
|
|
}
|
|
|
|
|
|
static const TranslatorOps hexagon_tr_ops = {
|
|
.init_disas_context = hexagon_tr_init_disas_context,
|
|
.tb_start = hexagon_tr_tb_start,
|
|
.insn_start = hexagon_tr_insn_start,
|
|
.translate_insn = hexagon_tr_translate_packet,
|
|
.tb_stop = hexagon_tr_tb_stop,
|
|
.disas_log = hexagon_tr_disas_log,
|
|
};
|
|
|
|
void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns,
|
|
target_ulong pc, void *host_pc)
|
|
{
|
|
DisasContext ctx;
|
|
|
|
translator_loop(cs, tb, max_insns, pc, host_pc,
|
|
&hexagon_tr_ops, &ctx.base);
|
|
}
|
|
|
|
#define NAME_LEN 64
|
|
static char new_value_names[TOTAL_PER_THREAD_REGS][NAME_LEN];
|
|
static char reg_written_names[TOTAL_PER_THREAD_REGS][NAME_LEN];
|
|
static char new_pred_value_names[NUM_PREGS][NAME_LEN];
|
|
static char store_addr_names[STORES_MAX][NAME_LEN];
|
|
static char store_width_names[STORES_MAX][NAME_LEN];
|
|
static char store_val32_names[STORES_MAX][NAME_LEN];
|
|
static char store_val64_names[STORES_MAX][NAME_LEN];
|
|
static char vstore_addr_names[VSTORES_MAX][NAME_LEN];
|
|
static char vstore_size_names[VSTORES_MAX][NAME_LEN];
|
|
static char vstore_pending_names[VSTORES_MAX][NAME_LEN];
|
|
|
|
void hexagon_translate_init(void)
|
|
{
|
|
int i;
|
|
|
|
opcode_init();
|
|
|
|
for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) {
|
|
hex_gpr[i] = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, gpr[i]),
|
|
hexagon_regnames[i]);
|
|
|
|
snprintf(new_value_names[i], NAME_LEN, "new_%s", hexagon_regnames[i]);
|
|
hex_new_value[i] = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, new_value[i]),
|
|
new_value_names[i]);
|
|
|
|
if (HEX_DEBUG) {
|
|
snprintf(reg_written_names[i], NAME_LEN, "reg_written_%s",
|
|
hexagon_regnames[i]);
|
|
hex_reg_written[i] = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, reg_written[i]),
|
|
reg_written_names[i]);
|
|
}
|
|
}
|
|
for (i = 0; i < NUM_PREGS; i++) {
|
|
hex_pred[i] = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, pred[i]),
|
|
hexagon_prednames[i]);
|
|
|
|
snprintf(new_pred_value_names[i], NAME_LEN, "new_pred_%s",
|
|
hexagon_prednames[i]);
|
|
hex_new_pred_value[i] = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, new_pred_value[i]),
|
|
new_pred_value_names[i]);
|
|
}
|
|
hex_pred_written = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, pred_written), "pred_written");
|
|
hex_this_PC = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, this_PC), "this_PC");
|
|
hex_slot_cancelled = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, slot_cancelled), "slot_cancelled");
|
|
hex_branch_taken = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, branch_taken), "branch_taken");
|
|
hex_pkt_has_store_s1 = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, pkt_has_store_s1), "pkt_has_store_s1");
|
|
hex_dczero_addr = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, dczero_addr), "dczero_addr");
|
|
hex_llsc_addr = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, llsc_addr), "llsc_addr");
|
|
hex_llsc_val = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, llsc_val), "llsc_val");
|
|
hex_llsc_val_i64 = tcg_global_mem_new_i64(cpu_env,
|
|
offsetof(CPUHexagonState, llsc_val_i64), "llsc_val_i64");
|
|
hex_VRegs_updated = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, VRegs_updated), "VRegs_updated");
|
|
hex_QRegs_updated = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, QRegs_updated), "QRegs_updated");
|
|
for (i = 0; i < STORES_MAX; i++) {
|
|
snprintf(store_addr_names[i], NAME_LEN, "store_addr_%d", i);
|
|
hex_store_addr[i] = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, mem_log_stores[i].va),
|
|
store_addr_names[i]);
|
|
|
|
snprintf(store_width_names[i], NAME_LEN, "store_width_%d", i);
|
|
hex_store_width[i] = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, mem_log_stores[i].width),
|
|
store_width_names[i]);
|
|
|
|
snprintf(store_val32_names[i], NAME_LEN, "store_val32_%d", i);
|
|
hex_store_val32[i] = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, mem_log_stores[i].data32),
|
|
store_val32_names[i]);
|
|
|
|
snprintf(store_val64_names[i], NAME_LEN, "store_val64_%d", i);
|
|
hex_store_val64[i] = tcg_global_mem_new_i64(cpu_env,
|
|
offsetof(CPUHexagonState, mem_log_stores[i].data64),
|
|
store_val64_names[i]);
|
|
}
|
|
for (int i = 0; i < VSTORES_MAX; i++) {
|
|
snprintf(vstore_addr_names[i], NAME_LEN, "vstore_addr_%d", i);
|
|
hex_vstore_addr[i] = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, vstore[i].va),
|
|
vstore_addr_names[i]);
|
|
|
|
snprintf(vstore_size_names[i], NAME_LEN, "vstore_size_%d", i);
|
|
hex_vstore_size[i] = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, vstore[i].size),
|
|
vstore_size_names[i]);
|
|
|
|
snprintf(vstore_pending_names[i], NAME_LEN, "vstore_pending_%d", i);
|
|
hex_vstore_pending[i] = tcg_global_mem_new(cpu_env,
|
|
offsetof(CPUHexagonState, vstore_pending[i]),
|
|
vstore_pending_names[i]);
|
|
}
|
|
}
|