qemu-e2k/hw/ufs/lu.c
Jeuk Kim 97970dae53 hw/ufs: Fix code coverity issues
Fixed four ufs-related coverity issues.

The coverity issues and fixes are as follows

1. CID 1519042: Security issue with the rand() function
Changed to use a fixed value (0xab) instead of rand() as
the value for testing

2. CID 1519043: Dereference after null check
Removed useless (redundant) null checks

3. CID 1519050: Out-of-bounds access issue
Fix to pass an array type variable to find_first_bit and
find_next_bit using DECLARE_BITMAP()

4. CID 1519051: Out-of-bounds read issue
Fix incorrect range check for lun

Fix coverity CID: 1519042 1519043 1519050 1519051

Signed-off-by: Jeuk Kim <jeuk20.kim@samsung.com>
2023-10-13 13:56:28 +09:00

1444 lines
41 KiB
C

/*
* QEMU UFS Logical Unit
*
* Copyright (c) 2023 Samsung Electronics Co., Ltd. All rights reserved.
*
* Written by Jeuk Kim <jeuk20.kim@samsung.com>
*
* This code is licensed under the GNU GPL v2 or later.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "qemu/memalign.h"
#include "hw/scsi/scsi.h"
#include "scsi/constants.h"
#include "sysemu/block-backend.h"
#include "qemu/cutils.h"
#include "trace.h"
#include "ufs.h"
/*
* The code below handling SCSI commands is copied from hw/scsi/scsi-disk.c,
* with minor adjustments to make it work for UFS.
*/
#define SCSI_DMA_BUF_SIZE (128 * KiB)
#define SCSI_MAX_INQUIRY_LEN 256
#define SCSI_INQUIRY_DATA_SIZE 36
#define SCSI_MAX_MODE_LEN 256
typedef struct UfsSCSIReq {
SCSIRequest req;
/* Both sector and sector_count are in terms of BDRV_SECTOR_SIZE bytes. */
uint64_t sector;
uint32_t sector_count;
uint32_t buflen;
bool started;
bool need_fua_emulation;
struct iovec iov;
QEMUIOVector qiov;
BlockAcctCookie acct;
} UfsSCSIReq;
static void ufs_scsi_free_request(SCSIRequest *req)
{
UfsSCSIReq *r = DO_UPCAST(UfsSCSIReq, req, req);
qemu_vfree(r->iov.iov_base);
}
static void scsi_check_condition(UfsSCSIReq *r, SCSISense sense)
{
trace_ufs_scsi_check_condition(r->req.tag, sense.key, sense.asc,
sense.ascq);
scsi_req_build_sense(&r->req, sense);
scsi_req_complete(&r->req, CHECK_CONDITION);
}
static int ufs_scsi_emulate_vpd_page(SCSIRequest *req, uint8_t *outbuf,
uint32_t outbuf_len)
{
UfsHc *u = UFS(req->bus->qbus.parent);
UfsLu *lu = DO_UPCAST(UfsLu, qdev, req->dev);
uint8_t page_code = req->cmd.buf[2];
int start, buflen = 0;
if (outbuf_len < SCSI_INQUIRY_DATA_SIZE) {
return -1;
}
outbuf[buflen++] = lu->qdev.type & 0x1f;
outbuf[buflen++] = page_code;
outbuf[buflen++] = 0x00;
outbuf[buflen++] = 0x00;
start = buflen;
switch (page_code) {
case 0x00: /* Supported page codes, mandatory */
{
trace_ufs_scsi_emulate_vpd_page_00(req->cmd.xfer);
outbuf[buflen++] = 0x00; /* list of supported pages (this page) */
if (u->params.serial) {
outbuf[buflen++] = 0x80; /* unit serial number */
}
outbuf[buflen++] = 0x87; /* mode page policy */
break;
}
case 0x80: /* Device serial number, optional */
{
int l;
if (!u->params.serial) {
trace_ufs_scsi_emulate_vpd_page_80_not_supported();
return -1;
}
l = strlen(u->params.serial);
if (l > SCSI_INQUIRY_DATA_SIZE) {
l = SCSI_INQUIRY_DATA_SIZE;
}
trace_ufs_scsi_emulate_vpd_page_80(req->cmd.xfer);
memcpy(outbuf + buflen, u->params.serial, l);
buflen += l;
break;
}
case 0x87: /* Mode Page Policy, mandatory */
{
trace_ufs_scsi_emulate_vpd_page_87(req->cmd.xfer);
outbuf[buflen++] = 0x3f; /* apply to all mode pages and subpages */
outbuf[buflen++] = 0xff;
outbuf[buflen++] = 0; /* shared */
outbuf[buflen++] = 0;
break;
}
default:
return -1;
}
/* done with EVPD */
assert(buflen - start <= 255);
outbuf[start - 1] = buflen - start;
return buflen;
}
static int ufs_scsi_emulate_inquiry(SCSIRequest *req, uint8_t *outbuf,
uint32_t outbuf_len)
{
int buflen = 0;
if (outbuf_len < SCSI_INQUIRY_DATA_SIZE) {
return -1;
}
if (req->cmd.buf[1] & 0x1) {
/* Vital product data */
return ufs_scsi_emulate_vpd_page(req, outbuf, outbuf_len);
}
/* Standard INQUIRY data */
if (req->cmd.buf[2] != 0) {
return -1;
}
/* PAGE CODE == 0 */
buflen = req->cmd.xfer;
if (buflen > SCSI_MAX_INQUIRY_LEN) {
buflen = SCSI_MAX_INQUIRY_LEN;
}
if (is_wlun(req->lun)) {
outbuf[0] = TYPE_WLUN;
} else {
outbuf[0] = 0;
}
outbuf[1] = 0;
strpadcpy((char *)&outbuf[16], 16, "QEMU UFS", ' ');
strpadcpy((char *)&outbuf[8], 8, "QEMU", ' ');
memset(&outbuf[32], 0, 4);
outbuf[2] = 0x06; /* SPC-4 */
outbuf[3] = 0x2;
if (buflen > SCSI_INQUIRY_DATA_SIZE) {
outbuf[4] = buflen - 5; /* Additional Length = (Len - 1) - 4 */
} else {
/*
* If the allocation length of CDB is too small, the additional
* length is not adjusted
*/
outbuf[4] = SCSI_INQUIRY_DATA_SIZE - 5;
}
/* Support TCQ. */
outbuf[7] = req->bus->info->tcq ? 0x02 : 0;
return buflen;
}
static int mode_sense_page(UfsLu *lu, int page, uint8_t **p_outbuf,
int page_control)
{
static const int mode_sense_valid[0x3f] = {
[MODE_PAGE_CACHING] = 1,
[MODE_PAGE_R_W_ERROR] = 1,
[MODE_PAGE_CONTROL] = 1,
};
uint8_t *p = *p_outbuf + 2;
int length;
assert(page < ARRAY_SIZE(mode_sense_valid));
if ((mode_sense_valid[page]) == 0) {
return -1;
}
/*
* If Changeable Values are requested, a mask denoting those mode parameters
* that are changeable shall be returned. As we currently don't support
* parameter changes via MODE_SELECT all bits are returned set to zero.
