qemu-e2k/hw/parallel.c
Jan Kiszka 8217606e6e Introduce reset notifier order
Add the parameter 'order' to qemu_register_reset and sort callbacks on
registration. On system reset, callbacks with lower order will be
invoked before those with higher order. Update all existing users to the
standard order 0.

Note: At least for x86, the existing users seem to assume that handlers
are called in their registration order. Therefore, the patch preserves
this property. If someone feels bored, (s)he could try to identify this
dependency and express it properly on callback registration.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-05-22 10:50:34 -05:00

550 lines
16 KiB
C

/*
* QEMU Parallel PORT emulation
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2007 Marko Kohtala
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "qemu-char.h"
#include "isa.h"
#include "pc.h"
//#define DEBUG_PARALLEL
#ifdef DEBUG_PARALLEL
#define pdebug(fmt, ...) printf("pp: " fmt, ## __VA_ARGS__)
#else
#define pdebug(fmt, ...) ((void)0)
#endif
#define PARA_REG_DATA 0
#define PARA_REG_STS 1
#define PARA_REG_CTR 2
#define PARA_REG_EPP_ADDR 3
#define PARA_REG_EPP_DATA 4
/*
* These are the definitions for the Printer Status Register
*/
#define PARA_STS_BUSY 0x80 /* Busy complement */
#define PARA_STS_ACK 0x40 /* Acknowledge */
#define PARA_STS_PAPER 0x20 /* Out of paper */
#define PARA_STS_ONLINE 0x10 /* Online */
#define PARA_STS_ERROR 0x08 /* Error complement */
#define PARA_STS_TMOUT 0x01 /* EPP timeout */
/*
* These are the definitions for the Printer Control Register
*/
#define PARA_CTR_DIR 0x20 /* Direction (1=read, 0=write) */
#define PARA_CTR_INTEN 0x10 /* IRQ Enable */
#define PARA_CTR_SELECT 0x08 /* Select In complement */
#define PARA_CTR_INIT 0x04 /* Initialize Printer complement */
#define PARA_CTR_AUTOLF 0x02 /* Auto linefeed complement */
#define PARA_CTR_STROBE 0x01 /* Strobe complement */
#define PARA_CTR_SIGNAL (PARA_CTR_SELECT|PARA_CTR_INIT|PARA_CTR_AUTOLF|PARA_CTR_STROBE)
struct ParallelState {
uint8_t dataw;
uint8_t datar;
uint8_t status;
uint8_t control;
qemu_irq irq;
int irq_pending;
CharDriverState *chr;
int hw_driver;
int epp_timeout;
uint32_t last_read_offset; /* For debugging */
/* Memory-mapped interface */
int it_shift;
};
static void parallel_update_irq(ParallelState *s)
{
if (s->irq_pending)
qemu_irq_raise(s->irq);
else
qemu_irq_lower(s->irq);
}
static void
parallel_ioport_write_sw(void *opaque, uint32_t addr, uint32_t val)
{
ParallelState *s = opaque;
pdebug("write addr=0x%02x val=0x%02x\n", addr, val);
addr &= 7;
switch(addr) {
case PARA_REG_DATA:
s->dataw = val;
parallel_update_irq(s);
break;
case PARA_REG_CTR:
val |= 0xc0;
if ((val & PARA_CTR_INIT) == 0 ) {
s->status = PARA_STS_BUSY;
s->status |= PARA_STS_ACK;
s->status |= PARA_STS_ONLINE;
s->status |= PARA_STS_ERROR;
}
else if (val & PARA_CTR_SELECT) {
if (val & PARA_CTR_STROBE) {
s->status &= ~PARA_STS_BUSY;
if ((s->control & PARA_CTR_STROBE) == 0)
qemu_chr_write(s->chr, &s->dataw, 1);
} else {
if (s->control & PARA_CTR_INTEN) {
s->irq_pending = 1;
}
}
}
parallel_update_irq(s);
s->control = val;
break;
}
}
static void parallel_ioport_write_hw(void *opaque, uint32_t addr, uint32_t val)
{
ParallelState *s = opaque;
uint8_t parm = val;
int dir;
/* Sometimes programs do several writes for timing purposes on old
HW. Take care not to waste time on writes that do nothing. */
