qemu-e2k/hw/timer/altera_timer.c
Eduardo Habkost 8063396bf3 Use OBJECT_DECLARE_SIMPLE_TYPE when possible
This converts existing DECLARE_INSTANCE_CHECKER usage to
OBJECT_DECLARE_SIMPLE_TYPE when possible.

$ ./scripts/codeconverter/converter.py -i \
  --pattern=AddObjectDeclareSimpleType $(git grep -l '' -- '*.[ch]')

Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Acked-by: Paul Durrant <paul@xen.org>
Message-Id: <20200916182519.415636-6-ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2020-09-18 14:12:32 -04:00

245 lines
6.3 KiB
C

/*
* QEMU model of the Altera timer.
*
* Copyright (c) 2012 Chris Wulff <crwulff@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see
* <http://www.gnu.org/licenses/lgpl-2.1.html>
*/
#include "qemu/osdep.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "hw/sysbus.h"
#include "hw/irq.h"
#include "hw/ptimer.h"
#include "hw/qdev-properties.h"
#include "qom/object.h"
#define R_STATUS 0
#define R_CONTROL 1
#define R_PERIODL 2
#define R_PERIODH 3
#define R_SNAPL 4
#define R_SNAPH 5
#define R_MAX 6
#define STATUS_TO 0x0001
#define STATUS_RUN 0x0002
#define CONTROL_ITO 0x0001
#define CONTROL_CONT 0x0002
#define CONTROL_START 0x0004
#define CONTROL_STOP 0x0008
#define TYPE_ALTERA_TIMER "ALTR.timer"
OBJECT_DECLARE_SIMPLE_TYPE(AlteraTimer, ALTERA_TIMER)
struct AlteraTimer {
SysBusDevice busdev;
MemoryRegion mmio;
qemu_irq irq;
uint32_t freq_hz;
ptimer_state *ptimer;
uint32_t regs[R_MAX];
};
static int timer_irq_state(AlteraTimer *t)
{
bool irq = (t->regs[R_STATUS] & STATUS_TO) &&
(t->regs[R_CONTROL] & CONTROL_ITO);
return irq;
}
static uint64_t timer_read(void *opaque, hwaddr addr,
unsigned int size)
{
AlteraTimer *t = opaque;
uint64_t r = 0;
addr >>= 2;
switch (addr) {
case R_CONTROL:
r = t->regs[R_CONTROL] & (CONTROL_ITO | CONTROL_CONT);
break;
default:
if (addr < ARRAY_SIZE(t->regs)) {
r = t->regs[addr];
}
break;
}
return r;
}
static void timer_write(void *opaque, hwaddr addr,
uint64_t value, unsigned int size)
{
AlteraTimer *t = opaque;
uint64_t tvalue;
uint32_t count = 0;
int irqState = timer_irq_state(t);
addr >>= 2;
switch (addr) {
case R_STATUS:
/* The timeout bit is cleared by writing the status register. */
t->regs[R_STATUS] &= ~STATUS_TO;
break;
case R_CONTROL:
ptimer_transaction_begin(t->ptimer);
t->regs[R_CONTROL] = value & (CONTROL_ITO | CONTROL_CONT);
if ((value & CONTROL_START) &&
!(t->regs[R_STATUS] & STATUS_RUN)) {
ptimer_run(t->ptimer, 1);
t->regs[R_STATUS] |= STATUS_RUN;
}
if ((value & CONTROL_STOP) && (t->regs[R_STATUS] & STATUS_RUN)) {
ptimer_stop(t->ptimer);
t->regs[R_STATUS] &= ~STATUS_RUN;
}
ptimer_transaction_commit(t->ptimer);
break;
case R_PERIODL:
case R_PERIODH:
ptimer_transaction_begin(t->ptimer);
t->regs[addr] = value & 0xFFFF;
if (t->regs[R_STATUS] & STATUS_RUN) {
ptimer_stop(t->ptimer);
t->regs[R_STATUS] &= ~STATUS_RUN;
}
tvalue = (t->regs[R_PERIODH] << 16) | t->regs[R_PERIODL];
ptimer_set_limit(t->ptimer, tvalue + 1, 1);
ptimer_transaction_commit(t->ptimer);
break;
case R_SNAPL:
case R_SNAPH:
count = ptimer_get_count(t->ptimer);
t->regs[R_SNAPL] = count & 0xFFFF;
t->regs[R_SNAPH] = count >> 16;
break;
default:
break;
}
if (irqState != timer_irq_state(t)) {
qemu_set_irq(t->irq, timer_irq_state(t));
}
}
static const MemoryRegionOps timer_ops = {
.read = timer_read,
.write = timer_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 4
}
};
static void timer_hit(void *opaque)
{
AlteraTimer *t = opaque;
const uint64_t tvalue = (t->regs[R_PERIODH] << 16) | t->regs[R_PERIODL];
t->regs[R_STATUS] |= STATUS_TO;
ptimer_set_limit(t->ptimer, tvalue + 1, 1);
if (!(t->regs[R_CONTROL] & CONTROL_CONT)) {
t->regs[R_STATUS] &= ~STATUS_RUN;
ptimer_set_count(t->ptimer, tvalue);
} else {
ptimer_run(t->ptimer, 1);
}
qemu_set_irq(t->irq, timer_irq_state(t));
}
static void altera_timer_realize(DeviceState *dev, Error **errp)
{
AlteraTimer *t = ALTERA_TIMER(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
if (t->freq_hz == 0) {
error_setg(errp, "\"clock-frequency\" property must be provided.");
return;
}
t->ptimer = ptimer_init(timer_hit, t, PTIMER_POLICY_DEFAULT);
ptimer_transaction_begin(t->ptimer);
ptimer_set_freq(t->ptimer, t->freq_hz);
ptimer_transaction_commit(t->ptimer);
memory_region_init_io(&t->mmio, OBJECT(t), &timer_ops, t,
TYPE_ALTERA_TIMER, R_MAX * sizeof(uint32_t));
sysbus_init_mmio(sbd, &t->mmio);
}
static void altera_timer_init(Object *obj)
{
AlteraTimer *t = ALTERA_TIMER(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
sysbus_init_irq(sbd, &t->irq);
}
static void altera_timer_reset(DeviceState *dev)
{
AlteraTimer *t = ALTERA_TIMER(dev);
ptimer_transaction_begin(t->ptimer);
ptimer_stop(t->ptimer);
ptimer_set_limit(t->ptimer, 0xffffffff, 1);
ptimer_transaction_commit(t->ptimer);
memset(t->regs, 0, sizeof(t->regs));
}
static Property altera_timer_properties[] = {
DEFINE_PROP_UINT32("clock-frequency", AlteraTimer, freq_hz, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void altera_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = altera_timer_realize;
device_class_set_props(dc, altera_timer_properties);
dc->reset = altera_timer_reset;
}
static const TypeInfo altera_timer_info = {
.name = TYPE_ALTERA_TIMER,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(AlteraTimer),
.instance_init = altera_timer_init,
.class_init = altera_timer_class_init,
};
static void altera_timer_register(void)
{
type_register_static(&altera_timer_info);
}
type_init(altera_timer_register)