* The buffer was already memset to zero by the caller of this function.
*/
switch (page) {
case MODE_PAGE_CACHING:
length = 0x12;
if (page_control == 1 || /* Changeable Values */
blk_enable_write_cache(lu->qdev.conf.blk)) {
p[0] = 4; /* WCE */
}
break;
case MODE_PAGE_R_W_ERROR:
length = 10;
if (page_control == 1) { /* Changeable Values */
break;
}
p[0] = 0x80; /* Automatic Write Reallocation Enabled */
break;
case MODE_PAGE_CONTROL:
length = 10;
if (page_control == 1) { /* Changeable Values */
break;
}
p[1] = 0x10; /* Queue Algorithm modifier */
p[8] = 0xff; /* Busy Timeout Period */
p[9] = 0xff;
break;
default:
return -1;
}
assert(length < 256);
(*p_outbuf)[0] = page;
(*p_outbuf)[1] = length;
*p_outbuf += length + 2;
return length + 2;
}
static int ufs_scsi_emulate_mode_sense(UfsSCSIReq *r, uint8_t *outbuf)
{
UfsLu *lu = DO_UPCAST(UfsLu, qdev, r->req.dev);
bool dbd;
int page, buflen, ret, page_control;
uint8_t *p;
uint8_t dev_specific_param = 0;
dbd = (r->req.cmd.buf[1] & 0x8) != 0;
if (!dbd) {
return -1;
}
page = r->req.cmd.buf[2] & 0x3f;
page_control = (r->req.cmd.buf[2] & 0xc0) >> 6;
trace_ufs_scsi_emulate_mode_sense((r->req.cmd.buf[0] == MODE_SENSE) ? 6 :
10,
page, r->req.cmd.xfer, page_control);
memset(outbuf, 0, r->req.cmd.xfer);
p = outbuf;
if (!blk_is_writable(lu->qdev.conf.blk)) {
dev_specific_param |= 0x80; /* Readonly. */
}
p[2] = 0; /* Medium type. */
p[3] = dev_specific_param;
p[6] = p[7] = 0; /* Block descriptor length. */
p += 8;
if (page_control == 3) {
/* Saved Values */
scsi_check_condition(r, SENSE_CODE(SAVING_PARAMS_NOT_SUPPORTED));
return -1;
}
if (page == 0x3f) {
for (page = 0; page <= 0x3e; page++) {
mode_sense_page(lu, page, &p, page_control);
}
} else {
ret = mode_sense_page(lu, page, &p, page_control);
if (ret == -1) {
return -1;
}
}
buflen = p - outbuf;
/*
* The mode data length field specifies the length in bytes of the
* following data that is available to be transferred. The mode data
* length does not include itself.
*/
outbuf[0] = ((buflen - 2) >> 8) & 0xff;
outbuf[1] = (buflen - 2) & 0xff;
return buflen;
}
/*
* scsi_handle_rw_error has two return values. False means that the error
* must be ignored, true means that the error has been processed and the
* caller should not do anything else for this request. Note that
* scsi_handle_rw_error always manages its reference counts, independent
* of the return value.
*/
static bool scsi_handle_rw_error(UfsSCSIReq *r, int ret, bool acct_failed)
{
bool is_read = (r->req.cmd.mode == SCSI_XFER_FROM_DEV);
UfsLu *lu = DO_UPCAST(UfsLu, qdev, r->req.dev);
SCSISense sense = SENSE_CODE(NO_SENSE);
int error = 0;
bool req_has_sense = false;
BlockErrorAction action;
int status;
if (ret < 0) {
status = scsi_sense_from_errno(-ret, &sense);
error = -ret;
} else {
/* A passthrough command has completed with nonzero status. */
status = ret;
if (status == CHECK_CONDITION) {
req_has_sense = true;
error = scsi_sense_buf_to_errno(r->req.sense, sizeof(r->req.sense));
} else {
error = EINVAL;
}
}
/*
* Check whether the error has to be handled by the guest or should
* rather follow the rerror=/werror= settings. Guest-handled errors
* are usually retried immediately, so do not post them to QMP and
* do not account them as failed I/O.
