qemu-e2k/target/i386/cpu.c

4811 lines
166 KiB
C

/*
* i386 CPUID helper functions
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "sysemu/kvm.h"
#include "sysemu/hvf.h"
#include "sysemu/cpus.h"
#include "kvm_i386.h"
#include "qemu/error-report.h"
#include "qemu/option.h"
#include "qemu/config-file.h"
#include "qapi/error.h"
#include "qapi/qapi-visit-misc.h"
#include "qapi/qapi-visit-run-state.h"
#include "qapi/qmp/qdict.h"
#include "qapi/qmp/qerror.h"
#include "qapi/visitor.h"
#include "qom/qom-qobject.h"
#include "sysemu/arch_init.h"
#if defined(CONFIG_KVM)
#include <linux/kvm_para.h>
#endif
#include "sysemu/sysemu.h"
#include "hw/qdev-properties.h"
#include "hw/i386/topology.h"
#ifndef CONFIG_USER_ONLY
#include "exec/address-spaces.h"
#include "hw/hw.h"
#include "hw/xen/xen.h"
#include "hw/i386/apic_internal.h"
#endif
#include "disas/capstone.h"
/* Cache topology CPUID constants: */
/* CPUID Leaf 2 Descriptors */
#define CPUID_2_L1D_32KB_8WAY_64B 0x2c
#define CPUID_2_L1I_32KB_8WAY_64B 0x30
#define CPUID_2_L2_2MB_8WAY_64B 0x7d
#define CPUID_2_L3_16MB_16WAY_64B 0x4d
/* CPUID Leaf 4 constants: */
/* EAX: */
#define CPUID_4_TYPE_DCACHE 1
#define CPUID_4_TYPE_ICACHE 2
#define CPUID_4_TYPE_UNIFIED 3
#define CPUID_4_LEVEL(l) ((l) << 5)
#define CPUID_4_SELF_INIT_LEVEL (1 << 8)
#define CPUID_4_FULLY_ASSOC (1 << 9)
/* EDX: */
#define CPUID_4_NO_INVD_SHARING (1 << 0)
#define CPUID_4_INCLUSIVE (1 << 1)
#define CPUID_4_COMPLEX_IDX (1 << 2)
#define ASSOC_FULL 0xFF
/* AMD associativity encoding used on CPUID Leaf 0x80000006: */
#define AMD_ENC_ASSOC(a) (a <= 1 ? a : \
a == 2 ? 0x2 : \
a == 4 ? 0x4 : \
a == 8 ? 0x6 : \
a == 16 ? 0x8 : \
a == 32 ? 0xA : \
a == 48 ? 0xB : \
a == 64 ? 0xC : \
a == 96 ? 0xD : \
a == 128 ? 0xE : \
a == ASSOC_FULL ? 0xF : \
0 /* invalid value */)
/* Definitions of the hardcoded cache entries we expose: */
/* L1 data cache: */
#define L1D_LINE_SIZE 64
#define L1D_ASSOCIATIVITY 8
#define L1D_SETS 64
#define L1D_PARTITIONS 1
/* Size = LINE_SIZE*ASSOCIATIVITY*SETS*PARTITIONS = 32KiB */
#define L1D_DESCRIPTOR CPUID_2_L1D_32KB_8WAY_64B
/*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */
#define L1D_LINES_PER_TAG 1
#define L1D_SIZE_KB_AMD 64
#define L1D_ASSOCIATIVITY_AMD 2
/* L1 instruction cache: */
#define L1I_LINE_SIZE 64
#define L1I_ASSOCIATIVITY 8
#define L1I_SETS 64
#define L1I_PARTITIONS 1
/* Size = LINE_SIZE*ASSOCIATIVITY*SETS*PARTITIONS = 32KiB */
#define L1I_DESCRIPTOR CPUID_2_L1I_32KB_8WAY_64B
/*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */
#define L1I_LINES_PER_TAG 1
#define L1I_SIZE_KB_AMD 64
#define L1I_ASSOCIATIVITY_AMD 2
/* Level 2 unified cache: */
#define L2_LINE_SIZE 64
#define L2_ASSOCIATIVITY 16
#define L2_SETS 4096
#define L2_PARTITIONS 1
/* Size = LINE_SIZE*ASSOCIATIVITY*SETS*PARTITIONS = 4MiB */
/*FIXME: CPUID leaf 2 descriptor is inconsistent with CPUID leaf 4 */
#define L2_DESCRIPTOR CPUID_2_L2_2MB_8WAY_64B
/*FIXME: CPUID leaf 0x80000006 is inconsistent with leaves 2 & 4 */
#define L2_LINES_PER_TAG 1
#define L2_SIZE_KB_AMD 512
/* Level 3 unified cache: */
#define L3_SIZE_KB 0 /* disabled */
#define L3_ASSOCIATIVITY 0 /* disabled */
#define L3_LINES_PER_TAG 0 /* disabled */
#define L3_LINE_SIZE 0 /* disabled */
#define L3_N_LINE_SIZE 64
#define L3_N_ASSOCIATIVITY 16
#define L3_N_SETS 16384
#define L3_N_PARTITIONS 1
#define L3_N_DESCRIPTOR CPUID_2_L3_16MB_16WAY_64B
#define L3_N_LINES_PER_TAG 1
#define L3_N_SIZE_KB_AMD 16384
/* TLB definitions: */
#define L1_DTLB_2M_ASSOC 1
#define L1_DTLB_2M_ENTRIES 255
#define L1_DTLB_4K_ASSOC 1
#define L1_DTLB_4K_ENTRIES 255
#define L1_ITLB_2M_ASSOC 1
#define L1_ITLB_2M_ENTRIES 255
#define L1_ITLB_4K_ASSOC 1
#define L1_ITLB_4K_ENTRIES 255
#define L2_DTLB_2M_ASSOC 0 /* disabled */
#define L2_DTLB_2M_ENTRIES 0 /* disabled */
#define L2_DTLB_4K_ASSOC 4
#define L2_DTLB_4K_ENTRIES 512
#define L2_ITLB_2M_ASSOC 0 /* disabled */
#define L2_ITLB_2M_ENTRIES 0 /* disabled */
#define L2_ITLB_4K_ASSOC 4
#define L2_ITLB_4K_ENTRIES 512
static void x86_cpu_vendor_words2str(char *dst, uint32_t vendor1,
uint32_t vendor2, uint32_t vendor3)
{
int i;
for (i = 0; i < 4; i++) {
dst[i] = vendor1 >> (8 * i);
dst[i + 4] = vendor2 >> (8 * i);
dst[i + 8] = vendor3 >> (8 * i);
}
dst[CPUID_VENDOR_SZ] = '\0';
}
#define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE)
#define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX | CPUID_APIC)
#define PENTIUM2_FEATURES (PENTIUM_FEATURES | CPUID_PAE | CPUID_SEP | \
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
CPUID_PSE36 | CPUID_FXSR)
#define PENTIUM3_FEATURES (PENTIUM2_FEATURES | CPUID_SSE)
#define PPRO_FEATURES (CPUID_FP87 | CPUID_DE | CPUID_PSE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_PGE | CPUID_CMOV | \
CPUID_PAT | CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | \
CPUID_PAE | CPUID_SEP | CPUID_APIC)
#define TCG_FEATURES (CPUID_FP87 | CPUID_PSE | CPUID_TSC | CPUID_MSR | \
CPUID_PAE | CPUID_MCE | CPUID_CX8 | CPUID_APIC | CPUID_SEP | \
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
CPUID_PSE36 | CPUID_CLFLUSH | CPUID_ACPI | CPUID_MMX | \
CPUID_FXSR | CPUID_SSE | CPUID_SSE2 | CPUID_SS | CPUID_DE)
/* partly implemented:
CPUID_MTRR, CPUID_MCA, CPUID_CLFLUSH (needed for Win64) */
/* missing:
CPUID_VME, CPUID_DTS, CPUID_SS, CPUID_HT, CPUID_TM, CPUID_PBE */
#define TCG_EXT_FEATURES (CPUID_EXT_SSE3 | CPUID_EXT_PCLMULQDQ | \
CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_CX16 | \
CPUID_EXT_SSE41 | CPUID_EXT_SSE42 | CPUID_EXT_POPCNT | \
CPUID_EXT_XSAVE | /* CPUID_EXT_OSXSAVE is dynamic */ \
CPUID_EXT_MOVBE | CPUID_EXT_AES | CPUID_EXT_HYPERVISOR)
/* missing:
CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_VMX, CPUID_EXT_SMX,
CPUID_EXT_EST, CPUID_EXT_TM2, CPUID_EXT_CID, CPUID_EXT_FMA,
CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_PCID, CPUID_EXT_DCA,
CPUID_EXT_X2APIC, CPUID_EXT_TSC_DEADLINE_TIMER, CPUID_EXT_AVX,
CPUID_EXT_F16C, CPUID_EXT_RDRAND */
#ifdef TARGET_X86_64
#define TCG_EXT2_X86_64_FEATURES (CPUID_EXT2_SYSCALL | CPUID_EXT2_LM)
#else
#define TCG_EXT2_X86_64_FEATURES 0
#endif
#define TCG_EXT2_FEATURES ((TCG_FEATURES & CPUID_EXT2_AMD_ALIASES) | \
CPUID_EXT2_NX | CPUID_EXT2_MMXEXT | CPUID_EXT2_RDTSCP | \
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_PDPE1GB | \
TCG_EXT2_X86_64_FEATURES)
#define TCG_EXT3_FEATURES (CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | \
CPUID_EXT3_CR8LEG | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A)
#define TCG_EXT4_FEATURES 0
#define TCG_SVM_FEATURES 0
#define TCG_KVM_FEATURES 0
#define TCG_7_0_EBX_FEATURES (CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_SMAP | \
CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ADX | \
CPUID_7_0_EBX_PCOMMIT | CPUID_7_0_EBX_CLFLUSHOPT | \
CPUID_7_0_EBX_CLWB | CPUID_7_0_EBX_MPX | CPUID_7_0_EBX_FSGSBASE | \
CPUID_7_0_EBX_ERMS)
/* missing:
CPUID_7_0_EBX_HLE, CPUID_7_0_EBX_AVX2,
CPUID_7_0_EBX_INVPCID, CPUID_7_0_EBX_RTM,
CPUID_7_0_EBX_RDSEED */
#define TCG_7_0_ECX_FEATURES (CPUID_7_0_ECX_PKU | CPUID_7_0_ECX_OSPKE | \
CPUID_7_0_ECX_LA57)
#define TCG_7_0_EDX_FEATURES 0
#define TCG_APM_FEATURES 0
#define TCG_6_EAX_FEATURES CPUID_6_EAX_ARAT
#define TCG_XSAVE_FEATURES (CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XGETBV1)
/* missing:
CPUID_XSAVE_XSAVEC, CPUID_XSAVE_XSAVES */
typedef struct FeatureWordInfo {
/* feature flags names are taken from "Intel Processor Identification and
* the CPUID Instruction" and AMD's "CPUID Specification".
* In cases of disagreement between feature naming conventions,
* aliases may be added.
*/
const char *feat_names[32];
uint32_t cpuid_eax; /* Input EAX for CPUID */
bool cpuid_needs_ecx; /* CPUID instruction uses ECX as input */
uint32_t cpuid_ecx; /* Input ECX value for CPUID */
int cpuid_reg; /* output register (R_* constant) */
uint32_t tcg_features; /* Feature flags supported by TCG */
uint32_t unmigratable_flags; /* Feature flags known to be unmigratable */
uint32_t migratable_flags; /* Feature flags known to be migratable */
} FeatureWordInfo;
static FeatureWordInfo feature_word_info[FEATURE_WORDS] = {
[FEAT_1_EDX] = {
.feat_names = {
"fpu", "vme", "de", "pse",
"tsc", "msr", "pae", "mce",
"cx8", "apic", NULL, "sep",
"mtrr", "pge", "mca", "cmov",
"pat", "pse36", "pn" /* Intel psn */, "clflush" /* Intel clfsh */,
NULL, "ds" /* Intel dts */, "acpi", "mmx",
"fxsr", "sse", "sse2", "ss",
"ht" /* Intel htt */, "tm", "ia64", "pbe",
},
.cpuid_eax = 1, .cpuid_reg = R_EDX,
.tcg_features = TCG_FEATURES,
},
[FEAT_1_ECX] = {
.feat_names = {
"pni" /* Intel,AMD sse3 */, "pclmulqdq", "dtes64", "monitor",
"ds-cpl", "vmx", "smx", "est",
"tm2", "ssse3", "cid", NULL,
"fma", "cx16", "xtpr", "pdcm",
NULL, "pcid", "dca", "sse4.1",
"sse4.2", "x2apic", "movbe", "popcnt",
"tsc-deadline", "aes", "xsave", "osxsave",
"avx", "f16c", "rdrand", "hypervisor",
},
.cpuid_eax = 1, .cpuid_reg = R_ECX,
.tcg_features = TCG_EXT_FEATURES,
},
/* Feature names that are already defined on feature_name[] but
* are set on CPUID[8000_0001].EDX on AMD CPUs don't have their
* names on feat_names below. They are copied automatically
* to features[FEAT_8000_0001_EDX] if and only if CPU vendor is AMD.
