qemu-e2k/hw/core/clock.c
Peter Maydell 99abcbc760 clock: Provide builtin multiplier/divider
It is quite common for a clock tree to involve possibly programmable
clock multipliers or dividers, where the frequency of a clock is for
instance divided by 8 to produce a slower clock to feed to a
particular device.

Currently we provide no convenient mechanism for modelling this.  You
can implement it by having an input Clock and an output Clock, and
manually setting the period of the output clock in the period-changed
callback of the input clock, but that's quite clunky.

This patch adds support in the Clock objects themselves for setting a
multiplier or divider.  The effect of setting this on a clock is that
when the clock's period is changed, all the children of the clock are
set to period * multiplier / divider, rather than being set to the
same period as the parent clock.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alexandre Iooss <erdnaxe@crans.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Reviewed-by: Damien Hedde <damien.hedde@greensocs.com>
Message-id: 20210812093356.1946-10-peter.maydell@linaro.org
2021-09-01 11:08:19 +01:00

196 lines
4.6 KiB
C

/*
* Hardware Clocks
*
* Copyright GreenSocs 2016-2020
*
* Authors:
* Frederic Konrad
* Damien Hedde
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "hw/clock.h"
#include "trace.h"
#define CLOCK_PATH(_clk) (_clk->canonical_path)
void clock_setup_canonical_path(Clock *clk)
{
g_free(clk->canonical_path);
clk->canonical_path = object_get_canonical_path(OBJECT(clk));
}
Clock *clock_new(Object *parent, const char *name)
{
Object *obj;
Clock *clk;
obj = object_new(TYPE_CLOCK);
object_property_add_child(parent, name, obj);
object_unref(obj);
clk = CLOCK(obj);
clock_setup_canonical_path(clk);
return clk;
}
void clock_set_callback(Clock *clk, ClockCallback *cb, void *opaque,
unsigned int events)
{
clk->callback = cb;
clk->callback_opaque = opaque;
clk->callback_events = events;
}
void clock_clear_callback(Clock *clk)
{
clock_set_callback(clk, NULL, NULL, 0);
}
bool clock_set(Clock *clk, uint64_t period)
{
if (clk->period == period) {
return false;
}
trace_clock_set(CLOCK_PATH(clk), CLOCK_PERIOD_TO_HZ(clk->period),
CLOCK_PERIOD_TO_HZ(period));
clk->period = period;
return true;
}
static uint64_t clock_get_child_period(Clock *clk)
{
/*
* Return the period to be used for child clocks, which is the parent
* clock period adjusted for for multiplier and divider effects.
*/
return muldiv64(clk->period, clk->multiplier, clk->divider);
}
static void clock_call_callback(Clock *clk, ClockEvent event)
{
/*
* Call the Clock's callback for this event, if it has one and
* is interested in this event.
*/
if (clk->callback && (clk->callback_events & event)) {
clk->callback(clk->callback_opaque, event);
}
}
static void clock_propagate_period(Clock *clk, bool call_callbacks)
{
Clock *child;
uint64_t child_period = clock_get_child_period(clk);
QLIST_FOREACH(child, &clk->children, sibling) {
if (child->period != child_period) {
if (call_callbacks) {
clock_call_callback(child, ClockPreUpdate);
}
child->period = child_period;
trace_clock_update(CLOCK_PATH(child), CLOCK_PATH(clk),
CLOCK_PERIOD_TO_HZ(child->period),
call_callbacks);
if (call_callbacks) {
clock_call_callback(child, ClockUpdate);
}
clock_propagate_period(child, call_callbacks);
}
}
}
void clock_propagate(Clock *clk)
{
assert(clk->source == NULL);
trace_clock_propagate(CLOCK_PATH(clk));
clock_propagate_period(clk, true);
}
void clock_set_source(Clock *clk, Clock *src)
{
/* changing clock source is not supported */
assert(!clk->source);
trace_clock_set_source(CLOCK_PATH(clk), CLOCK_PATH(src));
clk->period = clock_get_child_period(src);
QLIST_INSERT_HEAD(&src->children, clk, sibling);
clk->source = src;
clock_propagate_period(clk, false);
}
static void clock_disconnect(Clock *clk)
{
if (clk->source == NULL) {
return;
}
trace_clock_disconnect(CLOCK_PATH(clk));
clk->source = NULL;
QLIST_REMOVE(clk, sibling);
}
char *clock_display_freq(Clock *clk)
{
return freq_to_str(clock_get_hz(clk));
}
void clock_set_mul_div(Clock *clk, uint32_t multiplier, uint32_t divider)
{
assert(divider != 0);
trace_clock_set_mul_div(CLOCK_PATH(clk), clk->multiplier, multiplier,
clk->divider, divider);
clk->multiplier = multiplier;
clk->divider = divider;
}
static void clock_initfn(Object *obj)
{
Clock *clk = CLOCK(obj);
clk->multiplier = 1;
clk->divider = 1;
QLIST_INIT(&clk->children);
}
static void clock_finalizefn(Object *obj)
{
Clock *clk = CLOCK(obj);
Clock *child, *next;
/* clear our list of children */
QLIST_FOREACH_SAFE(child, &clk->children, sibling, next) {
clock_disconnect(child);
}
/* remove us from source's children list */
clock_disconnect(clk);
g_free(clk->canonical_path);
}
static const TypeInfo clock_info = {
.name = TYPE_CLOCK,
.parent = TYPE_OBJECT,
.instance_size = sizeof(Clock),
.instance_init = clock_initfn,
.instance_finalize = clock_finalizefn,
};
static void clock_register_types(void)
{
type_register_static(&clock_info);
}
type_init(clock_register_types)