*/
if (req_has_sense && scsi_sense_buf_is_guest_recoverable(
r->req.sense, sizeof(r->req.sense))) {
action = BLOCK_ERROR_ACTION_REPORT;
acct_failed = false;
} else {
action = blk_get_error_action(lu->qdev.conf.blk, is_read, error);
blk_error_action(lu->qdev.conf.blk, action, is_read, error);
}
switch (action) {
case BLOCK_ERROR_ACTION_REPORT:
if (acct_failed) {
block_acct_failed(blk_get_stats(lu->qdev.conf.blk), &r->acct);
}
if (!req_has_sense && status == CHECK_CONDITION) {
scsi_req_build_sense(&r->req, sense);
}
scsi_req_complete(&r->req, status);
return true;
case BLOCK_ERROR_ACTION_IGNORE:
return false;
case BLOCK_ERROR_ACTION_STOP:
scsi_req_retry(&r->req);
return true;
default:
g_assert_not_reached();
}
}
static bool ufs_scsi_req_check_error(UfsSCSIReq *r, int ret, bool acct_failed)
{
if (r->req.io_canceled) {
scsi_req_cancel_complete(&r->req);
return true;
}
if (ret < 0) {
return scsi_handle_rw_error(r, ret, acct_failed);
}
return false;
}
static void scsi_aio_complete(void *opaque, int ret)
{
UfsSCSIReq *r = (UfsSCSIReq *)opaque;
UfsLu *lu = DO_UPCAST(UfsLu, qdev, r->req.dev);
assert(r->req.aiocb != NULL);
r->req.aiocb = NULL;
aio_context_acquire(blk_get_aio_context(lu->qdev.conf.blk));
if (ufs_scsi_req_check_error(r, ret, true)) {
goto done;
}
block_acct_done(blk_get_stats(lu->qdev.conf.blk), &r->acct);
scsi_req_complete(&r->req, GOOD);
done:
aio_context_release(blk_get_aio_context(lu->qdev.conf.blk));
scsi_req_unref(&r->req);
}
static int32_t ufs_scsi_emulate_command(SCSIRequest *req, uint8_t *buf)
{
UfsSCSIReq *r = DO_UPCAST(UfsSCSIReq, req, req);
UfsLu *lu = DO_UPCAST(UfsLu, qdev, req->dev);
uint32_t last_block = 0;
uint8_t *outbuf;
int buflen;
switch (req->cmd.buf[0]) {
case INQUIRY:
case MODE_SENSE_10:
case START_STOP:
case REQUEST_SENSE:
break;
default:
if (!blk_is_available(lu->qdev.conf.blk)) {
scsi_check_condition(r, SENSE_CODE(NO_MEDIUM));
return 0;
}
break;
}
/*
* FIXME: we shouldn't return anything bigger than 4k, but the code
* requires the buffer to be as big as req->cmd.xfer in several
* places. So, do not allow CDBs with a very large ALLOCATION
* LENGTH. The real fix would be to modify scsi_read_data and
* dma_buf_read, so that they return data beyond the buflen
* as all zeros.
*/
if (req->cmd.xfer > 65536) {
goto illegal_request;
}
r->buflen = MAX(4096, req->cmd.xfer);
if (!r->iov.iov_base) {
r->iov.iov_base = blk_blockalign(lu->qdev.conf.blk, r->buflen);
}
outbuf = r->iov.iov_base;
memset(outbuf, 0, r->buflen);
switch (req->cmd.buf[0]) {
case TEST_UNIT_READY:
assert(blk_is_available(lu->qdev.conf.blk));
break;
case INQUIRY:
buflen = ufs_scsi_emulate_inquiry(req, outbuf, r->buflen);
if (buflen < 0) {
goto illegal_request;
}
break;
case MODE_SENSE_10:
buflen = ufs_scsi_emulate_mode_sense(r, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case READ_CAPACITY_10:
/* The normal LEN field for this command is zero. */
memset(outbuf, 0, 8);
if (lu->qdev.max_lba > 0) {
last_block = lu->qdev.max_lba - 1;
};
outbuf[0] = (last_block >> 24) & 0xff;
outbuf[1] = (last_block >> 16) & 0xff;
outbuf[2] = (last_block >> 8) & 0xff;
outbuf[3] = last_block & 0xff;
outbuf[4] = (lu->qdev.blocksize >> 24) & 0xff;
outbuf[5] = (lu->qdev.blocksize >> 16) & 0xff;
outbuf[6] = (lu->qdev.blocksize >> 8) & 0xff;
outbuf[7] = lu->qdev.blocksize & 0xff;
break;
case REQUEST_SENSE:
/* Just return "NO SENSE". */
buflen = scsi_convert_sense(NULL, 0, outbuf, r->buflen,
(req->cmd.buf[1] & 1) == 0);
if (buflen < 0) {
goto illegal_request;
}
break;
case SYNCHRONIZE_CACHE:
/* The request is used as the AIO opaque value, so add a ref. */
scsi_req_ref(&r->req);
block_acct_start(blk_get_stats(lu->qdev.conf.blk), &r->acct, 0,
BLOCK_ACCT_FLUSH);
r->req.aiocb = blk_aio_flush(lu->qdev.conf.blk, scsi_aio_complete, r);
return 0;
case VERIFY_10:
trace_ufs_scsi_emulate_command_VERIFY((req->cmd.buf[1] >> 1) & 3);
if (req->cmd.buf[1] & 6) {
goto illegal_request;
}
break;
case SERVICE_ACTION_IN_16:
/* Service Action In subcommands. */
if ((req->cmd.buf[1] & 31) == SAI_READ_CAPACITY_16) {
trace_ufs_scsi_emulate_command_SAI_16();
memset(outbuf, 0, req->cmd.xfer);
if (lu->qdev.max_lba > 0) {
last_block = lu->qdev.max_lba - 1;
};
outbuf[0] = 0;
outbuf[1] = 0;
outbuf[2] = 0;
outbuf[3] = 0;
outbuf[4] = (last_block >> 24) & 0xff;
outbuf[5] = (last_block >> 16) & 0xff;
outbuf[6] = (last_block >> 8) & 0xff;
outbuf[7] = last_block & 0xff;
outbuf[8] = (lu->qdev.blocksize >> 24) & 0xff;
outbuf[9] = (lu->qdev.blocksize >> 16) & 0xff;
outbuf[10] = (lu->qdev.blocksize >> 8) & 0xff;
outbuf[11] = lu->qdev.blocksize & 0xff;
outbuf[12] = 0;
outbuf[13] = get_physical_block_exp(&lu->qdev.conf);
if (lu->unit_desc.provisioning_type == 2 ||
lu->unit_desc.provisioning_type == 3) {
outbuf[14] = 0x80;
}
/* Protection, exponent and lowest lba field left blank. */
break;
}
trace_ufs_scsi_emulate_command_SAI_unsupported();
goto illegal_request;
case MODE_SELECT_10:
trace_ufs_scsi_emulate_command_MODE_SELECT_10(r->req.cmd.xfer);
break;
case START_STOP:
/*
* TODO: START_STOP is not yet implemented. It always returns success.
* Revisit it when ufs power management is implemented.