*/
[FEAT_8000_0001_EDX] = {
.feat_names = {
NULL /* fpu */, NULL /* vme */, NULL /* de */, NULL /* pse */,
NULL /* tsc */, NULL /* msr */, NULL /* pae */, NULL /* mce */,
NULL /* cx8 */, NULL /* apic */, NULL, "syscall",
NULL /* mtrr */, NULL /* pge */, NULL /* mca */, NULL /* cmov */,
NULL /* pat */, NULL /* pse36 */, NULL, NULL /* Linux mp */,
"nx", NULL, "mmxext", NULL /* mmx */,
NULL /* fxsr */, "fxsr-opt", "pdpe1gb", "rdtscp",
NULL, "lm", "3dnowext", "3dnow",
},
.cpuid_eax = 0x80000001, .cpuid_reg = R_EDX,
.tcg_features = TCG_EXT2_FEATURES,
},
[FEAT_8000_0001_ECX] = {
.feat_names = {
"lahf-lm", "cmp-legacy", "svm", "extapic",
"cr8legacy", "abm", "sse4a", "misalignsse",
"3dnowprefetch", "osvw", "ibs", "xop",
"skinit", "wdt", NULL, "lwp",
"fma4", "tce", NULL, "nodeid-msr",
NULL, "tbm", "topoext", "perfctr-core",
"perfctr-nb", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0x80000001, .cpuid_reg = R_ECX,
.tcg_features = TCG_EXT3_FEATURES,
},
[FEAT_C000_0001_EDX] = {
.feat_names = {
NULL, NULL, "xstore", "xstore-en",
NULL, NULL, "xcrypt", "xcrypt-en",
"ace2", "ace2-en", "phe", "phe-en",
"pmm", "pmm-en", NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0xC0000001, .cpuid_reg = R_EDX,
.tcg_features = TCG_EXT4_FEATURES,
},
[FEAT_KVM] = {
.feat_names = {
"kvmclock", "kvm-nopiodelay", "kvm-mmu", "kvmclock",
"kvm-asyncpf", "kvm-steal-time", "kvm-pv-eoi", "kvm-pv-unhalt",
NULL, "kvm-pv-tlb-flush", NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
"kvmclock-stable-bit", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = KVM_CPUID_FEATURES, .cpuid_reg = R_EAX,
.tcg_features = TCG_KVM_FEATURES,
},
[FEAT_HYPERV_EAX] = {
.feat_names = {
NULL /* hv_msr_vp_runtime_access */, NULL /* hv_msr_time_refcount_access */,
NULL /* hv_msr_synic_access */, NULL /* hv_msr_stimer_access */,
NULL /* hv_msr_apic_access */, NULL /* hv_msr_hypercall_access */,
NULL /* hv_vpindex_access */, NULL /* hv_msr_reset_access */,
NULL /* hv_msr_stats_access */, NULL /* hv_reftsc_access */,
NULL /* hv_msr_idle_access */, NULL /* hv_msr_frequency_access */,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0x40000003, .cpuid_reg = R_EAX,
},
[FEAT_HYPERV_EBX] = {
.feat_names = {
NULL /* hv_create_partitions */, NULL /* hv_access_partition_id */,
NULL /* hv_access_memory_pool */, NULL /* hv_adjust_message_buffers */,
NULL /* hv_post_messages */, NULL /* hv_signal_events */,
NULL /* hv_create_port */, NULL /* hv_connect_port */,
NULL /* hv_access_stats */, NULL, NULL, NULL /* hv_debugging */,
NULL /* hv_cpu_power_management */, NULL /* hv_configure_profiler */,
NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0x40000003, .cpuid_reg = R_EBX,
},
[FEAT_HYPERV_EDX] = {
.feat_names = {
NULL /* hv_mwait */, NULL /* hv_guest_debugging */,
NULL /* hv_perf_monitor */, NULL /* hv_cpu_dynamic_part */,
NULL /* hv_hypercall_params_xmm */, NULL /* hv_guest_idle_state */,
NULL, NULL,
NULL, NULL, NULL /* hv_guest_crash_msr */, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0x40000003, .cpuid_reg = R_EDX,
},
[FEAT_SVM] = {
.feat_names = {
"npt", "lbrv", "svm-lock", "nrip-save",
"tsc-scale", "vmcb-clean", "flushbyasid", "decodeassists",
NULL, NULL, "pause-filter", NULL,
"pfthreshold", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0x8000000A, .cpuid_reg = R_EDX,
.tcg_features = TCG_SVM_FEATURES,
},
[FEAT_7_0_EBX] = {
.feat_names = {
"fsgsbase", "tsc-adjust", NULL, "bmi1",
"hle", "avx2", NULL, "smep",
"bmi2", "erms", "invpcid", "rtm",
NULL, NULL, "mpx", NULL,
"avx512f", "avx512dq", "rdseed", "adx",
"smap", "avx512ifma", "pcommit", "clflushopt",
"clwb", NULL, "avx512pf", "avx512er",
"avx512cd", "sha-ni", "avx512bw", "avx512vl",
},
.cpuid_eax = 7,
.cpuid_needs_ecx = true, .cpuid_ecx = 0,
.cpuid_reg = R_EBX,
.tcg_features = TCG_7_0_EBX_FEATURES,
},
[FEAT_7_0_ECX] = {
.feat_names = {
NULL, "avx512vbmi", "umip", "pku",
"ospke", NULL, "avx512vbmi2", NULL,
"gfni", "vaes", "vpclmulqdq", "avx512vnni",
"avx512bitalg", NULL, "avx512-vpopcntdq", NULL,
"la57", NULL, NULL, NULL,
NULL, NULL, "rdpid", NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 7,
.cpuid_needs_ecx = true, .cpuid_ecx = 0,
.cpuid_reg = R_ECX,
.tcg_features = TCG_7_0_ECX_FEATURES,
},
[FEAT_7_0_EDX] = {
.feat_names = {
NULL, NULL, "avx512-4vnniw", "avx512-4fmaps",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, "spec-ctrl", NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 7,
.cpuid_needs_ecx = true, .cpuid_ecx = 0,
.cpuid_reg = R_EDX,
.tcg_features = TCG_7_0_EDX_FEATURES,
},
[FEAT_8000_0007_EDX] = {
.feat_names = {
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
"invtsc", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0x80000007,
.cpuid_reg = R_EDX,
.tcg_features = TCG_APM_FEATURES,
.unmigratable_flags = CPUID_APM_INVTSC,
},
[FEAT_8000_0008_EBX] = {
.feat_names = {
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
"ibpb", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0x80000008,
.cpuid_reg = R_EBX,
.tcg_features = 0,
.unmigratable_flags = 0,
},
[FEAT_XSAVE] = {
.feat_names = {
"xsaveopt", "xsavec", "xgetbv1", "xsaves",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0xd,
.cpuid_needs_ecx = true, .cpuid_ecx = 1,
.cpuid_reg = R_EAX,
.tcg_features = TCG_XSAVE_FEATURES,
},
[FEAT_6_EAX] = {
.feat_names = {
NULL, NULL, "arat", NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 6, .cpuid_reg = R_EAX,
.tcg_features = TCG_6_EAX_FEATURES,
},
[FEAT_XSAVE_COMP_LO] = {
.cpuid_eax = 0xD,
.cpuid_needs_ecx = true, .cpuid_ecx = 0,
.cpuid_reg = R_EAX,
.tcg_features = ~0U,
.migratable_flags = XSTATE_FP_MASK | XSTATE_SSE_MASK |
XSTATE_YMM_MASK | XSTATE_BNDREGS_MASK | XSTATE_BNDCSR_MASK |
XSTATE_OPMASK_MASK | XSTATE_ZMM_Hi256_MASK | XSTATE_Hi16_ZMM_MASK |
XSTATE_PKRU_MASK,
},
[FEAT_XSAVE_COMP_HI] = {
.cpuid_eax = 0xD,
.cpuid_needs_ecx = true, .cpuid_ecx = 0,
.cpuid_reg = R_EDX,
.tcg_features = ~0U,
},
};
typedef struct X86RegisterInfo32 {
/* Name of register */
const char *name;
/* QAPI enum value register */
X86CPURegister32 qapi_enum;
} X86RegisterInfo32;
#define REGISTER(reg) \
[R_##reg] = { .name = #reg, .qapi_enum = X86_CPU_REGISTER32_##reg }
static const X86RegisterInfo32 x86_reg_info_32[CPU_NB_REGS32] = {
REGISTER(EAX),
REGISTER(ECX),
REGISTER(EDX),
REGISTER(EBX),
REGISTER(ESP),
REGISTER(EBP),
REGISTER(ESI),
REGISTER(EDI),
};
#undef REGISTER
typedef struct ExtSaveArea {
uint32_t feature, bits;
uint32_t offset, size;
} ExtSaveArea;
static const ExtSaveArea x86_ext_save_areas[] = {
[XSTATE_FP_BIT] = {
/* x87 FP state component is always enabled if XSAVE is supported */
.feature = FEAT_1_ECX, .bits = CPUID_EXT_XSAVE,
/* x87 state is in the legacy region of the XSAVE area */
.offset = 0,
.size = sizeof(X86LegacyXSaveArea) + sizeof(X86XSaveHeader),
},
[XSTATE_SSE_BIT] = {
/* SSE state component is always enabled if XSAVE is supported */
.feature = FEAT_1_ECX, .bits = CPUID_EXT_XSAVE,
/* SSE state is in the legacy region of the XSAVE area */
.offset = 0,
.size = sizeof(X86LegacyXSaveArea) + sizeof(X86XSaveHeader),
},
[XSTATE_YMM_BIT] =
{ .feature = FEAT_1_ECX, .bits = CPUID_EXT_AVX,
.offset = offsetof(X86XSaveArea, avx_state),
.size = sizeof(XSaveAVX) },
[XSTATE_BNDREGS_BIT] =
{ .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_MPX,
.offset = offsetof(X86XSaveArea, bndreg_state),
.size = sizeof(XSaveBNDREG) },
[XSTATE_BNDCSR_BIT] =
{ .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_MPX,
.offset = offsetof(X86XSaveArea, bndcsr_state),
.size = sizeof(XSaveBNDCSR) },
[XSTATE_OPMASK_BIT] =
{ .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
.offset = offsetof(X86XSaveArea, opmask_state),
.size = sizeof(XSaveOpmask) },
[XSTATE_ZMM_Hi256_BIT] =
{ .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
.offset = offsetof(X86XSaveArea, zmm_hi256_state),
.size = sizeof(XSaveZMM_Hi256) },
[XSTATE_Hi16_ZMM_BIT] =
{ .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
.offset = offsetof(X86XSaveArea, hi16_zmm_state),
.size = sizeof(XSaveHi16_ZMM) },
[XSTATE_PKRU_BIT] =
{ .feature = FEAT_7_0_ECX, .bits = CPUID_7_0_ECX_PKU,
.offset = offsetof(X86XSaveArea, pkru_state),
.size = sizeof(XSavePKRU) },
};
static uint32_t xsave_area_size(uint64_t mask)
{
int i;
uint64_t ret = 0;
for (i = 0; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
const ExtSaveArea *esa = &x86_ext_save_areas[i];
if ((mask >> i) & 1) {
ret = MAX(ret, esa->offset + esa->size);
}
}
return ret;
}
static inline bool accel_uses_host_cpuid(void)
{
return kvm_enabled() || hvf_enabled();
}
static inline uint64_t x86_cpu_xsave_components(X86CPU *cpu)
{
return ((uint64_t)cpu->env.features[FEAT_XSAVE_COMP_HI]) << 32 |
cpu->env.features[FEAT_XSAVE_COMP_LO];
}
const char *get_register_name_32(unsigned int reg)
{
if (reg >= CPU_NB_REGS32) {
return NULL;
}
return x86_reg_info_32[reg].name;
}
/*
* Returns the set of feature flags that are supported and migratable by
* QEMU, for a given FeatureWord.
*/
static uint32_t x86_cpu_get_migratable_flags(FeatureWord w)
{
FeatureWordInfo *wi = &feature_word_info[w];
uint32_t r = 0;
int i;
for (i = 0; i < 32; i++) {
uint32_t f = 1U << i;
/* If the feature name is known, it is implicitly considered migratable,
* unless it is explicitly set in unmigratable_flags */
if ((wi->migratable_flags & f) ||
(wi->feat_names[i] && !(wi->unmigratable_flags & f))) {
r |= f;
}
}
return r;
}
void host_cpuid(uint32_t function, uint32_t count,
uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
uint32_t vec[4];
#ifdef __x86_64__
asm volatile("cpuid"
: "=a"(vec[0]), "=b"(vec[1]),
"=c"(vec[2]), "=d"(vec[3])
: "0"(function), "c"(count) : "cc");
#elif defined(__i386__)
asm volatile("pusha \n\t"
"cpuid \n\t"
"mov %%eax, 0(%2) \n\t"
"mov %%ebx, 4(%2) \n\t"
"mov %%ecx, 8(%2) \n\t"
"mov %%edx, 12(%2) \n\t"
"popa"
: : "a"(function), "c"(count), "S"(vec)
: "memory", "cc");
#else
abort();
#endif
if (eax)
*eax = vec[0];
if (ebx)
*ebx = vec[1];
if (ecx)
*ecx = vec[2];
if (edx)
*edx = vec[3];
}
void host_vendor_fms(char *vendor, int *family, int *model, int *stepping)
{
uint32_t eax, ebx, ecx, edx;
host_cpuid(0x0, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_vendor_words2str(vendor, ebx, edx, ecx);
host_cpuid(0x1, 0, &eax, &ebx, &ecx, &edx);
if (family) {
*family = ((eax >> 8) & 0x0F) + ((eax >> 20) & 0xFF);
}
if (model) {
*model = ((eax >> 4) & 0x0F) | ((eax & 0xF0000) >> 12);
}
if (stepping) {
*stepping = eax & 0x0F;
}
}
/* CPU class name definitions: */
/* Return type name for a given CPU model name
* Caller is responsible for freeing the returned string.