s->last_read_offset = ~0U;
addr &= 7;
switch(addr) {
case PARA_REG_DATA:
if (s->dataw == val)
return;
pdebug("wd%02x\n", val);
qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_WRITE_DATA, &parm);
s->dataw = val;
break;
case PARA_REG_STS:
pdebug("ws%02x\n", val);
if (val & PARA_STS_TMOUT)
s->epp_timeout = 0;
break;
case PARA_REG_CTR:
val |= 0xc0;
if (s->control == val)
return;
pdebug("wc%02x\n", val);
if ((val & PARA_CTR_DIR) != (s->control & PARA_CTR_DIR)) {
if (val & PARA_CTR_DIR) {
dir = 1;
} else {
dir = 0;
}
qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_DATA_DIR, &dir);
parm &= ~PARA_CTR_DIR;
}
qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_WRITE_CONTROL, &parm);
s->control = val;
break;
case PARA_REG_EPP_ADDR:
if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT)
/* Controls not correct for EPP address cycle, so do nothing */
pdebug("wa%02x s\n", val);
else {
struct ParallelIOArg ioarg = { .buffer = &parm, .count = 1 };
if (qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_EPP_WRITE_ADDR, &ioarg)) {
s->epp_timeout = 1;
pdebug("wa%02x t\n", val);
}
else
pdebug("wa%02x\n", val);
}
break;
case PARA_REG_EPP_DATA:
if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT)
/* Controls not correct for EPP data cycle, so do nothing */
pdebug("we%02x s\n", val);
else {
struct ParallelIOArg ioarg = { .buffer = &parm, .count = 1 };
if (qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_EPP_WRITE, &ioarg)) {
s->epp_timeout = 1;
pdebug("we%02x t\n", val);
}
else
pdebug("we%02x\n", val);
}
break;
}
}
static void
parallel_ioport_eppdata_write_hw2(void *opaque, uint32_t addr, uint32_t val)
{
ParallelState *s = opaque;
uint16_t eppdata = cpu_to_le16(val);
int err;
struct ParallelIOArg ioarg = {
.buffer = &eppdata, .count = sizeof(eppdata)
};
if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT) {
/* Controls not correct for EPP data cycle, so do nothing */
pdebug("we%04x s\n", val);
return;
}
err = qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_EPP_WRITE, &ioarg);
if (err) {
s->epp_timeout = 1;
pdebug("we%04x t\n", val);
}
else
pdebug("we%04x\n", val);
}
static void
parallel_ioport_eppdata_write_hw4(void *opaque, uint32_t addr, uint32_t val)
{
ParallelState *s = opaque;
uint32_t eppdata = cpu_to_le32(val);
int err;
struct ParallelIOArg ioarg = {
.buffer = &eppdata, .count = sizeof(eppdata)
};
if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT) {
/* Controls not correct for EPP data cycle, so do nothing */
pdebug("we%08x s\n", val);
return;
}
err = qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_EPP_WRITE, &ioarg);
if (err) {
s->epp_timeout = 1;
pdebug("we%08x t\n", val);
}
else
pdebug("we%08x\n", val);
}
static uint32_t parallel_ioport_read_sw(void *opaque, uint32_t addr)
{
ParallelState *s = opaque;
uint32_t ret = 0xff;
addr &= 7;
switch(addr) {
case PARA_REG_DATA:
if (s->control & PARA_CTR_DIR)
ret = s->datar;
else
ret = s->dataw;
break;
case PARA_REG_STS:
ret = s->status;
s->irq_pending = 0;
if ((s->status & PARA_STS_BUSY) == 0 && (s->control & PARA_CTR_STROBE) == 0) {
/* XXX Fixme: wait 5 microseconds */
if (s->status & PARA_STS_ACK)
s->status &= ~PARA_STS_ACK;
else {
/* XXX Fixme: wait 5 microseconds */
s->status |= PARA_STS_ACK;
s->status |= PARA_STS_BUSY;
}
}
parallel_update_irq(s);
break;
case PARA_REG_CTR:
ret = s->control;
break;
}