*/
trace_ufs_scsi_emulate_command_START_STOP();
break;
case FORMAT_UNIT:
trace_ufs_scsi_emulate_command_FORMAT_UNIT();
break;
case SEND_DIAGNOSTIC:
trace_ufs_scsi_emulate_command_SEND_DIAGNOSTIC();
break;
default:
trace_ufs_scsi_emulate_command_UNKNOWN(buf[0],
scsi_command_name(buf[0]));
scsi_check_condition(r, SENSE_CODE(INVALID_OPCODE));
return 0;
}
assert(!r->req.aiocb);
r->iov.iov_len = MIN(r->buflen, req->cmd.xfer);
if (r->iov.iov_len == 0) {
scsi_req_complete(&r->req, GOOD);
}
if (r->req.cmd.mode == SCSI_XFER_TO_DEV) {
assert(r->iov.iov_len == req->cmd.xfer);
return -r->iov.iov_len;
} else {
return r->iov.iov_len;
}
illegal_request:
if (r->req.status == -1) {
scsi_check_condition(r, SENSE_CODE(INVALID_FIELD));
}
return 0;
}
static void ufs_scsi_emulate_read_data(SCSIRequest *req)
{
UfsSCSIReq *r = DO_UPCAST(UfsSCSIReq, req, req);
int buflen = r->iov.iov_len;
if (buflen) {
trace_ufs_scsi_emulate_read_data(buflen);
r->iov.iov_len = 0;
r->started = true;
scsi_req_data(&r->req, buflen);
return;
}
/* This also clears the sense buffer for REQUEST SENSE. */
scsi_req_complete(&r->req, GOOD);
}
static int ufs_scsi_check_mode_select(UfsLu *lu, int page, uint8_t *inbuf,
int inlen)
{
uint8_t mode_current[SCSI_MAX_MODE_LEN];
uint8_t mode_changeable[SCSI_MAX_MODE_LEN];
uint8_t *p;
int len, expected_len, changeable_len, i;
/*
* The input buffer does not include the page header, so it is
* off by 2 bytes.
*/
expected_len = inlen + 2;
if (expected_len > SCSI_MAX_MODE_LEN) {
return -1;
}
/* MODE_PAGE_ALLS is only valid for MODE SENSE commands */
if (page == MODE_PAGE_ALLS) {
return -1;
}
p = mode_current;
memset(mode_current, 0, inlen + 2);
len = mode_sense_page(lu, page, &p, 0);
if (len < 0 || len != expected_len) {
return -1;
}
p = mode_changeable;
memset(mode_changeable, 0, inlen + 2);
changeable_len = mode_sense_page(lu, page, &p, 1);
assert(changeable_len == len);
/*
* Check that unchangeable bits are the same as what MODE SENSE
* would return.
*/
for (i = 2; i < len; i++) {
if (((mode_current[i] ^ inbuf[i - 2]) & ~mode_changeable[i]) != 0) {
return -1;
}
}
return 0;
}
static void ufs_scsi_apply_mode_select(UfsLu *lu, int page, uint8_t *p)
{
switch (page) {
case MODE_PAGE_CACHING:
blk_set_enable_write_cache(lu->qdev.conf.blk, (p[0] & 4) != 0);
break;
default:
break;
}
}
static int mode_select_pages(UfsSCSIReq *r, uint8_t *p, int len, bool change)
{
UfsLu *lu = DO_UPCAST(UfsLu, qdev, r->req.dev);
while (len > 0) {
int page, page_len;
page = p[0] & 0x3f;
if (p[0] & 0x40) {
goto invalid_param;
} else {
if (len < 2) {
goto invalid_param_len;
}
page_len = p[1];
p += 2;
len -= 2;
}
if (page_len > len) {
goto invalid_param_len;
}
if (!change) {
if (ufs_scsi_check_mode_select(lu, page, p, page_len) < 0) {
goto invalid_param;
}
} else {
ufs_scsi_apply_mode_select(lu, page, p);
}
p += page_len;
len -= page_len;
}
return 0;
invalid_param:
scsi_check_condition(r, SENSE_CODE(INVALID_PARAM));
return -1;
invalid_param_len:
scsi_check_condition(r, SENSE_CODE(INVALID_PARAM_LEN));
return -1;
}
static void ufs_scsi_emulate_mode_select(UfsSCSIReq *r, uint8_t *inbuf)
{
UfsLu *lu = DO_UPCAST(UfsLu, qdev, r->req.dev);
uint8_t *p = inbuf;
int len = r->req.cmd.xfer;
int hdr_len = 8;
int bd_len;
int pass;
/* We only support PF=1, SP=0. */
if ((r->req.cmd.buf[1] & 0x11) != 0x10) {
goto invalid_field;
}
if (len < hdr_len) {
goto invalid_param_len;
}
bd_len = lduw_be_p(&p[6]);
if (bd_len != 0) {
goto invalid_param;
}
len -= hdr_len;
p += hdr_len;
/* Ensure no change is made if there is an error! */
for (pass = 0; pass < 2; pass++) {
if (mode_select_pages(r, p, len, pass == 1) < 0) {
assert(pass == 0);
return;
}
}
if (!blk_enable_write_cache(lu->qdev.conf.blk)) {
/* The request is used as the AIO opaque value, so add a ref. */
scsi_req_ref(&r->req);
block_acct_start(blk_get_stats(lu->qdev.conf.blk), &r->acct, 0,
BLOCK_ACCT_FLUSH);
r->req.aiocb = blk_aio_flush(lu->qdev.conf.blk, scsi_aio_complete, r);
return;
}
scsi_req_complete(&r->req, GOOD);
return;
invalid_param:
scsi_check_condition(r, SENSE_CODE(INVALID_PARAM));
return;
invalid_param_len:
scsi_check_condition(r, SENSE_CODE(INVALID_PARAM_LEN));
return;
invalid_field:
scsi_check_condition(r, SENSE_CODE(INVALID_FIELD));
}
/* block_num and nb_blocks expected to be in qdev blocksize */
static inline bool check_lba_range(UfsLu *lu, uint64_t block_num,
uint32_t nb_blocks)
{
/*
* The first line tests that no overflow happens when computing the last
* block. The second line tests that the last accessed block is in
* range.