*/
static char *x86_cpu_type_name(const char *model_name)
{
return g_strdup_printf(X86_CPU_TYPE_NAME("%s"), model_name);
}
static ObjectClass *x86_cpu_class_by_name(const char *cpu_model)
{
ObjectClass *oc;
char *typename;
if (cpu_model == NULL) {
return NULL;
}
typename = x86_cpu_type_name(cpu_model);
oc = object_class_by_name(typename);
g_free(typename);
return oc;
}
static char *x86_cpu_class_get_model_name(X86CPUClass *cc)
{
const char *class_name = object_class_get_name(OBJECT_CLASS(cc));
assert(g_str_has_suffix(class_name, X86_CPU_TYPE_SUFFIX));
return g_strndup(class_name,
strlen(class_name) - strlen(X86_CPU_TYPE_SUFFIX));
}
struct X86CPUDefinition {
const char *name;
uint32_t level;
uint32_t xlevel;
/* vendor is zero-terminated, 12 character ASCII string */
char vendor[CPUID_VENDOR_SZ + 1];
int family;
int model;
int stepping;
FeatureWordArray features;
const char *model_id;
};
static X86CPUDefinition builtin_x86_defs[] = {
{
.name = "qemu64",
.level = 0xd,
.vendor = CPUID_VENDOR_AMD,
.family = 6,
.model = 6,
.stepping = 3,
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_CX16,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM,
.xlevel = 0x8000000A,
.model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION,
},
{
.name = "phenom",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 16,
.model = 2,
.stepping = 3,
/* Missing: CPUID_HT */
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36 | CPUID_VME,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_CX16 |
CPUID_EXT_POPCNT,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX |
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_MMXEXT |
CPUID_EXT2_FFXSR | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP,
/* Missing: CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS */
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM |
CPUID_EXT3_ABM | CPUID_EXT3_SSE4A,
/* Missing: CPUID_SVM_LBRV */
.features[FEAT_SVM] =
CPUID_SVM_NPT,
.xlevel = 0x8000001A,
.model_id = "AMD Phenom(tm) 9550 Quad-Core Processor"
},
{
.name = "core2duo",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 15,
.stepping = 11,
/* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36 | CPUID_VME | CPUID_ACPI | CPUID_SS,
/* Missing: CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_EST,
* CPUID_EXT_TM2, CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_VMX */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
CPUID_EXT_CX16,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz",
},
{
.name = "kvm64",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 15,
.model = 6,
.stepping = 1,
/* Missing: CPUID_HT */
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
/* Missing: CPUID_EXT_POPCNT, CPUID_EXT_MONITOR */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_CX16,
/* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
/* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS, CPUID_EXT3_SVM */
.features[FEAT_8000_0001_ECX] =
0,
.xlevel = 0x80000008,
.model_id = "Common KVM processor"
},
{
.name = "qemu32",
.level = 4,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 6,
.stepping = 3,
.features[FEAT_1_EDX] =
PPRO_FEATURES,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3,
.xlevel = 0x80000004,
.model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION,
},
{
.name = "kvm32",
.level = 5,
.vendor = CPUID_VENDOR_INTEL,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_ECX] =
0,
.xlevel = 0x80000008,
.model_id = "Common 32-bit KVM processor"
},
{
.name = "coreduo",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 14,
.stepping = 8,
/* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_ACPI |
CPUID_SS,
/* Missing: CPUID_EXT_EST, CPUID_EXT_TM2 , CPUID_EXT_XTPR,
* CPUID_EXT_PDCM, CPUID_EXT_VMX */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_NX,
.xlevel = 0x80000008,
.model_id = "Genuine Intel(R) CPU T2600 @ 2.16GHz",
},
{
.name = "486",
.level = 1,
.vendor = CPUID_VENDOR_INTEL,
.family = 4,
.model = 8,
.stepping = 0,
.features[FEAT_1_EDX] =
I486_FEATURES,
.xlevel = 0,
.model_id = "",
},
{
.name = "pentium",
.level = 1,
.vendor = CPUID_VENDOR_INTEL,
.family = 5,
.model = 4,
.stepping = 3,
.features[FEAT_1_EDX] =
PENTIUM_FEATURES,
.xlevel = 0,
.model_id = "",
},
{
.name = "pentium2",
.level = 2,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 5,
.stepping = 2,
.features[FEAT_1_EDX] =
PENTIUM2_FEATURES,
.xlevel = 0,
.model_id = "",
},
{
.name = "pentium3",
.level = 3,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 7,
.stepping = 3,
.features[FEAT_1_EDX] =
PENTIUM3_FEATURES,
.xlevel = 0,
.model_id = "",
},
{
.name = "athlon",
.level = 2,
.vendor = CPUID_VENDOR_AMD,
.family = 6,
.model = 2,
.stepping = 3,
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_PSE36 | CPUID_VME | CPUID_MTRR |
CPUID_MCA,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_MMXEXT | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT,
.xlevel = 0x80000008,
.model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION,
},
{
.name = "n270",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 28,
.stepping = 2,
/* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_VME |
CPUID_ACPI | CPUID_SS,
/* Some CPUs got no CPUID_SEP */
/* Missing: CPUID_EXT_DSCPL, CPUID_EXT_EST, CPUID_EXT_TM2,
* CPUID_EXT_XTPR */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
CPUID_EXT_MOVBE,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel(R) Atom(TM) CPU N270 @ 1.60GHz",
},
{
.name = "Conroe",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 15,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel Celeron_4x0 (Conroe/Merom Class Core 2)",
},
{
.name = "Penryn",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 23,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel Core 2 Duo P9xxx (Penryn Class Core 2)",
},
{
.name = "Nehalem",
.level = 11,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 26,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel Core i7 9xx (Nehalem Class Core i7)",
},
{
.name = "Nehalem-IBRS",
.level = 11,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 26,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
.features[FEAT_7_0_EDX] =
CPUID_7_0_EDX_SPEC_CTRL,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel Core i7 9xx (Nehalem Core i7, IBRS update)",
},
{
.name = "Westmere",
.level = 11,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 44,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Westmere E56xx/L56xx/X56xx (Nehalem-C)",
},
{
.name = "Westmere-IBRS",
.level = 11,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 44,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_7_0_EDX] =
CPUID_7_0_EDX_SPEC_CTRL,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Westmere E56xx/L56xx/X56xx (IBRS update)",
},
{
.name = "SandyBridge",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 42,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Xeon E312xx (Sandy Bridge)",
},
{
.name = "SandyBridge-IBRS",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 42,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_7_0_EDX] =
CPUID_7_0_EDX_SPEC_CTRL,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Xeon E312xx (Sandy Bridge, IBRS update)",
},
{
.name = "IvyBridge",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 58,
.stepping = 9,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3 | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_ERMS,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Xeon E3-12xx v2 (Ivy Bridge)",
},
{
.name = "IvyBridge-IBRS",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 58,
.stepping = 9,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3 | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_ERMS,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_7_0_EDX] =
CPUID_7_0_EDX_SPEC_CTRL,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Xeon E3-12xx v2 (Ivy Bridge, IBRS)",
},
{
.name = "Haswell-noTSX",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 60,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Haswell, no TSX)",
},
{
.name = "Haswell-noTSX-IBRS",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 60,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
.features[FEAT_7_0_EDX] =
CPUID_7_0_EDX_SPEC_CTRL,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Haswell, no TSX, IBRS)",
},
{
.name = "Haswell",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 60,
.stepping = 4,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Haswell)",
},
{
.name = "Haswell-IBRS",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 60,
.stepping = 4,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
.features[FEAT_7_0_EDX] =
CPUID_7_0_EDX_SPEC_CTRL,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Haswell, IBRS)",
},
{
.name = "Broadwell-noTSX",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 61,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Broadwell, no TSX)",
},
{
.name = "Broadwell-noTSX-IBRS",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 61,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EDX] =
CPUID_7_0_EDX_SPEC_CTRL,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Broadwell, no TSX, IBRS)",
},
{
.name = "Broadwell",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 61,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Broadwell)",
},
{
.name = "Broadwell-IBRS",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 61,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EDX] =
CPUID_7_0_EDX_SPEC_CTRL,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Broadwell, IBRS)",
},
{
.name = "Skylake-Client",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 94,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_MPX,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component,
* and the only one defined in Skylake (processor tracing)
* probably will block migration anyway.
*/
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Skylake)",
},
{
.name = "Skylake-Client-IBRS",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 94,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EDX] =
CPUID_7_0_EDX_SPEC_CTRL,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_MPX,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component,
* and the only one defined in Skylake (processor tracing)
* probably will block migration anyway.
*/
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Skylake, IBRS)",
},
{
.name = "Skylake-Server",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 85,
.stepping = 4,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_MPX | CPUID_7_0_EBX_CLWB |
CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ |
CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD |
CPUID_7_0_EBX_AVX512VL | CPUID_7_0_EBX_CLFLUSHOPT,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component,
* and the only one defined in Skylake (processor tracing)
* probably will block migration anyway.
*/
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Xeon Processor (Skylake)",
},
{
.name = "Skylake-Server-IBRS",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 85,
.stepping = 4,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EDX] =
CPUID_7_0_EDX_SPEC_CTRL,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_MPX | CPUID_7_0_EBX_CLWB |
CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ |
CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD |
CPUID_7_0_EBX_AVX512VL,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component,
* and the only one defined in Skylake (processor tracing)
* probably will block migration anyway.
*/
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Xeon Processor (Skylake, IBRS)",
},
{
.name = "Opteron_G1",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.xlevel = 0x80000008,
.model_id = "AMD Opteron 240 (Gen 1 Class Opteron)",
},
{
.name = "Opteron_G2",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_CX16 | CPUID_EXT_SSE3,
/* Missing: CPUID_EXT2_RDTSCP */
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "AMD Opteron 22xx (Gen 2 Class Opteron)",
},
{
.name = "Opteron_G3",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 16,
.model = 2,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_POPCNT | CPUID_EXT_CX16 | CPUID_EXT_MONITOR |
CPUID_EXT_SSE3,
/* Missing: CPUID_EXT2_RDTSCP */
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A |
CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "AMD Opteron 23xx (Gen 3 Class Opteron)",
},
{
.name = "Opteron_G4",
.level = 0xd,
.vendor = CPUID_VENDOR_AMD,
.family = 21,
.model = 1,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3,
/* Missing: CPUID_EXT2_RDTSCP */
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_FMA4 | CPUID_EXT3_XOP |
CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
CPUID_EXT3_LAHF_LM,
/* no xsaveopt! */
.xlevel = 0x8000001A,
.model_id = "AMD Opteron 62xx class CPU",
},
{
.name = "Opteron_G5",
.level = 0xd,
.vendor = CPUID_VENDOR_AMD,
.family = 21,
.model = 2,
.stepping = 0,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_F16C | CPUID_EXT_AVX | CPUID_EXT_XSAVE |
CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_FMA |
CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
/* Missing: CPUID_EXT2_RDTSCP */
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_TBM | CPUID_EXT3_FMA4 | CPUID_EXT3_XOP |
CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
CPUID_EXT3_LAHF_LM,
/* no xsaveopt! */
.xlevel = 0x8000001A,
.model_id = "AMD Opteron 63xx class CPU",
},
{
.name = "EPYC",
.level = 0xd,
.vendor = CPUID_VENDOR_AMD,
.family = 23,
.model = 1,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH |
CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE |
CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE |
CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE |
CPUID_VME | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_RDRAND | CPUID_EXT_F16C | CPUID_EXT_AVX |
CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT |
CPUID_EXT_MOVBE | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 |
CPUID_EXT_MONITOR | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB |
CPUID_EXT2_FFXSR | CPUID_EXT2_MMXEXT | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_OSVW | CPUID_EXT3_3DNOWPREFETCH |
CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM |
CPUID_EXT3_CR8LEG | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 |
CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_RDSEED |
CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLFLUSHOPT |
CPUID_7_0_EBX_SHA_NI,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component.
*/
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x8000000A,
.model_id = "AMD EPYC Processor",
},
{
.name = "EPYC-IBPB",
.level = 0xd,
.vendor = CPUID_VENDOR_AMD,
.family = 23,
.model = 1,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH |
CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE |
CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE |
CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE |
CPUID_VME | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_RDRAND | CPUID_EXT_F16C | CPUID_EXT_AVX |
CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT |
CPUID_EXT_MOVBE | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 |
CPUID_EXT_MONITOR | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB |
CPUID_EXT2_FFXSR | CPUID_EXT2_MMXEXT | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_OSVW | CPUID_EXT3_3DNOWPREFETCH |
CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM |
CPUID_EXT3_CR8LEG | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
.features[FEAT_8000_0008_EBX] =
CPUID_8000_0008_EBX_IBPB,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 |
CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_RDSEED |
CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLFLUSHOPT |
CPUID_7_0_EBX_SHA_NI,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component.
*/
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x8000000A,
.model_id = "AMD EPYC Processor (with IBPB)",
},
};
typedef struct PropValue {
const char *prop, *value;
} PropValue;
/* KVM-specific features that are automatically added/removed
* from all CPU models when KVM is enabled.
*/
static PropValue kvm_default_props[] = {
{ "kvmclock", "on" },
{ "kvm-nopiodelay", "on" },
{ "kvm-asyncpf", "on" },
{ "kvm-steal-time", "on" },
{ "kvm-pv-eoi", "on" },
{ "kvmclock-stable-bit", "on" },
{ "x2apic", "on" },
{ "acpi", "off" },
{ "monitor", "off" },
{ "svm", "off" },
{ NULL, NULL },
};
/* TCG-specific defaults that override all CPU models when using TCG
*/
static PropValue tcg_default_props[] = {
{ "vme", "off" },
{ NULL, NULL },
};
void x86_cpu_change_kvm_default(const char *prop, const char *value)
{
PropValue *pv;
for (pv = kvm_default_props; pv->prop; pv++) {
if (!strcmp(pv->prop, prop)) {
pv->value = value;
break;
}
}
/* It is valid to call this function only for properties that
* are already present in the kvm_default_props table.
*/
assert(pv->prop);
}
static uint32_t x86_cpu_get_supported_feature_word(FeatureWord w,
bool migratable_only);
static bool lmce_supported(void)
{
uint64_t mce_cap = 0;
#ifdef CONFIG_KVM
if (kvm_ioctl(kvm_state, KVM_X86_GET_MCE_CAP_SUPPORTED, &mce_cap) < 0) {
return false;
}
#endif
return !!(mce_cap & MCG_LMCE_P);
}
#define CPUID_MODEL_ID_SZ 48
/**
* cpu_x86_fill_model_id:
* Get CPUID model ID string from host CPU.
*
* @str should have at least CPUID_MODEL_ID_SZ bytes
*
* The function does NOT add a null terminator to the string
* automatically.
*/
static int cpu_x86_fill_model_id(char *str)
{
uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
int i;
for (i = 0; i < 3; i++) {
host_cpuid(0x80000002 + i, 0, &eax, &ebx, &ecx, &edx);
memcpy(str + i * 16 + 0, &eax, 4);
memcpy(str + i * 16 + 4, &ebx, 4);
memcpy(str + i * 16 + 8, &ecx, 4);
memcpy(str + i * 16 + 12, &edx, 4);
}
return 0;
}
static Property max_x86_cpu_properties[] = {
DEFINE_PROP_BOOL("migratable", X86CPU, migratable, true),
DEFINE_PROP_BOOL("host-cache-info", X86CPU, cache_info_passthrough, false),
DEFINE_PROP_END_OF_LIST()
};
static void max_x86_cpu_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
X86CPUClass *xcc = X86_CPU_CLASS(oc);
xcc->ordering = 9;
xcc->model_description =
"Enables all features supported by the accelerator in the current host";
dc->props = max_x86_cpu_properties;
}
static void x86_cpu_load_def(X86CPU *cpu, X86CPUDefinition *def, Error **errp);
static void max_x86_cpu_initfn(Object *obj)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
KVMState *s = kvm_state;
/* We can't fill the features array here because we don't know yet if
* "migratable" is true or false.