pdebug("read addr=0x%02x val=0x%02x\n", addr, ret);
return ret;
}
static uint32_t parallel_ioport_read_hw(void *opaque, uint32_t addr)
{
ParallelState *s = opaque;
uint8_t ret = 0xff;
addr &= 7;
switch(addr) {
case PARA_REG_DATA:
qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_READ_DATA, &ret);
if (s->last_read_offset != addr || s->datar != ret)
pdebug("rd%02x\n", ret);
s->datar = ret;
break;
case PARA_REG_STS:
qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_READ_STATUS, &ret);
ret &= ~PARA_STS_TMOUT;
if (s->epp_timeout)
ret |= PARA_STS_TMOUT;
if (s->last_read_offset != addr || s->status != ret)
pdebug("rs%02x\n", ret);
s->status = ret;
break;
case PARA_REG_CTR:
/* s->control has some bits fixed to 1. It is zero only when
it has not been yet written to. */
if (s->control == 0) {
qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_READ_CONTROL, &ret);
if (s->last_read_offset != addr)
pdebug("rc%02x\n", ret);
s->control = ret;
}
else {
ret = s->control;
if (s->last_read_offset != addr)
pdebug("rc%02x\n", ret);
}
break;
case PARA_REG_EPP_ADDR:
if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT))
/* Controls not correct for EPP addr cycle, so do nothing */
pdebug("ra%02x s\n", ret);
else {
struct ParallelIOArg ioarg = { .buffer = &ret, .count = 1 };
if (qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_EPP_READ_ADDR, &ioarg)) {
s->epp_timeout = 1;
pdebug("ra%02x t\n", ret);
}
else
pdebug("ra%02x\n", ret);
}
break;
case PARA_REG_EPP_DATA:
if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT))
/* Controls not correct for EPP data cycle, so do nothing */
pdebug("re%02x s\n", ret);
else {
struct ParallelIOArg ioarg = { .buffer = &ret, .count = 1 };
if (qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_EPP_READ, &ioarg)) {
s->epp_timeout = 1;
pdebug("re%02x t\n", ret);
}
else
pdebug("re%02x\n", ret);
}
break;
}
s->last_read_offset = addr;
return ret;
}
static uint32_t
parallel_ioport_eppdata_read_hw2(void *opaque, uint32_t addr)
{
ParallelState *s = opaque;
uint32_t ret;
uint16_t eppdata = ~0;
int err;
struct ParallelIOArg ioarg = {
.buffer = &eppdata, .count = sizeof(eppdata)
};
if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT)) {
/* Controls not correct for EPP data cycle, so do nothing */
pdebug("re%04x s\n", eppdata);
return eppdata;
}
err = qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_EPP_READ, &ioarg);
ret = le16_to_cpu(eppdata);
if (err) {
s->epp_timeout = 1;
pdebug("re%04x t\n", ret);
}
else
pdebug("re%04x\n", ret);
return ret;
}
static uint32_t
parallel_ioport_eppdata_read_hw4(void *opaque, uint32_t addr)
{
ParallelState *s = opaque;
uint32_t ret;
uint32_t eppdata = ~0U;
int err;
struct ParallelIOArg ioarg = {
.buffer = &eppdata, .count = sizeof(eppdata)
};
if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT)) {
/* Controls not correct for EPP data cycle, so do nothing */
pdebug("re%08x s\n", eppdata);
return eppdata;
}
err = qemu_chr_ioctl(s->chr, CHR_IOCTL_PP_EPP_READ, &ioarg);
ret = le32_to_cpu(eppdata);
if (err) {
s->epp_timeout = 1;
pdebug("re%08x t\n", ret);
}
else
pdebug("re%08x\n", ret);
return ret;
}
static void parallel_ioport_ecp_write(void *opaque, uint32_t addr, uint32_t val)
{
addr &= 7;
pdebug("wecp%d=%02x\n", addr, val);
}
static uint32_t parallel_ioport_ecp_read(void *opaque, uint32_t addr)
{
uint8_t ret = 0xff;
addr &= 7;
pdebug("recp%d:%02x\n", addr, ret);