*
* Careful, the computations should not underflow for nb_blocks == 0,
* and a 0-block read to the first LBA beyond the end of device is
* valid.
*/
return (block_num <= block_num + nb_blocks &&
block_num + nb_blocks <= lu->qdev.max_lba + 1);
}
static void ufs_scsi_emulate_write_data(SCSIRequest *req)
{
UfsSCSIReq *r = DO_UPCAST(UfsSCSIReq, req, req);
if (r->iov.iov_len) {
int buflen = r->iov.iov_len;
trace_ufs_scsi_emulate_write_data(buflen);
r->iov.iov_len = 0;
scsi_req_data(&r->req, buflen);
return;
}
switch (req->cmd.buf[0]) {
case MODE_SELECT_10:
/* This also clears the sense buffer for REQUEST SENSE. */
ufs_scsi_emulate_mode_select(r, r->iov.iov_base);
break;
default:
abort();
}
}
/* Return a pointer to the data buffer. */
static uint8_t *ufs_scsi_get_buf(SCSIRequest *req)
{
UfsSCSIReq *r = DO_UPCAST(UfsSCSIReq, req, req);
return (uint8_t *)r->iov.iov_base;
}
static int32_t ufs_scsi_dma_command(SCSIRequest *req, uint8_t *buf)
{
UfsSCSIReq *r = DO_UPCAST(UfsSCSIReq, req, req);
UfsLu *lu = DO_UPCAST(UfsLu, qdev, req->dev);
uint32_t len;
uint8_t command;
command = buf[0];
if (!blk_is_available(lu->qdev.conf.blk)) {
scsi_check_condition(r, SENSE_CODE(NO_MEDIUM));
return 0;
}
len = scsi_data_cdb_xfer(r->req.cmd.buf);
switch (command) {
case READ_6:
case READ_10:
trace_ufs_scsi_dma_command_READ(r->req.cmd.lba, len);
if (r->req.cmd.buf[1] & 0xe0) {
goto illegal_request;
}
if (!check_lba_range(lu, r->req.cmd.lba, len)) {
goto illegal_lba;
}
r->sector = r->req.cmd.lba * (lu->qdev.blocksize / BDRV_SECTOR_SIZE);
r->sector_count = len * (lu->qdev.blocksize / BDRV_SECTOR_SIZE);
break;
case WRITE_6:
case WRITE_10:
trace_ufs_scsi_dma_command_WRITE(r->req.cmd.lba, len);
if (!blk_is_writable(lu->qdev.conf.blk)) {
scsi_check_condition(r, SENSE_CODE(WRITE_PROTECTED));
return 0;
}
if (r->req.cmd.buf[1] & 0xe0) {
goto illegal_request;
}
if (!check_lba_range(lu, r->req.cmd.lba, len)) {
goto illegal_lba;
}
r->sector = r->req.cmd.lba * (lu->qdev.blocksize / BDRV_SECTOR_SIZE);
r->sector_count = len * (lu->qdev.blocksize / BDRV_SECTOR_SIZE);
break;
default:
abort();
illegal_request:
scsi_check_condition(r, SENSE_CODE(INVALID_FIELD));
return 0;
illegal_lba:
scsi_check_condition(r, SENSE_CODE(LBA_OUT_OF_RANGE));
return 0;
}
r->need_fua_emulation = ((r->req.cmd.buf[1] & 8) != 0);
if (r->sector_count == 0) {
scsi_req_complete(&r->req, GOOD);
}
assert(r->iov.iov_len == 0);
if (r->req.cmd.mode == SCSI_XFER_TO_DEV) {
return -r->sector_count * BDRV_SECTOR_SIZE;
} else {
return r->sector_count * BDRV_SECTOR_SIZE;
}
}
static void scsi_write_do_fua(UfsSCSIReq *r)
{
UfsLu *lu = DO_UPCAST(UfsLu, qdev, r->req.dev);
assert(r->req.aiocb == NULL);
assert(!r->req.io_canceled);
if (r->need_fua_emulation) {
block_acct_start(blk_get_stats(lu->qdev.conf.blk), &r->acct, 0,
BLOCK_ACCT_FLUSH);
r->req.aiocb = blk_aio_flush(lu->qdev.conf.blk, scsi_aio_complete, r);
return;
}
scsi_req_complete(&r->req, GOOD);
scsi_req_unref(&r->req);
}
static void scsi_dma_complete_noio(UfsSCSIReq *r, int ret)
{
assert(r->req.aiocb == NULL);
if (ufs_scsi_req_check_error(r, ret, false)) {
goto done;
}
r->sector += r->sector_count;
r->sector_count = 0;
if (r->req.cmd.mode == SCSI_XFER_TO_DEV) {
scsi_write_do_fua(r);
return;
} else {
scsi_req_complete(&r->req, GOOD);
}
done:
scsi_req_unref(&r->req);
}
static void scsi_dma_complete(void *opaque, int ret)
{
UfsSCSIReq *r = (UfsSCSIReq *)opaque;
UfsLu *lu = DO_UPCAST(UfsLu, qdev, r->req.dev);
assert(r->req.aiocb != NULL);
r->req.aiocb = NULL;
aio_context_acquire(blk_get_aio_context(lu->qdev.conf.blk));
if (ret < 0) {
block_acct_failed(blk_get_stats(lu->qdev.conf.blk), &r->acct);
} else {
block_acct_done(blk_get_stats(lu->qdev.conf.blk), &r->acct);
}
scsi_dma_complete_noio(r, ret);
aio_context_release(blk_get_aio_context(lu->qdev.conf.blk));
}
static BlockAIOCB *scsi_dma_readv(int64_t offset, QEMUIOVector *iov,
BlockCompletionFunc *cb, void *cb_opaque,
void *opaque)
{
UfsSCSIReq *r = opaque;
UfsLu *lu = DO_UPCAST(UfsLu, qdev, r->req.dev);
return blk_aio_preadv(lu->qdev.conf.blk, offset, iov, 0, cb, cb_opaque);
}
static void scsi_init_iovec(UfsSCSIReq *r, size_t size)
{
UfsLu *lu = DO_UPCAST(UfsLu, qdev, r->req.dev);
if (!r->iov.iov_base) {
r->buflen = size;
r->iov.iov_base = blk_blockalign(lu->qdev.conf.blk, r->buflen);