*/
cpu->max_features = true;
if (accel_uses_host_cpuid()) {
char vendor[CPUID_VENDOR_SZ + 1] = { 0 };
char model_id[CPUID_MODEL_ID_SZ + 1] = { 0 };
int family, model, stepping;
X86CPUDefinition host_cpudef = { };
uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
host_cpuid(0x0, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_vendor_words2str(host_cpudef.vendor, ebx, edx, ecx);
host_vendor_fms(vendor, &family, &model, &stepping);
cpu_x86_fill_model_id(model_id);
object_property_set_str(OBJECT(cpu), vendor, "vendor", &error_abort);
object_property_set_int(OBJECT(cpu), family, "family", &error_abort);
object_property_set_int(OBJECT(cpu), model, "model", &error_abort);
object_property_set_int(OBJECT(cpu), stepping, "stepping",
&error_abort);
object_property_set_str(OBJECT(cpu), model_id, "model-id",
&error_abort);
if (kvm_enabled()) {
env->cpuid_min_level =
kvm_arch_get_supported_cpuid(s, 0x0, 0, R_EAX);
env->cpuid_min_xlevel =
kvm_arch_get_supported_cpuid(s, 0x80000000, 0, R_EAX);
env->cpuid_min_xlevel2 =
kvm_arch_get_supported_cpuid(s, 0xC0000000, 0, R_EAX);
} else {
env->cpuid_min_level =
hvf_get_supported_cpuid(0x0, 0, R_EAX);
env->cpuid_min_xlevel =
hvf_get_supported_cpuid(0x80000000, 0, R_EAX);
env->cpuid_min_xlevel2 =
hvf_get_supported_cpuid(0xC0000000, 0, R_EAX);
}
if (lmce_supported()) {
object_property_set_bool(OBJECT(cpu), true, "lmce", &error_abort);
}
} else {
object_property_set_str(OBJECT(cpu), CPUID_VENDOR_AMD,
"vendor", &error_abort);
object_property_set_int(OBJECT(cpu), 6, "family", &error_abort);
object_property_set_int(OBJECT(cpu), 6, "model", &error_abort);
object_property_set_int(OBJECT(cpu), 3, "stepping", &error_abort);
object_property_set_str(OBJECT(cpu),
"QEMU TCG CPU version " QEMU_HW_VERSION,
"model-id", &error_abort);
}
object_property_set_bool(OBJECT(cpu), true, "pmu", &error_abort);
}
static const TypeInfo max_x86_cpu_type_info = {
.name = X86_CPU_TYPE_NAME("max"),
.parent = TYPE_X86_CPU,
.instance_init = max_x86_cpu_initfn,
.class_init = max_x86_cpu_class_init,
};
#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
static void host_x86_cpu_class_init(ObjectClass *oc, void *data)
{
X86CPUClass *xcc = X86_CPU_CLASS(oc);
xcc->host_cpuid_required = true;
xcc->ordering = 8;
if (kvm_enabled()) {
xcc->model_description =
"KVM processor with all supported host features ";
} else if (hvf_enabled()) {
xcc->model_description =
"HVF processor with all supported host features ";
}
}
static const TypeInfo host_x86_cpu_type_info = {
.name = X86_CPU_TYPE_NAME("host"),
.parent = X86_CPU_TYPE_NAME("max"),
.class_init = host_x86_cpu_class_init,
};
#endif
static void report_unavailable_features(FeatureWord w, uint32_t mask)
{
FeatureWordInfo *f = &feature_word_info[w];
int i;
for (i = 0; i < 32; ++i) {
if ((1UL << i) & mask) {
const char *reg = get_register_name_32(f->cpuid_reg);
assert(reg);
warn_report("%s doesn't support requested feature: "
"CPUID.%02XH:%s%s%s [bit %d]",
accel_uses_host_cpuid() ? "host" : "TCG",
f->cpuid_eax, reg,
f->feat_names[i] ? "." : "",
f->feat_names[i] ? f->feat_names[i] : "", i);
}
}
}
static void x86_cpuid_version_get_family(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = (env->cpuid_version >> 8) & 0xf;
if (value == 0xf) {
value += (env->cpuid_version >> 20) & 0xff;
}
visit_type_int(v, name, &value, errp);
}
static void x86_cpuid_version_set_family(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xff + 0xf;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xff00f00;
if (value > 0x0f) {
env->cpuid_version |= 0xf00 | ((value - 0x0f) << 20);
} else {
env->cpuid_version |= value << 8;
}
}
static void x86_cpuid_version_get_model(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = (env->cpuid_version >> 4) & 0xf;
value |= ((env->cpuid_version >> 16) & 0xf) << 4;
visit_type_int(v, name, &value, errp);
}
static void x86_cpuid_version_set_model(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xff;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xf00f0;
env->cpuid_version |= ((value & 0xf) << 4) | ((value >> 4) << 16);
}
static void x86_cpuid_version_get_stepping(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = env->cpuid_version & 0xf;
visit_type_int(v, name, &value, errp);
}
static void x86_cpuid_version_set_stepping(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xf;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xf;
env->cpuid_version |= value & 0xf;
}
static char *x86_cpuid_get_vendor(Object *obj, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
char *value;
value = g_malloc(CPUID_VENDOR_SZ + 1);
x86_cpu_vendor_words2str(value, env->cpuid_vendor1, env->cpuid_vendor2,
env->cpuid_vendor3);
return value;
}
static void x86_cpuid_set_vendor(Object *obj, const char *value,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int i;
if (strlen(value) != CPUID_VENDOR_SZ) {
error_setg(errp, QERR_PROPERTY_VALUE_BAD, "", "vendor", value);
return;
}
env->cpuid_vendor1 = 0;
env->cpuid_vendor2 = 0;
env->cpuid_vendor3 = 0;
for (i = 0; i < 4; i++) {
env->cpuid_vendor1 |= ((uint8_t)value[i ]) << (8 * i);
env->cpuid_vendor2 |= ((uint8_t)value[i + 4]) << (8 * i);
env->cpuid_vendor3 |= ((uint8_t)value[i + 8]) << (8 * i);
}
}
static char *x86_cpuid_get_model_id(Object *obj, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
char *value;
int i;
value = g_malloc(48 + 1);
for (i = 0; i < 48; i++) {
value[i] = env->cpuid_model[i >> 2] >> (8 * (i & 3));
}
value[48] = '\0';
return value;
}
static void x86_cpuid_set_model_id(Object *obj, const char *model_id,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int c, len, i;
if (model_id == NULL) {
model_id = "";
}
len = strlen(model_id);
memset(env->cpuid_model, 0, 48);
for (i = 0; i < 48; i++) {
if (i >= len) {
c = '\0';
} else {
c = (uint8_t)model_id[i];
}
env->cpuid_model[i >> 2] |= c << (8 * (i & 3));
}
}
static void x86_cpuid_get_tsc_freq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
int64_t value;
value = cpu->env.tsc_khz * 1000;
visit_type_int(v, name, &value, errp);
}
static void x86_cpuid_set_tsc_freq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
const int64_t min = 0;
const int64_t max = INT64_MAX;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
cpu->env.tsc_khz = cpu->env.user_tsc_khz = value / 1000;
}
/* Generic getter for "feature-words" and "filtered-features" properties */
static void x86_cpu_get_feature_words(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
uint32_t *array = (uint32_t *)opaque;
FeatureWord w;
X86CPUFeatureWordInfo word_infos[FEATURE_WORDS] = { };
X86CPUFeatureWordInfoList list_entries[FEATURE_WORDS] = { };
X86CPUFeatureWordInfoList *list = NULL;
for (w = 0; w < FEATURE_WORDS; w++) {
FeatureWordInfo *wi = &feature_word_info[w];
X86CPUFeatureWordInfo *qwi = &word_infos[w];
qwi->cpuid_input_eax = wi->cpuid_eax;
qwi->has_cpuid_input_ecx = wi->cpuid_needs_ecx;
qwi->cpuid_input_ecx = wi->cpuid_ecx;
qwi->cpuid_register = x86_reg_info_32[wi->cpuid_reg].qapi_enum;
qwi->features = array[w];
/* List will be in reverse order, but order shouldn't matter */
list_entries[w].next = list;
list_entries[w].value = &word_infos[w];
list = &list_entries[w];
}
visit_type_X86CPUFeatureWordInfoList(v, "feature-words", &list, errp);
}
static void x86_get_hv_spinlocks(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
int64_t value = cpu->hyperv_spinlock_attempts;
visit_type_int(v, name, &value, errp);
}
static void x86_set_hv_spinlocks(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
const int64_t min = 0xFFF;
const int64_t max = UINT_MAX;
X86CPU *cpu = X86_CPU(obj);
Error *err = NULL;
int64_t value;
visit_type_int(v, name, &value, &err);
if (err) {
error_propagate(errp, err);
return;
}
if (value < min || value > max) {
error_setg(errp, "Property %s.%s doesn't take value %" PRId64
" (minimum: %" PRId64 ", maximum: %" PRId64 ")",
object_get_typename(obj), name ? name : "null",
value, min, max);
return;
}
cpu->hyperv_spinlock_attempts = value;
}
static const PropertyInfo qdev_prop_spinlocks = {
.name = "int",
.get = x86_get_hv_spinlocks,
.set = x86_set_hv_spinlocks,
};
/* Convert all '_' in a feature string option name to '-', to make feature
* name conform to QOM property naming rule, which uses '-' instead of '_'.
*/
static inline void feat2prop(char *s)
{
while ((s = strchr(s, '_'))) {
*s = '-';
}
}
/* Return the feature property name for a feature flag bit */
static const char *x86_cpu_feature_name(FeatureWord w, int bitnr)
{
/* XSAVE components are automatically enabled by other features,
* so return the original feature name instead
*/
if (w == FEAT_XSAVE_COMP_LO || w == FEAT_XSAVE_COMP_HI) {
int comp = (w == FEAT_XSAVE_COMP_HI) ? bitnr + 32 : bitnr;
if (comp < ARRAY_SIZE(x86_ext_save_areas) &&
x86_ext_save_areas[comp].bits) {
w = x86_ext_save_areas[comp].feature;
bitnr = ctz32(x86_ext_save_areas[comp].bits);
}
}
assert(bitnr < 32);
assert(w < FEATURE_WORDS);
return feature_word_info[w].feat_names[bitnr];
}
/* Compatibily hack to maintain legacy +-feat semantic,
* where +-feat overwrites any feature set by
* feat=on|feat even if the later is parsed after +-feat
* (i.e. "-x2apic,x2apic=on" will result in x2apic disabled)
*/
static GList *plus_features, *minus_features;
static gint compare_string(gconstpointer a, gconstpointer b)
{
return g_strcmp0(a, b);
}
/* Parse "+feature,-feature,feature=foo" CPU feature string
*/
static void x86_cpu_parse_featurestr(const char *typename, char *features,
Error **errp)
{
char *featurestr; /* Single 'key=value" string being parsed */
static bool cpu_globals_initialized;
bool ambiguous = false;
if (cpu_globals_initialized) {
return;
}
cpu_globals_initialized = true;
if (!features) {
return;
}
for (featurestr = strtok(features, ",");
featurestr;
featurestr = strtok(NULL, ",")) {
const char *name;
const char *val = NULL;
char *eq = NULL;
char num[32];
GlobalProperty *prop;
/* Compatibility syntax: */
if (featurestr[0] == '+') {
plus_features = g_list_append(plus_features,
g_strdup(featurestr + 1));
continue;
} else if (featurestr[0] == '-') {
minus_features = g_list_append(minus_features,
g_strdup(featurestr + 1));
continue;
}
eq = strchr(featurestr, '=');
if (eq) {
*eq++ = 0;
val = eq;
} else {
val = "on";
}
feat2prop(featurestr);
name = featurestr;
if (g_list_find_custom(plus_features, name, compare_string)) {
warn_report("Ambiguous CPU model string. "
"Don't mix both \"+%s\" and \"%s=%s\"",
name, name, val);
ambiguous = true;
}
if (g_list_find_custom(minus_features, name, compare_string)) {
warn_report("Ambiguous CPU model string. "
"Don't mix both \"-%s\" and \"%s=%s\"",
name, name, val);
ambiguous = true;
}
/* Special case: */
if (!strcmp(name, "tsc-freq")) {
int ret;
uint64_t tsc_freq;
ret = qemu_strtosz_metric(val, NULL, &tsc_freq);
if (ret < 0 || tsc_freq > INT64_MAX) {
error_setg(errp, "bad numerical value %s", val);
return;
}
snprintf(num, sizeof(num), "%" PRId64, tsc_freq);
val = num;
name = "tsc-frequency";
}
prop = g_new0(typeof(*prop), 1);
prop->driver = typename;
prop->property = g_strdup(name);
prop->value = g_strdup(val);
prop->errp = &error_fatal;
qdev_prop_register_global(prop);
}
if (ambiguous) {
warn_report("Compatibility of ambiguous CPU model "
"strings won't be kept on future QEMU versions");
}
}
static void x86_cpu_expand_features(X86CPU *cpu, Error **errp);
static int x86_cpu_filter_features(X86CPU *cpu);
/* Check for missing features that may prevent the CPU class from
* running using the current machine and accelerator.
*/
static void x86_cpu_class_check_missing_features(X86CPUClass *xcc,
strList **missing_feats)
{
X86CPU *xc;
FeatureWord w;
Error *err = NULL;
strList **next = missing_feats;
if (xcc->host_cpuid_required && !accel_uses_host_cpuid()) {
strList *new = g_new0(strList, 1);
new->value = g_strdup("kvm");
*missing_feats = new;
return;
}
xc = X86_CPU(object_new(object_class_get_name(OBJECT_CLASS(xcc))));
x86_cpu_expand_features(xc, &err);
if (err) {
/* Errors at x86_cpu_expand_features should never happen,
* but in case it does, just report the model as not
* runnable at all using the "type" property.