return ret;
}
static void parallel_reset(void *opaque)
{
ParallelState *s = opaque;
s->datar = ~0;
s->dataw = ~0;
s->status = PARA_STS_BUSY;
s->status |= PARA_STS_ACK;
s->status |= PARA_STS_ONLINE;
s->status |= PARA_STS_ERROR;
s->status |= PARA_STS_TMOUT;
s->control = PARA_CTR_SELECT;
s->control |= PARA_CTR_INIT;
s->control |= 0xc0;
s->irq_pending = 0;
s->hw_driver = 0;
s->epp_timeout = 0;
s->last_read_offset = ~0U;
}
/* If fd is zero, it means that the parallel device uses the console */
ParallelState *parallel_init(int base, qemu_irq irq, CharDriverState *chr)
{
ParallelState *s;
uint8_t dummy;
s = qemu_mallocz(sizeof(ParallelState));
s->irq = irq;
s->chr = chr;
parallel_reset(s);
qemu_register_reset(parallel_reset, 0, s);
if (qemu_chr_ioctl(chr, CHR_IOCTL_PP_READ_STATUS, &dummy) == 0) {
s->hw_driver = 1;
s->status = dummy;
}
if (s->hw_driver) {
register_ioport_write(base, 8, 1, parallel_ioport_write_hw, s);
register_ioport_read(base, 8, 1, parallel_ioport_read_hw, s);
register_ioport_write(base+4, 1, 2, parallel_ioport_eppdata_write_hw2, s);
register_ioport_read(base+4, 1, 2, parallel_ioport_eppdata_read_hw2, s);
register_ioport_write(base+4, 1, 4, parallel_ioport_eppdata_write_hw4, s);
register_ioport_read(base+4, 1, 4, parallel_ioport_eppdata_read_hw4, s);
register_ioport_write(base+0x400, 8, 1, parallel_ioport_ecp_write, s);
register_ioport_read(base+0x400, 8, 1, parallel_ioport_ecp_read, s);
}
else {
register_ioport_write(base, 8, 1, parallel_ioport_write_sw, s);
register_ioport_read(base, 8, 1, parallel_ioport_read_sw, s);
}
return s;
}
/* Memory mapped interface */
static uint32_t parallel_mm_readb (void *opaque, target_phys_addr_t addr)
{
ParallelState *s = opaque;
return parallel_ioport_read_sw(s, addr >> s->it_shift) & 0xFF;
}
static void parallel_mm_writeb (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
ParallelState *s = opaque;
parallel_ioport_write_sw(s, addr >> s->it_shift, value & 0xFF);
}
static uint32_t parallel_mm_readw (void *opaque, target_phys_addr_t addr)
{
ParallelState *s = opaque;
return parallel_ioport_read_sw(s, addr >> s->it_shift) & 0xFFFF;
}
static void parallel_mm_writew (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
ParallelState *s = opaque;
parallel_ioport_write_sw(s, addr >> s->it_shift, value & 0xFFFF);
}
static uint32_t parallel_mm_readl (void *opaque, target_phys_addr_t addr)
{
ParallelState *s = opaque;
return parallel_ioport_read_sw(s, addr >> s->it_shift);
}
static void parallel_mm_writel (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
ParallelState *s = opaque;
parallel_ioport_write_sw(s, addr >> s->it_shift, value);
}
static CPUReadMemoryFunc *parallel_mm_read_sw[] = {
&parallel_mm_readb,
&parallel_mm_readw,
&parallel_mm_readl,
};
static CPUWriteMemoryFunc *parallel_mm_write_sw[] = {
&parallel_mm_writeb,
&parallel_mm_writew,
&parallel_mm_writel,
};
/* If fd is zero, it means that the parallel device uses the console */
ParallelState *parallel_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq, CharDriverState *chr)
{
ParallelState *s;
int io_sw;
s = qemu_mallocz(sizeof(ParallelState));
s->irq = irq;
s->chr = chr;
s->it_shift = it_shift;
parallel_reset(s);
qemu_register_reset(parallel_reset, 0, s);
io_sw = cpu_register_io_memory(0, parallel_mm_read_sw, parallel_mm_write_sw, s);
cpu_register_physical_memory(base, 8 << it_shift, io_sw);
return s;
}