}
r->iov.iov_len = MIN(r->sector_count * BDRV_SECTOR_SIZE, r->buflen);
qemu_iovec_init_external(&r->qiov, &r->iov, 1);
}
static void scsi_read_complete_noio(UfsSCSIReq *r, int ret)
{
uint32_t n;
assert(r->req.aiocb == NULL);
if (ufs_scsi_req_check_error(r, ret, false)) {
goto done;
}
n = r->qiov.size / BDRV_SECTOR_SIZE;
r->sector += n;
r->sector_count -= n;
scsi_req_data(&r->req, r->qiov.size);
done:
scsi_req_unref(&r->req);
}
static void scsi_read_complete(void *opaque, int ret)
{
UfsSCSIReq *r = (UfsSCSIReq *)opaque;
UfsLu *lu = DO_UPCAST(UfsLu, qdev, r->req.dev);
assert(r->req.aiocb != NULL);
r->req.aiocb = NULL;
trace_ufs_scsi_read_data_count(r->sector_count);
aio_context_acquire(blk_get_aio_context(lu->qdev.conf.blk));
if (ret < 0) {
block_acct_failed(blk_get_stats(lu->qdev.conf.blk), &r->acct);
} else {
block_acct_done(blk_get_stats(lu->qdev.conf.blk), &r->acct);
trace_ufs_scsi_read_complete(r->req.tag, r->qiov.size);
}
scsi_read_complete_noio(r, ret);
aio_context_release(blk_get_aio_context(lu->qdev.conf.blk));
}
/* Actually issue a read to the block device. */
static void scsi_do_read(UfsSCSIReq *r, int ret)
{
UfsLu *lu = DO_UPCAST(UfsLu, qdev, r->req.dev);
assert(r->req.aiocb == NULL);
if (ufs_scsi_req_check_error(r, ret, false)) {
goto done;
}
/* The request is used as the AIO opaque value, so add a ref. */
scsi_req_ref(&r->req);
if (r->req.sg) {
dma_acct_start(lu->qdev.conf.blk, &r->acct, r->req.sg, BLOCK_ACCT_READ);
r->req.residual -= r->req.sg->size;
r->req.aiocb = dma_blk_io(
blk_get_aio_context(lu->qdev.conf.blk), r->req.sg,
r->sector << BDRV_SECTOR_BITS, BDRV_SECTOR_SIZE, scsi_dma_readv, r,
scsi_dma_complete, r, DMA_DIRECTION_FROM_DEVICE);
} else {
scsi_init_iovec(r, SCSI_DMA_BUF_SIZE);
block_acct_start(blk_get_stats(lu->qdev.conf.blk), &r->acct,
r->qiov.size, BLOCK_ACCT_READ);
r->req.aiocb = scsi_dma_readv(r->sector << BDRV_SECTOR_BITS, &r->qiov,
scsi_read_complete, r, r);
}
done:
scsi_req_unref(&r->req);
}
static void scsi_do_read_cb(void *opaque, int ret)
{
UfsSCSIReq *r = (UfsSCSIReq *)opaque;
UfsLu *lu = DO_UPCAST(UfsLu, qdev, r->req.dev);
assert(r->req.aiocb != NULL);
r->req.aiocb = NULL;
aio_context_acquire(blk_get_aio_context(lu->qdev.conf.blk));
if (ret < 0) {
block_acct_failed(blk_get_stats(lu->qdev.conf.blk), &r->acct);
} else {
block_acct_done(blk_get_stats(lu->qdev.conf.blk), &r->acct);
}
scsi_do_read(opaque, ret);
aio_context_release(blk_get_aio_context(lu->qdev.conf.blk));
}
/* Read more data from scsi device into buffer. */
static void scsi_read_data(SCSIRequest *req)
{
UfsSCSIReq *r = DO_UPCAST(UfsSCSIReq, req, req);
UfsLu *lu = DO_UPCAST(UfsLu, qdev, r->req.dev);
bool first;
trace_ufs_scsi_read_data_count(r->sector_count);
if (r->sector_count == 0) {
/* This also clears the sense buffer for REQUEST SENSE. */
scsi_req_complete(&r->req, GOOD);
return;
}
/* No data transfer may already be in progress */
assert(r->req.aiocb == NULL);
/* The request is used as the AIO opaque value, so add a ref. */
scsi_req_ref(&r->req);
if (r->req.cmd.mode == SCSI_XFER_TO_DEV) {
trace_ufs_scsi_read_data_invalid();
scsi_read_complete_noio(r, -EINVAL);
return;
}
if (!blk_is_available(req->dev->conf.blk)) {
scsi_read_complete_noio(r, -ENOMEDIUM);
return;
}
first = !r->started;
r->started = true;
if (first && r->need_fua_emulation) {
block_acct_start(blk_get_stats(lu->qdev.conf.blk), &r->acct, 0,
BLOCK_ACCT_FLUSH);
r->req.aiocb = blk_aio_flush(lu->qdev.conf.blk, scsi_do_read_cb, r);
} else {
scsi_do_read(r, 0);
}
}
static void scsi_write_complete_noio(UfsSCSIReq *r, int ret)
{
uint32_t n;
assert(r->req.aiocb == NULL);
if (ufs_scsi_req_check_error(r, ret, false)) {
goto done;
}
n = r->qiov.size / BDRV_SECTOR_SIZE;
r->sector += n;
r->sector_count -= n;
if (r->sector_count == 0) {
scsi_write_do_fua(r);
return;
} else {
scsi_init_iovec(r, SCSI_DMA_BUF_SIZE);
trace_ufs_scsi_write_complete_noio(r->req.tag, r->qiov.size);
scsi_req_data(&r->req, r->qiov.size);
}
done:
scsi_req_unref(&r->req);
}
static void scsi_write_complete(void *opaque, int ret)
{
UfsSCSIReq *r = (UfsSCSIReq *)opaque;
UfsLu *lu = DO_UPCAST(UfsLu, qdev, r->req.dev);
assert(r->req.aiocb != NULL);
r->req.aiocb = NULL;
aio_context_acquire(blk_get_aio_context(lu->qdev.conf.blk));