*/
strList *new = g_new0(strList, 1);
new->value = g_strdup("type");
*next = new;
next = &new->next;
}
x86_cpu_filter_features(xc);
for (w = 0; w < FEATURE_WORDS; w++) {
uint32_t filtered = xc->filtered_features[w];
int i;
for (i = 0; i < 32; i++) {
if (filtered & (1UL << i)) {
strList *new = g_new0(strList, 1);
new->value = g_strdup(x86_cpu_feature_name(w, i));
*next = new;
next = &new->next;
}
}
}
object_unref(OBJECT(xc));
}
/* Print all cpuid feature names in featureset
*/
static void listflags(FILE *f, fprintf_function print, const char **featureset)
{
int bit;
bool first = true;
for (bit = 0; bit < 32; bit++) {
if (featureset[bit]) {
print(f, "%s%s", first ? "" : " ", featureset[bit]);
first = false;
}
}
}
/* Sort alphabetically by type name, respecting X86CPUClass::ordering. */
static gint x86_cpu_list_compare(gconstpointer a, gconstpointer b)
{
ObjectClass *class_a = (ObjectClass *)a;
ObjectClass *class_b = (ObjectClass *)b;
X86CPUClass *cc_a = X86_CPU_CLASS(class_a);
X86CPUClass *cc_b = X86_CPU_CLASS(class_b);
const char *name_a, *name_b;
if (cc_a->ordering != cc_b->ordering) {
return cc_a->ordering - cc_b->ordering;
} else {
name_a = object_class_get_name(class_a);
name_b = object_class_get_name(class_b);
return strcmp(name_a, name_b);
}
}
static GSList *get_sorted_cpu_model_list(void)
{
GSList *list = object_class_get_list(TYPE_X86_CPU, false);
list = g_slist_sort(list, x86_cpu_list_compare);
return list;
}
static void x86_cpu_list_entry(gpointer data, gpointer user_data)
{
ObjectClass *oc = data;
X86CPUClass *cc = X86_CPU_CLASS(oc);
CPUListState *s = user_data;
char *name = x86_cpu_class_get_model_name(cc);
const char *desc = cc->model_description;
if (!desc && cc->cpu_def) {
desc = cc->cpu_def->model_id;
}
(*s->cpu_fprintf)(s->file, "x86 %16s %-48s\n",
name, desc);
g_free(name);
}
/* list available CPU models and flags */
void x86_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
int i;
CPUListState s = {
.file = f,
.cpu_fprintf = cpu_fprintf,
};
GSList *list;
(*cpu_fprintf)(f, "Available CPUs:\n");
list = get_sorted_cpu_model_list();
g_slist_foreach(list, x86_cpu_list_entry, &s);
g_slist_free(list);
(*cpu_fprintf)(f, "\nRecognized CPUID flags:\n");
for (i = 0; i < ARRAY_SIZE(feature_word_info); i++) {
FeatureWordInfo *fw = &feature_word_info[i];
(*cpu_fprintf)(f, " ");
listflags(f, cpu_fprintf, fw->feat_names);
(*cpu_fprintf)(f, "\n");
}
}
static void x86_cpu_definition_entry(gpointer data, gpointer user_data)
{
ObjectClass *oc = data;
X86CPUClass *cc = X86_CPU_CLASS(oc);
CpuDefinitionInfoList **cpu_list = user_data;
CpuDefinitionInfoList *entry;
CpuDefinitionInfo *info;
info = g_malloc0(sizeof(*info));
info->name = x86_cpu_class_get_model_name(cc);
x86_cpu_class_check_missing_features(cc, &info->unavailable_features);
info->has_unavailable_features = true;
info->q_typename = g_strdup(object_class_get_name(oc));
info->migration_safe = cc->migration_safe;
info->has_migration_safe = true;
info->q_static = cc->static_model;
entry = g_malloc0(sizeof(*entry));
entry->value = info;
entry->next = *cpu_list;
*cpu_list = entry;
}
CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
CpuDefinitionInfoList *cpu_list = NULL;
GSList *list = get_sorted_cpu_model_list();
g_slist_foreach(list, x86_cpu_definition_entry, &cpu_list);
g_slist_free(list);
return cpu_list;
}
static uint32_t x86_cpu_get_supported_feature_word(FeatureWord w,
bool migratable_only)
{
FeatureWordInfo *wi = &feature_word_info[w];
uint32_t r;
if (kvm_enabled()) {
r = kvm_arch_get_supported_cpuid(kvm_state, wi->cpuid_eax,
wi->cpuid_ecx,
wi->cpuid_reg);
} else if (hvf_enabled()) {
r = hvf_get_supported_cpuid(wi->cpuid_eax,
wi->cpuid_ecx,
wi->cpuid_reg);
} else if (tcg_enabled()) {
r = wi->tcg_features;
} else {
return ~0;
}
if (migratable_only) {
r &= x86_cpu_get_migratable_flags(w);
}
return r;
}
static void x86_cpu_report_filtered_features(X86CPU *cpu)
{
FeatureWord w;
for (w = 0; w < FEATURE_WORDS; w++) {
report_unavailable_features(w, cpu->filtered_features[w]);
}
}
static void x86_cpu_apply_props(X86CPU *cpu, PropValue *props)
{
PropValue *pv;
for (pv = props; pv->prop; pv++) {
if (!pv->value) {
continue;
}
object_property_parse(OBJECT(cpu), pv->value, pv->prop,
&error_abort);
}
}
/* Load data from X86CPUDefinition into a X86CPU object
*/
static void x86_cpu_load_def(X86CPU *cpu, X86CPUDefinition *def, Error **errp)
{
CPUX86State *env = &cpu->env;
const char *vendor;
char host_vendor[CPUID_VENDOR_SZ + 1];
FeatureWord w;
/*NOTE: any property set by this function should be returned by
* x86_cpu_static_props(), so static expansion of
* query-cpu-model-expansion is always complete.
*/
/* CPU models only set _minimum_ values for level/xlevel: */
object_property_set_uint(OBJECT(cpu), def->level, "min-level", errp);
object_property_set_uint(OBJECT(cpu), def->xlevel, "min-xlevel", errp);
object_property_set_int(OBJECT(cpu), def->family, "family", errp);
object_property_set_int(OBJECT(cpu), def->model, "model", errp);
object_property_set_int(OBJECT(cpu), def->stepping, "stepping", errp);
object_property_set_str(OBJECT(cpu), def->model_id, "model-id", errp);
for (w = 0; w < FEATURE_WORDS; w++) {
env->features[w] = def->features[w];
}
/* Special cases not set in the X86CPUDefinition structs: */
/* TODO: in-kernel irqchip for hvf */
if (kvm_enabled()) {
if (!kvm_irqchip_in_kernel()) {
x86_cpu_change_kvm_default("x2apic", "off");
}
x86_cpu_apply_props(cpu, kvm_default_props);
} else if (tcg_enabled()) {
x86_cpu_apply_props(cpu, tcg_default_props);
}
env->features[FEAT_1_ECX] |= CPUID_EXT_HYPERVISOR;
/* sysenter isn't supported in compatibility mode on AMD,
* syscall isn't supported in compatibility mode on Intel.
* Normally we advertise the actual CPU vendor, but you can
* override this using the 'vendor' property if you want to use
* KVM's sysenter/syscall emulation in compatibility mode and
* when doing cross vendor migration
*/
vendor = def->vendor;
if (accel_uses_host_cpuid()) {
uint32_t ebx = 0, ecx = 0, edx = 0;
host_cpuid(0, 0, NULL, &ebx, &ecx, &edx);
x86_cpu_vendor_words2str(host_vendor, ebx, edx, ecx);
vendor = host_vendor;
}
object_property_set_str(OBJECT(cpu), vendor, "vendor", errp);
}
/* Return a QDict containing keys for all properties that can be included
* in static expansion of CPU models. All properties set by x86_cpu_load_def()
* must be included in the dictionary.
*/
static QDict *x86_cpu_static_props(void)
{
FeatureWord w;
int i;
static const char *props[] = {
"min-level",
"min-xlevel",
"family",
"model",
"stepping",
"model-id",
"vendor",
"lmce",
NULL,
};
static QDict *d;
if (d) {
return d;
}
d = qdict_new();
for (i = 0; props[i]; i++) {
qdict_put_null(d, props[i]);
}
for (w = 0; w < FEATURE_WORDS; w++) {
FeatureWordInfo *fi = &feature_word_info[w];
int bit;
for (bit = 0; bit < 32; bit++) {
if (!fi->feat_names[bit]) {
continue;
}
qdict_put_null(d, fi->feat_names[bit]);
}
}
return d;
}
/* Add an entry to @props dict, with the value for property. */
static void x86_cpu_expand_prop(X86CPU *cpu, QDict *props, const char *prop)
{
QObject *value = object_property_get_qobject(OBJECT(cpu), prop,
&error_abort);
qdict_put_obj(props, prop, value);
}
/* Convert CPU model data from X86CPU object to a property dictionary
* that can recreate exactly the same CPU model.
*/
static void x86_cpu_to_dict(X86CPU *cpu, QDict *props)
{
QDict *sprops = x86_cpu_static_props();
const QDictEntry *e;
for (e = qdict_first(sprops); e; e = qdict_next(sprops, e)) {
const char *prop = qdict_entry_key(e);
x86_cpu_expand_prop(cpu, props, prop);
}
}
/* Convert CPU model data from X86CPU object to a property dictionary
* that can recreate exactly the same CPU model, including every
* writeable QOM property.
*/
static void x86_cpu_to_dict_full(X86CPU *cpu, QDict *props)
{
ObjectPropertyIterator iter;
ObjectProperty *prop;
object_property_iter_init(&iter, OBJECT(cpu));
while ((prop = object_property_iter_next(&iter))) {
/* skip read-only or write-only properties */
if (!prop->get || !prop->set) {
continue;
}
/* "hotplugged" is the only property that is configurable
* on the command-line but will be set differently on CPUs
* created using "-cpu ... -smp ..." and by CPUs created
* on the fly by x86_cpu_from_model() for querying. Skip it.
*/
if (!strcmp(prop->name, "hotplugged")) {
continue;
}
x86_cpu_expand_prop(cpu, props, prop->name);
}
}
static void object_apply_props(Object *obj, QDict *props, Error **errp)
{
const QDictEntry *prop;
Error *err = NULL;
for (prop = qdict_first(props); prop; prop = qdict_next(props, prop)) {
object_property_set_qobject(obj, qdict_entry_value(prop),
qdict_entry_key(prop), &err);
if (err) {
break;
}
}
error_propagate(errp, err);
}
/* Create X86CPU object according to model+props specification */
static X86CPU *x86_cpu_from_model(const char *model, QDict *props, Error **errp)
{
X86CPU *xc = NULL;
X86CPUClass *xcc;
Error *err = NULL;
xcc = X86_CPU_CLASS(cpu_class_by_name(TYPE_X86_CPU, model));
if (xcc == NULL) {
error_setg(&err, "CPU model '%s' not found", model);
goto out;
}
xc = X86_CPU(object_new(object_class_get_name(OBJECT_CLASS(xcc))));
if (props) {
object_apply_props(OBJECT(xc), props, &err);
if (err) {
goto out;
}
}
x86_cpu_expand_features(xc, &err);
if (err) {
goto out;
}
out:
if (err) {
error_propagate(errp, err);
object_unref(OBJECT(xc));
xc = NULL;
}
return xc;
}
CpuModelExpansionInfo *
arch_query_cpu_model_expansion(CpuModelExpansionType type,
CpuModelInfo *model,
Error **errp)
{
X86CPU *xc = NULL;
Error *err = NULL;
CpuModelExpansionInfo *ret = g_new0(CpuModelExpansionInfo, 1);
QDict *props = NULL;
const char *base_name;
xc = x86_cpu_from_model(model->name,
model->has_props ?
qobject_to_qdict(model->props) :
NULL, &err);
if (err) {
goto out;
}
props = qdict_new();
switch (type) {
case CPU_MODEL_EXPANSION_TYPE_STATIC:
/* Static expansion will be based on "base" only */
base_name = "base";
x86_cpu_to_dict(xc, props);
break;
case CPU_MODEL_EXPANSION_TYPE_FULL:
/* As we don't return every single property, full expansion needs
* to keep the original model name+props, and add extra
* properties on top of that.
*/
base_name = model->name;
x86_cpu_to_dict_full(xc, props);
break;
default:
error_setg(&err, "Unsupportted expansion type");
goto out;
}
if (!props) {
props = qdict_new();
}
x86_cpu_to_dict(xc, props);
ret->model = g_new0(CpuModelInfo, 1);
ret->model->name = g_strdup(base_name);
ret->model->props = QOBJECT(props);
ret->model->has_props = true;
out:
object_unref(OBJECT(xc));
if (err) {
error_propagate(errp, err);
qapi_free_CpuModelExpansionInfo(ret);
ret = NULL;
}
return ret;
}
static gchar *x86_gdb_arch_name(CPUState *cs)
{
#ifdef TARGET_X86_64
return g_strdup("i386:x86-64");
#else
return g_strdup("i386");
#endif
}
static void x86_cpu_cpudef_class_init(ObjectClass *oc, void *data)
{
X86CPUDefinition *cpudef = data;
X86CPUClass *xcc = X86_CPU_CLASS(oc);
xcc->cpu_def = cpudef;
xcc->migration_safe = true;
}
static void x86_register_cpudef_type(X86CPUDefinition *def)
{
char *typename = x86_cpu_type_name(def->name);
TypeInfo ti = {
.name = typename,
.parent = TYPE_X86_CPU,
.class_init = x86_cpu_cpudef_class_init,
.class_data = def,
};
/* AMD aliases are handled at runtime based on CPUID vendor, so
* they shouldn't be set on the CPU model table.