if (ret < 0) {
block_acct_failed(blk_get_stats(lu->qdev.conf.blk), &r->acct);
} else {
block_acct_done(blk_get_stats(lu->qdev.conf.blk), &r->acct);
}
scsi_write_complete_noio(r, ret);
aio_context_release(blk_get_aio_context(lu->qdev.conf.blk));
}
static BlockAIOCB *scsi_dma_writev(int64_t offset, QEMUIOVector *iov,
BlockCompletionFunc *cb, void *cb_opaque,
void *opaque)
{
UfsSCSIReq *r = opaque;
UfsLu *lu = DO_UPCAST(UfsLu, qdev, r->req.dev);
return blk_aio_pwritev(lu->qdev.conf.blk, offset, iov, 0, cb, cb_opaque);
}
static void scsi_write_data(SCSIRequest *req)
{
UfsSCSIReq *r = DO_UPCAST(UfsSCSIReq, req, req);
UfsLu *lu = DO_UPCAST(UfsLu, qdev, r->req.dev);
/* No data transfer may already be in progress */
assert(r->req.aiocb == NULL);
/* The request is used as the AIO opaque value, so add a ref. */
scsi_req_ref(&r->req);
if (r->req.cmd.mode != SCSI_XFER_TO_DEV) {
trace_ufs_scsi_write_data_invalid();
scsi_write_complete_noio(r, -EINVAL);
return;
}
if (!r->req.sg && !r->qiov.size) {
/* Called for the first time. Ask the driver to send us more data. */
r->started = true;
scsi_write_complete_noio(r, 0);
return;
}
if (!blk_is_available(req->dev->conf.blk)) {
scsi_write_complete_noio(r, -ENOMEDIUM);
return;
}
if (r->req.sg) {
dma_acct_start(lu->qdev.conf.blk, &r->acct, r->req.sg,
BLOCK_ACCT_WRITE);
r->req.residual -= r->req.sg->size;
r->req.aiocb = dma_blk_io(
blk_get_aio_context(lu->qdev.conf.blk), r->req.sg,
r->sector << BDRV_SECTOR_BITS, BDRV_SECTOR_SIZE, scsi_dma_writev, r,
scsi_dma_complete, r, DMA_DIRECTION_TO_DEVICE);
} else {
block_acct_start(blk_get_stats(lu->qdev.conf.blk), &r->acct,
r->qiov.size, BLOCK_ACCT_WRITE);
r->req.aiocb = scsi_dma_writev(r->sector << BDRV_SECTOR_BITS, &r->qiov,
scsi_write_complete, r, r);
}
}
static const SCSIReqOps ufs_scsi_emulate_reqops = {
.size = sizeof(UfsSCSIReq),
.free_req = ufs_scsi_free_request,
.send_command = ufs_scsi_emulate_command,
.read_data = ufs_scsi_emulate_read_data,
.write_data = ufs_scsi_emulate_write_data,
.get_buf = ufs_scsi_get_buf,
};
static const SCSIReqOps ufs_scsi_dma_reqops = {
.size = sizeof(UfsSCSIReq),
.free_req = ufs_scsi_free_request,
.send_command = ufs_scsi_dma_command,
.read_data = scsi_read_data,
.write_data = scsi_write_data,
.get_buf = ufs_scsi_get_buf,
};
/*
* Following commands are not yet supported
* PRE_FETCH(10),
* UNMAP,
* WRITE_BUFFER, READ_BUFFER,
* SECURITY_PROTOCOL_IN, SECURITY_PROTOCOL_OUT
*/
static const SCSIReqOps *const ufs_scsi_reqops_dispatch[256] = {
[TEST_UNIT_READY] = &ufs_scsi_emulate_reqops,
[INQUIRY] = &ufs_scsi_emulate_reqops,
[MODE_SENSE_10] = &ufs_scsi_emulate_reqops,
[START_STOP] = &ufs_scsi_emulate_reqops,
[READ_CAPACITY_10] = &ufs_scsi_emulate_reqops,
[REQUEST_SENSE] = &ufs_scsi_emulate_reqops,
[SYNCHRONIZE_CACHE] = &ufs_scsi_emulate_reqops,
[MODE_SELECT_10] = &ufs_scsi_emulate_reqops,
[VERIFY_10] = &ufs_scsi_emulate_reqops,
[FORMAT_UNIT] = &ufs_scsi_emulate_reqops,
[SERVICE_ACTION_IN_16] = &ufs_scsi_emulate_reqops,
[SEND_DIAGNOSTIC] = &ufs_scsi_emulate_reqops,
[READ_6] = &ufs_scsi_dma_reqops,
[READ_10] = &ufs_scsi_dma_reqops,
[WRITE_6] = &ufs_scsi_dma_reqops,
[WRITE_10] = &ufs_scsi_dma_reqops,
};
static SCSIRequest *scsi_new_request(SCSIDevice *dev, uint32_t tag,
uint32_t lun, uint8_t *buf,
void *hba_private)
{
UfsLu *lu = DO_UPCAST(UfsLu, qdev, dev);
SCSIRequest *req;
const SCSIReqOps *ops;
uint8_t command;
command = buf[0];
ops = ufs_scsi_reqops_dispatch[command];
if (!ops) {
ops = &ufs_scsi_emulate_reqops;
}
req = scsi_req_alloc(ops, &lu->qdev, tag, lun, hba_private);
return req;
}
static Property ufs_lu_props[] = {
DEFINE_PROP_DRIVE("drive", UfsLu, qdev.conf.blk),
DEFINE_PROP_END_OF_LIST(),
};
static bool ufs_lu_brdv_init(UfsLu *lu, Error **errp)
{
SCSIDevice *dev = &lu->qdev;
bool read_only;
if (!lu->qdev.conf.blk) {
error_setg(errp, "drive property not set");
return false;
}
if (!blkconf_blocksizes(&lu->qdev.conf, errp)) {
return false;
}
if (blk_get_aio_context(lu->qdev.conf.blk) != qemu_get_aio_context() &&
!lu->qdev.hba_supports_iothread) {
error_setg(errp, "HBA does not support iothreads");
return false;
}
read_only = !blk_supports_write_perm(lu->qdev.conf.blk);
if (!blkconf_apply_backend_options(&dev->conf, read_only,
dev->type == TYPE_DISK, errp)) {
return false;
}