*/
assert(!(def->features[FEAT_8000_0001_EDX] & CPUID_EXT2_AMD_ALIASES));
/* catch mistakes instead of silently truncating model_id when too long */
assert(def->model_id && strlen(def->model_id) <= 48);
type_register(&ti);
g_free(typename);
}
#if !defined(CONFIG_USER_ONLY)
void cpu_clear_apic_feature(CPUX86State *env)
{
env->features[FEAT_1_EDX] &= ~CPUID_APIC;
}
#endif /* !CONFIG_USER_ONLY */
void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
X86CPU *cpu = x86_env_get_cpu(env);
CPUState *cs = CPU(cpu);
uint32_t pkg_offset;
uint32_t limit;
uint32_t signature[3];
/* Calculate & apply limits for different index ranges */
if (index >= 0xC0000000) {
limit = env->cpuid_xlevel2;
} else if (index >= 0x80000000) {
limit = env->cpuid_xlevel;
} else if (index >= 0x40000000) {
limit = 0x40000001;
} else {
limit = env->cpuid_level;
}
if (index > limit) {
/* Intel documentation states that invalid EAX input will
* return the same information as EAX=cpuid_level
* (Intel SDM Vol. 2A - Instruction Set Reference - CPUID)
*/
index = env->cpuid_level;
}
switch(index) {
case 0:
*eax = env->cpuid_level;
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
break;
case 1:
*eax = env->cpuid_version;
*ebx = (cpu->apic_id << 24) |
8 << 8; /* CLFLUSH size in quad words, Linux wants it. */
*ecx = env->features[FEAT_1_ECX];
if ((*ecx & CPUID_EXT_XSAVE) && (env->cr[4] & CR4_OSXSAVE_MASK)) {
*ecx |= CPUID_EXT_OSXSAVE;
}
*edx = env->features[FEAT_1_EDX];
if (cs->nr_cores * cs->nr_threads > 1) {
*ebx |= (cs->nr_cores * cs->nr_threads) << 16;
*edx |= CPUID_HT;
}
break;
case 2:
/* cache info: needed for Pentium Pro compatibility */
if (cpu->cache_info_passthrough) {
host_cpuid(index, 0, eax, ebx, ecx, edx);
break;
}
*eax = 1; /* Number of CPUID[EAX=2] calls required */
*ebx = 0;
if (!cpu->enable_l3_cache) {
*ecx = 0;
} else {
*ecx = L3_N_DESCRIPTOR;
}
*edx = (L1D_DESCRIPTOR << 16) | \
(L1I_DESCRIPTOR << 8) | \
(L2_DESCRIPTOR);
break;
case 4:
/* cache info: needed for Core compatibility */
if (cpu->cache_info_passthrough) {
host_cpuid(index, count, eax, ebx, ecx, edx);
*eax &= ~0xFC000000;
} else {
*eax = 0;
switch (count) {
case 0: /* L1 dcache info */
*eax |= CPUID_4_TYPE_DCACHE | \
CPUID_4_LEVEL(1) | \
CPUID_4_SELF_INIT_LEVEL;
*ebx = (L1D_LINE_SIZE - 1) | \
((L1D_PARTITIONS - 1) << 12) | \
((L1D_ASSOCIATIVITY - 1) << 22);
*ecx = L1D_SETS - 1;
*edx = CPUID_4_NO_INVD_SHARING;
break;
case 1: /* L1 icache info */
*eax |= CPUID_4_TYPE_ICACHE | \
CPUID_4_LEVEL(1) | \
CPUID_4_SELF_INIT_LEVEL;
*ebx = (L1I_LINE_SIZE - 1) | \
((L1I_PARTITIONS - 1) << 12) | \
((L1I_ASSOCIATIVITY - 1) << 22);
*ecx = L1I_SETS - 1;
*edx = CPUID_4_NO_INVD_SHARING;
break;
case 2: /* L2 cache info */
*eax |= CPUID_4_TYPE_UNIFIED | \
CPUID_4_LEVEL(2) | \
CPUID_4_SELF_INIT_LEVEL;
if (cs->nr_threads > 1) {
*eax |= (cs->nr_threads - 1) << 14;
}
*ebx = (L2_LINE_SIZE - 1) | \
((L2_PARTITIONS - 1) << 12) | \
((L2_ASSOCIATIVITY - 1) << 22);
*ecx = L2_SETS - 1;
*edx = CPUID_4_NO_INVD_SHARING;
break;
case 3: /* L3 cache info */
if (!cpu->enable_l3_cache) {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
*eax |= CPUID_4_TYPE_UNIFIED | \
CPUID_4_LEVEL(3) | \
CPUID_4_SELF_INIT_LEVEL;
pkg_offset = apicid_pkg_offset(cs->nr_cores, cs->nr_threads);
*eax |= ((1 << pkg_offset) - 1) << 14;
*ebx = (L3_N_LINE_SIZE - 1) | \
((L3_N_PARTITIONS - 1) << 12) | \
((L3_N_ASSOCIATIVITY - 1) << 22);
*ecx = L3_N_SETS - 1;
*edx = CPUID_4_INCLUSIVE | CPUID_4_COMPLEX_IDX;
break;
default: /* end of info */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
}
/* QEMU gives out its own APIC IDs, never pass down bits 31..26. */
if ((*eax & 31) && cs->nr_cores > 1) {
*eax |= (cs->nr_cores - 1) << 26;
}
break;
case 5:
/* mwait info: needed for Core compatibility */
*eax = 0; /* Smallest monitor-line size in bytes */
*ebx = 0; /* Largest monitor-line size in bytes */
*ecx = CPUID_MWAIT_EMX | CPUID_MWAIT_IBE;
*edx = 0;
break;
case 6:
/* Thermal and Power Leaf */
*eax = env->features[FEAT_6_EAX];
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 7:
/* Structured Extended Feature Flags Enumeration Leaf */
if (count == 0) {
*eax = 0; /* Maximum ECX value for sub-leaves */
*ebx = env->features[FEAT_7_0_EBX]; /* Feature flags */
*ecx = env->features[FEAT_7_0_ECX]; /* Feature flags */
if ((*ecx & CPUID_7_0_ECX_PKU) && env->cr[4] & CR4_PKE_MASK) {
*ecx |= CPUID_7_0_ECX_OSPKE;
}
*edx = env->features[FEAT_7_0_EDX]; /* Feature flags */
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 9:
/* Direct Cache Access Information Leaf */
*eax = 0; /* Bits 0-31 in DCA_CAP MSR */
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xA:
/* Architectural Performance Monitoring Leaf */
if (kvm_enabled() && cpu->enable_pmu) {
KVMState *s = cs->kvm_state;
*eax = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EAX);
*ebx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EBX);
*ecx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_ECX);
*edx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EDX);
} else if (hvf_enabled() && cpu->enable_pmu) {
*eax = hvf_get_supported_cpuid(0xA, count, R_EAX);
*ebx = hvf_get_supported_cpuid(0xA, count, R_EBX);
*ecx = hvf_get_supported_cpuid(0xA, count, R_ECX);
*edx = hvf_get_supported_cpuid(0xA, count, R_EDX);
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0xB:
/* Extended Topology Enumeration Leaf */
if (!cpu->enable_cpuid_0xb) {
*eax = *ebx = *ecx = *edx = 0;
break;
}
*ecx = count & 0xff;
*edx = cpu->apic_id;
switch (count) {
case 0:
*eax = apicid_core_offset(cs->nr_cores, cs->nr_threads);
*ebx = cs->nr_threads;
*ecx |= CPUID_TOPOLOGY_LEVEL_SMT;
break;
case 1:
*eax = apicid_pkg_offset(cs->nr_cores, cs->nr_threads);
*ebx = cs->nr_cores * cs->nr_threads;
*ecx |= CPUID_TOPOLOGY_LEVEL_CORE;
break;
default:
*eax = 0;
*ebx = 0;
*ecx |= CPUID_TOPOLOGY_LEVEL_INVALID;
}
assert(!(*eax & ~0x1f));
*ebx &= 0xffff; /* The count doesn't need to be reliable. */
break;
case 0xD: {
/* Processor Extended State */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) {
break;
}
if (count == 0) {
*ecx = xsave_area_size(x86_cpu_xsave_components(cpu));
*eax = env->features[FEAT_XSAVE_COMP_LO];
*edx = env->features[FEAT_XSAVE_COMP_HI];
*ebx = *ecx;
} else if (count == 1) {
*eax = env->features[FEAT_XSAVE];
} else if (count < ARRAY_SIZE(x86_ext_save_areas)) {
if ((x86_cpu_xsave_components(cpu) >> count) & 1) {
const ExtSaveArea *esa = &x86_ext_save_areas[count];
*eax = esa->size;
*ebx = esa->offset;
}
}
break;
}
case 0x40000000:
/*
* CPUID code in kvm_arch_init_vcpu() ignores stuff
* set here, but we restrict to TCG none the less.
*/
if (tcg_enabled() && cpu->expose_tcg) {
memcpy(signature, "TCGTCGTCGTCG", 12);
*eax = 0x40000001;
*ebx = signature[0];
*ecx = signature[1];
*edx = signature[2];
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0x40000001:
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0x80000000:
*eax = env->cpuid_xlevel;
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
break;
case 0x80000001:
*eax = env->cpuid_version;
*ebx = 0;
*ecx = env->features[FEAT_8000_0001_ECX];
*edx = env->features[FEAT_8000_0001_EDX];
/* The Linux kernel checks for the CMPLegacy bit and
* discards multiple thread information if it is set.
* So don't set it here for Intel to make Linux guests happy.
*/
if (cs->nr_cores * cs->nr_threads > 1) {
if (env->cpuid_vendor1 != CPUID_VENDOR_INTEL_1 ||
env->cpuid_vendor2 != CPUID_VENDOR_INTEL_2 ||
env->cpuid_vendor3 != CPUID_VENDOR_INTEL_3) {
*ecx |= 1 << 1; /* CmpLegacy bit */
}
}
break;
case 0x80000002:
case 0x80000003:
case 0x80000004:
*eax = env->cpuid_model[(index - 0x80000002) * 4 + 0];
*ebx = env->cpuid_model[(index - 0x80000002) * 4 + 1];
*ecx = env->cpuid_model[(index - 0x80000002) * 4 + 2];
*edx = env->cpuid_model[(index - 0x80000002) * 4 + 3];
break;
case 0x80000005:
/* cache info (L1 cache) */
if (cpu->cache_info_passthrough) {
host_cpuid(index, 0, eax, ebx, ecx, edx);
break;
}
*eax = (L1_DTLB_2M_ASSOC << 24) | (L1_DTLB_2M_ENTRIES << 16) | \
(L1_ITLB_2M_ASSOC << 8) | (L1_ITLB_2M_ENTRIES);
*ebx = (L1_DTLB_4K_ASSOC << 24) | (L1_DTLB_4K_ENTRIES << 16) | \
(L1_ITLB_4K_ASSOC << 8) | (L1_ITLB_4K_ENTRIES);
*ecx = (L1D_SIZE_KB_AMD << 24) | (L1D_ASSOCIATIVITY_AMD << 16) | \
(L1D_LINES_PER_TAG << 8) | (L1D_LINE_SIZE);
*edx = (L1I_SIZE_KB_AMD << 24) | (L1I_ASSOCIATIVITY_AMD << 16) | \
(L1I_LINES_PER_TAG << 8) | (L1I_LINE_SIZE);
break;
case 0x80000006:
/* cache info (L2 cache) */
if (cpu->cache_info_passthrough) {
host_cpuid(index, 0, eax, ebx, ecx, edx);
break;
}
*eax = (AMD_ENC_ASSOC(L2_DTLB_2M_ASSOC) << 28) | \
(L2_DTLB_2M_ENTRIES << 16) | \
(AMD_ENC_ASSOC(L2_ITLB_2M_ASSOC) << 12) | \
(L2_ITLB_2M_ENTRIES);
*ebx = (AMD_ENC_ASSOC(L2_DTLB_4K_ASSOC) << 28) | \
(L2_DTLB_4K_ENTRIES << 16) | \
(AMD_ENC_ASSOC(L2_ITLB_4K_ASSOC) << 12) | \
(L2_ITLB_4K_ENTRIES);
*ecx = (L2_SIZE_KB_AMD << 16) | \
(AMD_ENC_ASSOC(L2_ASSOCIATIVITY) << 12) | \
(L2_LINES_PER_TAG << 8) | (L2_LINE_SIZE);
if (!cpu->enable_l3_cache) {
*edx = ((L3_SIZE_KB / 512) << 18) | \
(AMD_ENC_ASSOC(L3_ASSOCIATIVITY) << 12) | \
(L3_LINES_PER_TAG << 8) | (L3_LINE_SIZE);
} else {
*edx = ((L3_N_SIZE_KB_AMD / 512) << 18) | \
(AMD_ENC_ASSOC(L3_N_ASSOCIATIVITY) << 12) | \
(L3_N_LINES_PER_TAG << 8) | (L3_N_LINE_SIZE);
}
break;
case 0x80000007:
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = env->features[FEAT_8000_0007_EDX];
break;
case 0x80000008:
/* virtual & phys address size in low 2 bytes. */
if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) {
/* 64 bit processor */
*eax = cpu->phys_bits; /* configurable physical bits */
if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_LA57) {
*eax |= 0x00003900; /* 57 bits virtual */
} else {
*eax |= 0x00003000; /* 48 bits virtual */
}
} else {
*eax = cpu->phys_bits;
}
*ebx = env->features[FEAT_8000_0008_EBX];
*ecx = 0;
*edx = 0;
if (cs->nr_cores * cs->nr_threads > 1) {
*ecx |= (cs->nr_cores * cs->nr_threads) - 1;
}
break;
case 0x8000000A:
if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) {
*eax = 0x00000001; /* SVM Revision */
*ebx = 0x00000010; /* nr of ASIDs */
*ecx = 0;
*edx = env->features[FEAT_SVM]; /* optional features */
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0xC0000000:
*eax = env->cpuid_xlevel2;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xC0000001:
/* Support for VIA CPU's CPUID instruction */
*eax = env->cpuid_version;
*ebx = 0;
*ecx = 0;
*edx = env->features[FEAT_C000_0001_EDX];
break;
case 0xC0000002:
case 0xC0000003:
case 0xC0000004:
/* Reserved for the future, and now filled with zero */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
default:
/* reserved values: zero */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
}
/* CPUClass::reset() */
static void x86_cpu_reset(CPUState *s)
{
X86CPU *cpu = X86_CPU(s);
X86CPUClass *xcc = X86_CPU_GET_CLASS(cpu);
CPUX86State *env = &cpu->env;
target_ulong cr4;
uint64_t xcr0;
int i;
xcc->parent_reset(s);
memset(env, 0, offsetof(CPUX86State, end_reset_fields));
env->old_exception = -1;
/* init to reset state */
env->hflags2 |= HF2_GIF_MASK;
cpu_x86_update_cr0(env, 0x60000010);
env->a20_mask = ~0x0;
env->smbase = 0x30000;
env->idt.limit = 0xffff;
env->gdt.limit = 0xffff;
env->ldt.limit = 0xffff;
env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT);
env->tr.limit = 0xffff;
env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT);
cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK |
DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
env->eip = 0xfff0;
env->regs[R_EDX] = env->cpuid_version;
env->eflags = 0x2;
/* FPU init */
for (i = 0; i < 8; i++) {
env->fptags[i] = 1;
}
cpu_set_fpuc(env, 0x37f);
env->mxcsr = 0x1f80;
/* All units are in INIT state. */
env->xstate_bv = 0;
env->pat = 0x0007040600070406ULL;
env->msr_ia32_misc_enable = MSR_IA32_MISC_ENABLE_DEFAULT;
memset(env->dr, 0, sizeof(env->dr));
env->dr[6] = DR6_FIXED_1;
env->dr[7] = DR7_FIXED_1;
cpu_breakpoint_remove_all(s, BP_CPU);
cpu_watchpoint_remove_all(s, BP_CPU);
cr4 = 0;
xcr0 = XSTATE_FP_MASK;
#ifdef CONFIG_USER_ONLY
/* Enable all the features for user-mode. */
if (env->features[FEAT_1_EDX] & CPUID_SSE) {
xcr0 |= XSTATE_SSE_MASK;
}
for (i = 2; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
const ExtSaveArea *esa = &x86_ext_save_areas[i];
if (env->features[esa->feature] & esa->bits) {
xcr0 |= 1ull << i;
}
}
if (env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE) {
cr4 |= CR4_OSFXSR_MASK | CR4_OSXSAVE_MASK;
}
if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_FSGSBASE) {
cr4 |= CR4_FSGSBASE_MASK;
}
#endif
env->xcr0 = xcr0;
cpu_x86_update_cr4(env, cr4);
/*
* SDM 11.11.5 requires:
* - IA32_MTRR_DEF_TYPE MSR.E = 0
* - IA32_MTRR_PHYSMASKn.V = 0
* All other bits are undefined. For simplification, zero it all.
*/
env->mtrr_deftype = 0;
memset(env->mtrr_var, 0, sizeof(env->mtrr_var));
memset(env->mtrr_fixed, 0, sizeof(env->mtrr_fixed));
env->interrupt_injected = -1;
env->exception_injected = -1;
env->nmi_injected = false;
#if !defined(CONFIG_USER_ONLY)
/* We hard-wire the BSP to the first CPU. */
apic_designate_bsp(cpu->apic_state, s->cpu_index == 0);
s->halted = !cpu_is_bsp(cpu);
if (kvm_enabled()) {
kvm_arch_reset_vcpu(cpu);
}
else if (hvf_enabled()) {
hvf_reset_vcpu(s);
}
#endif
}
#ifndef CONFIG_USER_ONLY
bool cpu_is_bsp(X86CPU *cpu)
{
return cpu_get_apic_base(cpu->apic_state) & MSR_IA32_APICBASE_BSP;
}
/* TODO: remove me, when reset over QOM tree is implemented */
static void x86_cpu_machine_reset_cb(void *opaque)
{
X86CPU *cpu = opaque;
cpu_reset(CPU(cpu));
}
#endif
static void mce_init(X86CPU *cpu)
{
CPUX86State *cenv = &cpu->env;
unsigned int bank;
if (((cenv->cpuid_version >> 8) & 0xf) >= 6
&& (cenv->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
(CPUID_MCE | CPUID_MCA)) {
cenv->mcg_cap = MCE_CAP_DEF | MCE_BANKS_DEF |
(cpu->enable_lmce ? MCG_LMCE_P : 0);
cenv->mcg_ctl = ~(uint64_t)0;
for (bank = 0; bank < MCE_BANKS_DEF; bank++) {
cenv->mce_banks[bank * 4] = ~(uint64_t)0;
}
}
}
#ifndef CONFIG_USER_ONLY
APICCommonClass *apic_get_class(void)
{
const char *apic_type = "apic";
/* TODO: in-kernel irqchip for hvf */
if (kvm_apic_in_kernel()) {
apic_type = "kvm-apic";
} else if (xen_enabled()) {
apic_type = "xen-apic";
}
return APIC_COMMON_CLASS(object_class_by_name(apic_type));
}
static void x86_cpu_apic_create(X86CPU *cpu, Error **errp)
{
APICCommonState *apic;
ObjectClass *apic_class = OBJECT_CLASS(apic_get_class());
cpu->apic_state = DEVICE(object_new(object_class_get_name(apic_class)));
object_property_add_child(OBJECT(cpu), "lapic",
OBJECT(cpu->apic_state), &error_abort);
object_unref(OBJECT(cpu->apic_state));
qdev_prop_set_uint32(cpu->apic_state, "id", cpu->apic_id);
/* TODO: convert to link<> */
apic = APIC_COMMON(cpu->apic_state);
apic->cpu = cpu;
apic->apicbase = APIC_DEFAULT_ADDRESS | MSR_IA32_APICBASE_ENABLE;
}
static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp)
{
APICCommonState *apic;
static bool apic_mmio_map_once;
if (cpu->apic_state == NULL) {
return;
}
object_property_set_bool(OBJECT(cpu->apic_state), true, "realized",
errp);
/* Map APIC MMIO area */
apic = APIC_COMMON(cpu->apic_state);
if (!apic_mmio_map_once) {
memory_region_add_subregion_overlap(get_system_memory(),
apic->apicbase &
MSR_IA32_APICBASE_BASE,
&apic->io_memory,
0x1000);
apic_mmio_map_once = true;
}
}
static void x86_cpu_machine_done(Notifier *n, void *unused)
{
X86CPU *cpu = container_of(n, X86CPU, machine_done);
MemoryRegion *smram =
(MemoryRegion *) object_resolve_path("/machine/smram", NULL);
if (smram) {
cpu->smram = g_new(MemoryRegion, 1);
memory_region_init_alias(cpu->smram, OBJECT(cpu), "smram",
smram, 0, 1ull << 32);
memory_region_set_enabled(cpu->smram, true);
memory_region_add_subregion_overlap(cpu->cpu_as_root, 0, cpu->smram, 1);
}
}
#else
static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp)
{
}
#endif
/* Note: Only safe for use on x86(-64) hosts */
static uint32_t x86_host_phys_bits(void)
{
uint32_t eax;
uint32_t host_phys_bits;
host_cpuid(0x80000000, 0, &eax, NULL, NULL, NULL);
if (eax >= 0x80000008) {
host_cpuid(0x80000008, 0, &eax, NULL, NULL, NULL);
/* Note: According to AMD doc 25481 rev 2.34 they have a field
* at 23:16 that can specify a maximum physical address bits for
* the guest that can override this value; but I've not seen
* anything with that set.
*/
host_phys_bits = eax & 0xff;
} else {
/* It's an odd 64 bit machine that doesn't have the leaf for
* physical address bits; fall back to 36 that's most older
* Intel.
*/
host_phys_bits = 36;
}
return host_phys_bits;
}
static void x86_cpu_adjust_level(X86CPU *cpu, uint32_t *min, uint32_t value)
{
if (*min < value) {
*min = value;
}
}
/* Increase cpuid_min_{level,xlevel,xlevel2} automatically, if appropriate */
static void x86_cpu_adjust_feat_level(X86CPU *cpu, FeatureWord w)
{
CPUX86State *env = &cpu->env;
FeatureWordInfo *fi = &feature_word_info[w];
uint32_t eax = fi->cpuid_eax;
uint32_t region = eax & 0xF0000000;
if (!env->features[w]) {
return;
}
switch (region) {
case 0x00000000:
x86_cpu_adjust_level(cpu, &env->cpuid_min_level, eax);
break;
case 0x80000000:
x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, eax);
break;
case 0xC0000000:
x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel2, eax);
break;
}
}
/* Calculate XSAVE components based on the configured CPU feature flags */
static void x86_cpu_enable_xsave_components(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
int i;
uint64_t mask;
if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) {
return;
}
mask = 0;
for (i = 0; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
const ExtSaveArea *esa = &x86_ext_save_areas[i];
if (env->features[esa->feature] & esa->bits) {
mask |= (1ULL << i);
}
}
env->features[FEAT_XSAVE_COMP_LO] = mask;
env->features[FEAT_XSAVE_COMP_HI] = mask >> 32;
}
/***** Steps involved on loading and filtering CPUID data
*
* When initializing and realizing a CPU object, the steps
* involved in setting up CPUID data are:
*
* 1) Loading CPU model definition (X86CPUDefinition). This is
* implemented by x86_cpu_load_def() and should be completely
* transparent, as it is done automatically by instance_init.
* No code should need to look at X86CPUDefinition structs
* outside instance_init.
*
* 2) CPU expansion. This is done by realize before CPUID
* filtering, and will make sure host/accelerator data is
* loaded for CPU models that depend on host capabilities
* (e.g. "host"). Done by x86_cpu_expand_features().
*
* 3) CPUID filtering. This initializes extra data related to
* CPUID, and checks if the host supports all capabilities
* required by the CPU. Runnability of a CPU model is
* determined at this step. Done by x86_cpu_filter_features().
*
* Some operations don't require all steps to be performed.
* More precisely:
*
* - CPU instance creation (instance_init) will run only CPU
* model loading. CPU expansion can't run at instance_init-time
* because host/accelerator data may be not available yet.
* - CPU realization will perform both CPU model expansion and CPUID
* filtering, and return an error in case one of them fails.
* - query-cpu-definitions needs to run all 3 steps. It needs
* to run CPUID filtering, as the 'unavailable-features'
* field is set based on the filtering results.
* - The query-cpu-model-expansion QMP command only needs to run
* CPU model loading and CPU expansion. It should not filter
* any CPUID data based on host capabilities.
*/
/* Expand CPU configuration data, based on configured features
* and host/accelerator capabilities when appropriate.
*/
static void x86_cpu_expand_features(X86CPU *cpu, Error **errp)
{
CPUX86State *env = &cpu->env;
FeatureWord w;
GList *l;
Error *local_err = NULL;
/*TODO: Now cpu->max_features doesn't overwrite features
* set using QOM properties, and we can convert
* plus_features & minus_features to global properties
* inside x86_cpu_parse_featurestr() too.
*/
if (cpu->max_features) {
for (w = 0; w < FEATURE_WORDS; w++) {
/* Override only features that weren't set explicitly
* by the user.
*/
env->features[w] |=
x86_cpu_get_supported_feature_word(w, cpu->migratable) &
~env->user_features[w];
}
}
for (l = plus_features; l; l = l->next) {
const char *prop = l->data;
object_property_set_bool(OBJECT(cpu), true, prop, &local_err);
if (local_err) {
goto out;
}
}
for (l = minus_features; l; l = l->next) {
const char *prop = l->data;
object_property_set_bool(OBJECT(cpu), false, prop, &local_err);
if (local_err) {
goto out;
}
}
if (!kvm_enabled() || !cpu->expose_kvm) {
env->features[FEAT_KVM] = 0;
}
x86_cpu_enable_xsave_components(cpu);
/* CPUID[EAX=7,ECX=0].EBX always increased level automatically: */
x86_cpu_adjust_feat_level(cpu, FEAT_7_0_EBX);
if (cpu->full_cpuid_auto_level) {
x86_cpu_adjust_feat_level(cpu, FEAT_1_EDX);
x86_cpu_adjust_feat_level(cpu, FEAT_1_ECX);
x86_cpu_adjust_feat_level(cpu, FEAT_6_EAX);
x86_cpu_adjust_feat_level(cpu, FEAT_7_0_ECX);
x86_cpu_adjust_feat_level(cpu, FEAT_8000_0001_EDX);
x86_cpu_adjust_feat_level(cpu, FEAT_8000_0001_ECX);
x86_cpu_adjust_feat_level(cpu, FEAT_8000_0007_EDX);
x86_cpu_adjust_feat_level(cpu, FEAT_8000_0008_EBX);
x86_cpu_adjust_feat_level(cpu, FEAT_C000_0001_EDX);
x86_cpu_adjust_feat_level(cpu, FEAT_SVM);
x86_cpu_adjust_feat_level(cpu, FEAT_XSAVE);
/* SVM requires CPUID[0x8000000A] */
if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) {
x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, 0x8000000A);
}
}
/* Set cpuid_*level* based on cpuid_min_*level, if not explicitly set */
if (env->cpuid_level == UINT32_MAX) {
env->cpuid_level = env->cpuid_min_level;
}
if (env->cpuid_xlevel == UINT32_MAX) {
env->cpuid_xlevel = env->cpuid_min_xlevel;
}
if (env->cpuid_xlevel2 == UINT32_MAX) {
env->cpuid_xlevel2 = env->cpuid_min_xlevel2;
}
out:
if (local_err != NULL) {
error_propagate(errp, local_err);
}
}
/*
* Finishes initialization of CPUID data, filters CPU feature
* words based on host availability of each feature.
*
* Returns: 0 if all flags are supported by the host, non-zero otherwise.
*/
static int x86_cpu_filter_features(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
FeatureWord w;
int rv = 0;
for (w = 0; w < FEATURE_WORDS; w++) {
uint32_t host_feat =
x86_cpu_get_supported_feature_word(w, false);
uint32_t requested_features = env->features[w];
env->features[w] &= host_feat;
cpu->filtered_features[w] = requested_features & ~env->features[w];
if (cpu->filtered_features[w]) {
rv = 1;
}
}
return rv;
}
#define IS_INTEL_CPU(env) ((env)->cpuid_vendor1 == CPUID_VENDOR_INTEL_1 && \
(env)->cpuid_vendor2 == CPUID_VENDOR_INTEL_2 && \
(env)->cpuid_vendor3 == CPUID_VENDOR_INTEL_3)
#define IS_AMD_CPU(env) ((env)->cpuid_vendor1 == CPUID_VENDOR_AMD_1 && \
(env)->cpuid_vendor2 == CPUID_VENDOR_AMD_2 && \
(env)->cpuid_vendor3 == CPUID_VENDOR_AMD_3)
static void x86_cpu_realizefn(DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
X86CPU *cpu = X86_CPU(dev);
X86CPUClass *xcc = X86_CPU_GET_CLASS(dev);
CPUX86State *env = &cpu->env;
Error *local_err = NULL;
static bool ht_warned;
if (xcc->host_cpuid_required && !accel_uses_host_cpuid()) {
char *name = x86_cpu_class_get_model_name(xcc);
error_setg(&local_err, "CPU model '%s' requires KVM", name);
g_free(name);
goto out;
}
if (cpu->apic_id == UNASSIGNED_APIC_ID) {
error_setg(errp, "apic-id property was not initialized properly");
return;
}
x86_cpu_expand_features(cpu, &local_err);
if (local_err) {
goto out;
}
if (x86_cpu_filter_features(cpu) &&
(cpu->check_cpuid || cpu->enforce_cpuid)) {
x86_cpu_report_filtered_features(cpu);
if (cpu->enforce_cpuid) {
error_setg(&local_err,
accel_uses_host_cpuid() ?
"Host doesn't support requested features" :
"TCG doesn't support requested features");
goto out;
}
}
/* On AMD CPUs, some CPUID[8000_0001].EDX bits must match the bits on
* CPUID[1].EDX.
*/
if (IS_AMD_CPU(env)) {
env->features[FEAT_8000_0001_EDX] &= ~CPUID_EXT2_AMD_ALIASES;
env->features[FEAT_8000_0001_EDX] |= (env->features[FEAT_1_EDX]
& CPUID_EXT2_AMD_ALIASES);
}
/* For 64bit systems think about the number of physical bits to present.
* ideally this should be the same as the host; anything other than matching
* the host can cause incorrect guest behaviour.
* QEMU used to pick the magic value of 40 bits that corresponds to
* consumer AMD devices but nothing else.
*/
if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) {
if (accel_uses_host_cpuid()) {
uint32_t host_phys_bits = x86_host_phys_bits();
static bool warned;
if (cpu->host_phys_bits) {
/* The user asked for us to use the host physical bits */
cpu->phys_bits = host_phys_bits;
}
/* Print a warning if the user set it to a value that's not the
* host value.
*/
if (cpu->phys_bits != host_phys_bits && cpu->phys_bits != 0 &&
!warned) {
warn_report("Host physical bits (%u)"
" does not match phys-bits property (%u)",
host_phys_bits, cpu->phys_bits);
warned = true;
}
if (cpu->phys_bits &&
(cpu->phys_bits > TARGET_PHYS_ADDR_SPACE_BITS ||
cpu->phys_bits < 32)) {
error_setg(errp, "phys-bits should be between 32 and %u "
" (but is %u)",
TARGET_PHYS_ADDR_SPACE_BITS, cpu->phys_bits);
return;
}
} else {
if (cpu->phys_bits && cpu->phys_bits != TCG_PHYS_ADDR_BITS) {
error_setg(errp, "TCG only supports phys-bits=%u",
TCG_PHYS_ADDR_BITS);
return;
}
}
/* 0 means it was not explicitly set by the user (or by machine
* compat_props or by the host code above). In this case, the default
* is the value used by TCG (40).
*/
if (cpu->phys_bits == 0) {
cpu->phys_bits = TCG_PHYS_ADDR_BITS;
}
} else {
/* For 32 bit systems don't use the user set value, but keep
* phys_bits consistent with what we tell the guest.
*/
if (cpu->phys_bits != 0) {
error_setg(errp, "phys-bits is not user-configurable in 32 bit");
return;
}
if (env->features[FEAT_1_EDX] & CPUID_PSE36) {
cpu->phys_bits = 36;
} else {
cpu->phys_bits = 32;
}
}
cpu_exec_realizefn(cs, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
#ifndef CONFIG_USER_ONLY
qemu_register_reset(x86_cpu_machine_reset_cb, cpu);
if (cpu->env.features[FEAT_1_EDX] & CPUID_APIC || smp_cpus > 1) {
x86_cpu_apic_create(cpu, &local_err);
if (local_err != NULL) {
goto out;
}
}
#endif
mce_init(cpu);
#ifndef CONFIG_USER_ONLY
if (tcg_enabled()) {
cpu->cpu_as_mem = g_new(MemoryRegion, 1);
cpu->cpu_as_root = g_new(MemoryRegion, 1);
/* Outer container... */
memory_region_init(cpu->cpu_as_root, OBJECT(cpu), "memory", ~0ull);
memory_region_set_enabled(cpu->cpu_as_root, true);
/* ... with two regions inside: normal system memory with low
* priority, and...