if (blk_is_sg(lu->qdev.conf.blk)) {
error_setg(errp, "unwanted /dev/sg*");
return false;
}
blk_iostatus_enable(lu->qdev.conf.blk);
return true;
}
static bool ufs_add_lu(UfsHc *u, UfsLu *lu, Error **errp)
{
BlockBackend *blk = lu->qdev.conf.blk;
int64_t brdv_len = blk_getlength(blk);
uint64_t raw_dev_cap =
be64_to_cpu(u->geometry_desc.total_raw_device_capacity);
if (u->device_desc.number_lu >= UFS_MAX_LUS) {
error_setg(errp, "ufs host controller has too many logical units.");
return false;
}
if (u->lus[lu->lun] != NULL) {
error_setg(errp, "ufs logical unit %d already exists.", lu->lun);
return false;
}
u->lus[lu->lun] = lu;
u->device_desc.number_lu++;
raw_dev_cap += (brdv_len >> UFS_GEOMETRY_CAPACITY_SHIFT);
u->geometry_desc.total_raw_device_capacity = cpu_to_be64(raw_dev_cap);
return true;
}
static inline uint8_t ufs_log2(uint64_t input)
{
int log = 0;
while (input >>= 1) {
log++;
}
return log;
}
static void ufs_init_lu(UfsLu *lu)
{
BlockBackend *blk = lu->qdev.conf.blk;
int64_t brdv_len = blk_getlength(blk);
lu->lun = lu->qdev.lun;
memset(&lu->unit_desc, 0, sizeof(lu->unit_desc));
lu->unit_desc.length = sizeof(UnitDescriptor);
lu->unit_desc.descriptor_idn = UFS_QUERY_DESC_IDN_UNIT;
lu->unit_desc.lu_enable = 0x01;
lu->unit_desc.logical_block_size = ufs_log2(lu->qdev.blocksize);
lu->unit_desc.unit_index = lu->qdev.lun;
lu->unit_desc.logical_block_count =
cpu_to_be64(brdv_len / (1 << lu->unit_desc.logical_block_size));
}
static bool ufs_lu_check_constraints(UfsLu *lu, Error **errp)
{
if (!lu->qdev.conf.blk) {
error_setg(errp, "drive property not set");
return false;
}
if (lu->qdev.channel != 0) {
error_setg(errp, "ufs logical unit does not support channel");
return false;
}
if (lu->qdev.lun >= UFS_MAX_LUS) {
error_setg(errp, "lun must be between 1 and %d", UFS_MAX_LUS - 1);
return false;
}
return true;
}
static void ufs_lu_realize(SCSIDevice *dev, Error **errp)
{
UfsLu *lu = DO_UPCAST(UfsLu, qdev, dev);
BusState *s = qdev_get_parent_bus(&dev->qdev);
UfsHc *u = UFS(s->parent);
AioContext *ctx = NULL;
uint64_t nb_sectors, nb_blocks;
if (!ufs_lu_check_constraints(lu, errp)) {
return;
}
ctx = blk_get_aio_context(lu->qdev.conf.blk);
aio_context_acquire(ctx);
if (!blkconf_blocksizes(&lu->qdev.conf, errp)) {
goto out;
}
lu->qdev.blocksize = UFS_BLOCK_SIZE;
blk_get_geometry(lu->qdev.conf.blk, &nb_sectors);
nb_blocks = nb_sectors / (lu->qdev.blocksize / BDRV_SECTOR_SIZE);
if (nb_blocks > UINT32_MAX) {
nb_blocks = UINT32_MAX;
}
lu->qdev.max_lba = nb_blocks;
lu->qdev.type = TYPE_DISK;
ufs_init_lu(lu);
if (!ufs_add_lu(u, lu, errp)) {
goto out;
}
ufs_lu_brdv_init(lu, errp);
out:
aio_context_release(ctx);
}
static void ufs_lu_unrealize(SCSIDevice *dev)
{
UfsLu *lu = DO_UPCAST(UfsLu, qdev, dev);
blk_drain(lu->qdev.conf.blk);
}
static void ufs_wlu_realize(DeviceState *qdev, Error **errp)
{
UfsWLu *wlu = UFSWLU(qdev);
SCSIDevice *dev = &wlu->qdev;
if (!is_wlun(dev->lun)) {
error_setg(errp, "not well-known logical unit number");
return;
}
QTAILQ_INIT(&dev->requests);
}
static void ufs_lu_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
SCSIDeviceClass *sc = SCSI_DEVICE_CLASS(oc);
sc->realize = ufs_lu_realize;
sc->unrealize = ufs_lu_unrealize;
sc->alloc_req = scsi_new_request;
dc->bus_type = TYPE_UFS_BUS;
device_class_set_props(dc, ufs_lu_props);
dc->desc = "Virtual UFS logical unit";
}
static void ufs_wlu_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
SCSIDeviceClass *sc = SCSI_DEVICE_CLASS(oc);
/*
* The realize() function of TYPE_SCSI_DEVICE causes a segmentation fault
* if a block drive does not exist. Define a new realize function for
* well-known LUs that do not have a block drive.
*/
dc->realize = ufs_wlu_realize;
sc->alloc_req = scsi_new_request;
dc->bus_type = TYPE_UFS_BUS;
dc->desc = "Virtual UFS well-known logical unit";
}
static const TypeInfo ufs_lu_info = {
.name = TYPE_UFS_LU,
.parent = TYPE_SCSI_DEVICE,
.class_init = ufs_lu_class_init,
.instance_size = sizeof(UfsLu),
};
static const TypeInfo ufs_wlu_info = {
.name = TYPE_UFS_WLU,
.parent = TYPE_SCSI_DEVICE,
.class_init = ufs_wlu_class_init,
.instance_size = sizeof(UfsWLu),
};
static void ufs_lu_register_types(void)
{
type_register_static(&ufs_lu_info);
type_register_static(&ufs_wlu_info);
}
type_init(ufs_lu_register_types)