*/
memory_region_init_alias(cpu->cpu_as_mem, OBJECT(cpu), "memory",
get_system_memory(), 0, ~0ull);
memory_region_add_subregion_overlap(cpu->cpu_as_root, 0, cpu->cpu_as_mem, 0);
memory_region_set_enabled(cpu->cpu_as_mem, true);
cs->num_ases = 2;
cpu_address_space_init(cs, 0, "cpu-memory", cs->memory);
cpu_address_space_init(cs, 1, "cpu-smm", cpu->cpu_as_root);
/* ... SMRAM with higher priority, linked from /machine/smram. */
cpu->machine_done.notify = x86_cpu_machine_done;
qemu_add_machine_init_done_notifier(&cpu->machine_done);
}
#endif
qemu_init_vcpu(cs);
/* Only Intel CPUs support hyperthreading. Even though QEMU fixes this
* issue by adjusting CPUID_0000_0001_EBX and CPUID_8000_0008_ECX
* based on inputs (sockets,cores,threads), it is still better to gives
* users a warning.
*
* NOTE: the following code has to follow qemu_init_vcpu(). Otherwise
* cs->nr_threads hasn't be populated yet and the checking is incorrect.
*/
if (!IS_INTEL_CPU(env) && cs->nr_threads > 1 && !ht_warned) {
error_report("AMD CPU doesn't support hyperthreading. Please configure"
" -smp options properly.");
ht_warned = true;
}
x86_cpu_apic_realize(cpu, &local_err);
if (local_err != NULL) {
goto out;
}
cpu_reset(cs);
xcc->parent_realize(dev, &local_err);
out:
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
}
static void x86_cpu_unrealizefn(DeviceState *dev, Error **errp)
{
X86CPU *cpu = X86_CPU(dev);
X86CPUClass *xcc = X86_CPU_GET_CLASS(dev);
Error *local_err = NULL;
#ifndef CONFIG_USER_ONLY
cpu_remove_sync(CPU(dev));
qemu_unregister_reset(x86_cpu_machine_reset_cb, dev);
#endif
if (cpu->apic_state) {
object_unparent(OBJECT(cpu->apic_state));
cpu->apic_state = NULL;
}
xcc->parent_unrealize(dev, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
}
typedef struct BitProperty {
FeatureWord w;
uint32_t mask;
} BitProperty;
static void x86_cpu_get_bit_prop(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
BitProperty *fp = opaque;
uint32_t f = cpu->env.features[fp->w];
bool value = (f & fp->mask) == fp->mask;
visit_type_bool(v, name, &value, errp);
}
static void x86_cpu_set_bit_prop(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
DeviceState *dev = DEVICE(obj);
X86CPU *cpu = X86_CPU(obj);
BitProperty *fp = opaque;
Error *local_err = NULL;
bool value;
if (dev->realized) {
qdev_prop_set_after_realize(dev, name, errp);
return;
}
visit_type_bool(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value) {
cpu->env.features[fp->w] |= fp->mask;
} else {
cpu->env.features[fp->w] &= ~fp->mask;
}
cpu->env.user_features[fp->w] |= fp->mask;
}
static void x86_cpu_release_bit_prop(Object *obj, const char *name,
void *opaque)
{
BitProperty *prop = opaque;
g_free(prop);
}
/* Register a boolean property to get/set a single bit in a uint32_t field.
*
* The same property name can be registered multiple times to make it affect
* multiple bits in the same FeatureWord. In that case, the getter will return
* true only if all bits are set.
*/
static void x86_cpu_register_bit_prop(X86CPU *cpu,
const char *prop_name,
FeatureWord w,
int bitnr)
{
BitProperty *fp;
ObjectProperty *op;
uint32_t mask = (1UL << bitnr);
op = object_property_find(OBJECT(cpu), prop_name, NULL);
if (op) {
fp = op->opaque;
assert(fp->w == w);
fp->mask |= mask;
} else {
fp = g_new0(BitProperty, 1);
fp->w = w;
fp->mask = mask;
object_property_add(OBJECT(cpu), prop_name, "bool",
x86_cpu_get_bit_prop,
x86_cpu_set_bit_prop,
x86_cpu_release_bit_prop, fp, &error_abort);
}
}
static void x86_cpu_register_feature_bit_props(X86CPU *cpu,
FeatureWord w,
int bitnr)
{
FeatureWordInfo *fi = &feature_word_info[w];
const char *name = fi->feat_names[bitnr];
if (!name) {
return;
}
/* Property names should use "-" instead of "_".
* Old names containing underscores are registered as aliases
* using object_property_add_alias()
*/
assert(!strchr(name, '_'));
/* aliases don't use "|" delimiters anymore, they are registered
* manually using object_property_add_alias() */
assert(!strchr(name, '|'));
x86_cpu_register_bit_prop(cpu, name, w, bitnr);
}
static GuestPanicInformation *x86_cpu_get_crash_info(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
GuestPanicInformation *panic_info = NULL;
if (env->features[FEAT_HYPERV_EDX] & HV_GUEST_CRASH_MSR_AVAILABLE) {
panic_info = g_malloc0(sizeof(GuestPanicInformation));
panic_info->type = GUEST_PANIC_INFORMATION_TYPE_HYPER_V;
assert(HV_CRASH_PARAMS >= 5);
panic_info->u.hyper_v.arg1 = env->msr_hv_crash_params[0];
panic_info->u.hyper_v.arg2 = env->msr_hv_crash_params[1];
panic_info->u.hyper_v.arg3 = env->msr_hv_crash_params[2];
panic_info->u.hyper_v.arg4 = env->msr_hv_crash_params[3];
panic_info->u.hyper_v.arg5 = env->msr_hv_crash_params[4];
}
return panic_info;
}
static void x86_cpu_get_crash_info_qom(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
CPUState *cs = CPU(obj);
GuestPanicInformation *panic_info;
if (!cs->crash_occurred) {
error_setg(errp, "No crash occured");
return;
}
panic_info = x86_cpu_get_crash_info(cs);
if (panic_info == NULL) {
error_setg(errp, "No crash information");
return;
}
visit_type_GuestPanicInformation(v, "crash-information", &panic_info,
errp);
qapi_free_GuestPanicInformation(panic_info);
}
static void x86_cpu_initfn(Object *obj)
{
CPUState *cs = CPU(obj);
X86CPU *cpu = X86_CPU(obj);
X86CPUClass *xcc = X86_CPU_GET_CLASS(obj);
CPUX86State *env = &cpu->env;
FeatureWord w;
cs->env_ptr = env;
object_property_add(obj, "family", "int",
x86_cpuid_version_get_family,
x86_cpuid_version_set_family, NULL, NULL, NULL);
object_property_add(obj, "model", "int",
x86_cpuid_version_get_model,
x86_cpuid_version_set_model, NULL, NULL, NULL);
object_property_add(obj, "stepping", "int",
x86_cpuid_version_get_stepping,
x86_cpuid_version_set_stepping, NULL, NULL, NULL);
object_property_add_str(obj, "vendor",
x86_cpuid_get_vendor,
x86_cpuid_set_vendor, NULL);
object_property_add_str(obj, "model-id",
x86_cpuid_get_model_id,
x86_cpuid_set_model_id, NULL);
object_property_add(obj, "tsc-frequency", "int",
x86_cpuid_get_tsc_freq,
x86_cpuid_set_tsc_freq, NULL, NULL, NULL);
object_property_add(obj, "feature-words", "X86CPUFeatureWordInfo",
x86_cpu_get_feature_words,
NULL, NULL, (void *)env->features, NULL);
object_property_add(obj, "filtered-features", "X86CPUFeatureWordInfo",
x86_cpu_get_feature_words,
NULL, NULL, (void *)cpu->filtered_features, NULL);
object_property_add(obj, "crash-information", "GuestPanicInformation",
x86_cpu_get_crash_info_qom, NULL, NULL, NULL, NULL);
cpu->hyperv_spinlock_attempts = HYPERV_SPINLOCK_NEVER_RETRY;
for (w = 0; w < FEATURE_WORDS; w++) {
int bitnr;
for (bitnr = 0; bitnr < 32; bitnr++) {
x86_cpu_register_feature_bit_props(cpu, w, bitnr);
}
}
object_property_add_alias(obj, "sse3", obj, "pni", &error_abort);
object_property_add_alias(obj, "pclmuldq", obj, "pclmulqdq", &error_abort);
object_property_add_alias(obj, "sse4-1", obj, "sse4.1", &error_abort);
object_property_add_alias(obj, "sse4-2", obj, "sse4.2", &error_abort);
object_property_add_alias(obj, "xd", obj, "nx", &error_abort);
object_property_add_alias(obj, "ffxsr", obj, "fxsr-opt", &error_abort);
object_property_add_alias(obj, "i64", obj, "lm", &error_abort);
object_property_add_alias(obj, "ds_cpl", obj, "ds-cpl", &error_abort);
object_property_add_alias(obj, "tsc_adjust", obj, "tsc-adjust", &error_abort);
object_property_add_alias(obj, "fxsr_opt", obj, "fxsr-opt", &error_abort);
object_property_add_alias(obj, "lahf_lm", obj, "lahf-lm", &error_abort);
object_property_add_alias(obj, "cmp_legacy", obj, "cmp-legacy", &error_abort);
object_property_add_alias(obj, "nodeid_msr", obj, "nodeid-msr", &error_abort);
object_property_add_alias(obj, "perfctr_core", obj, "perfctr-core", &error_abort);
object_property_add_alias(obj, "perfctr_nb", obj, "perfctr-nb", &error_abort);
object_property_add_alias(obj, "kvm_nopiodelay", obj, "kvm-nopiodelay", &error_abort);
object_property_add_alias(obj, "kvm_mmu", obj, "kvm-mmu", &error_abort);
object_property_add_alias(obj, "kvm_asyncpf", obj, "kvm-asyncpf", &error_abort);
object_property_add_alias(obj, "kvm_steal_time", obj, "kvm-steal-time", &error_abort);
object_property_add_alias(obj, "kvm_pv_eoi", obj, "kvm-pv-eoi", &error_abort);
object_property_add_alias(obj, "kvm_pv_unhalt", obj, "kvm-pv-unhalt", &error_abort);
object_property_add_alias(obj, "svm_lock", obj, "svm-lock", &error_abort);
object_property_add_alias(obj, "nrip_save", obj, "nrip-save", &error_abort);
object_property_add_alias(obj, "tsc_scale", obj, "tsc-scale", &error_abort);
object_property_add_alias(obj, "vmcb_clean", obj, "vmcb-clean", &error_abort);
object_property_add_alias(obj, "pause_filter", obj, "pause-filter", &error_abort);
object_property_add_alias(obj, "sse4_1", obj, "sse4.1", &error_abort);
object_property_add_alias(obj, "sse4_2", obj, "sse4.2", &error_abort);
if (xcc->cpu_def) {
x86_cpu_load_def(cpu, xcc->cpu_def, &error_abort);
}
}
static int64_t x86_cpu_get_arch_id(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
return cpu->apic_id;
}
static bool x86_cpu_get_paging_enabled(const CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
return cpu->env.cr[0] & CR0_PG_MASK;
}
static void x86_cpu_set_pc(CPUState *cs, vaddr value)
{
X86CPU *cpu = X86_CPU(cs);
cpu->env.eip = value;
}
static void x86_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
{
X86CPU *cpu = X86_CPU(cs);
cpu->env.eip = tb->pc - tb->cs_base;
}
static bool x86_cpu_has_work(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
return ((cs->interrupt_request & (CPU_INTERRUPT_HARD |
CPU_INTERRUPT_POLL)) &&
(env->eflags & IF_MASK)) ||
(cs->interrupt_request & (CPU_INTERRUPT_NMI |
CPU_INTERRUPT_INIT |
CPU_INTERRUPT_SIPI |
CPU_INTERRUPT_MCE)) ||
((cs->interrupt_request & CPU_INTERRUPT_SMI) &&
!(env->hflags & HF_SMM_MASK));
}
static void x86_disas_set_info(CPUState *cs, disassemble_info *info)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
info->mach = (env->hflags & HF_CS64_MASK ? bfd_mach_x86_64
: env->hflags & HF_CS32_MASK ? bfd_mach_i386_i386
: bfd_mach_i386_i8086);
info->print_insn = print_insn_i386;
info->cap_arch = CS_ARCH_X86;
info->cap_mode = (env->hflags & HF_CS64_MASK ? CS_MODE_64
: env->hflags & HF_CS32_MASK ? CS_MODE_32
: CS_MODE_16);
info->cap_insn_unit = 1;
info->cap_insn_split = 8;
}
void x86_update_hflags(CPUX86State *env)
{
uint32_t hflags;
#define HFLAG_COPY_MASK \
~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
hflags = env->hflags & HFLAG_COPY_MASK;
hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
if (env->cr[4] & CR4_OSFXSR_MASK) {
hflags |= HF_OSFXSR_MASK;
}
if (env->efer & MSR_EFER_LMA) {
hflags |= HF_LMA_MASK;
}
if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
} else {
hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
(DESC_B_SHIFT - HF_CS32_SHIFT);
hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
(DESC_B_SHIFT - HF_SS32_SHIFT);
if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
!(hflags & HF_CS32_MASK)) {
hflags |= HF_ADDSEG_MASK;
} else {
hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
}
}
env->hflags = hflags;
}
static Property x86_cpu_properties[] = {
#ifdef CONFIG_USER_ONLY
/* apic_id = 0 by default for *-user, see commit 9886e834 */
DEFINE_PROP_UINT32("apic-id", X86CPU, apic_id, 0),
DEFINE_PROP_INT32("thread-id", X86CPU, thread_id, 0),
DEFINE_PROP_INT32("core-id", X86CPU, core_id, 0),
DEFINE_PROP_INT32("socket-id", X86CPU, socket_id, 0),
#else
DEFINE_PROP_UINT32("apic-id", X86CPU, apic_id, UNASSIGNED_APIC_ID),
DEFINE_PROP_INT32("thread-id", X86CPU, thread_id, -1),
DEFINE_PROP_INT32("core-id", X86CPU, core_id, -1),
DEFINE_PROP_INT32("socket-id", X86CPU, socket_id, -1),
#endif
DEFINE_PROP_INT32("node-id", X86CPU, node_id, CPU_UNSET_NUMA_NODE_ID),
DEFINE_PROP_BOOL("pmu", X86CPU, enable_pmu, false),
{ .name = "hv-spinlocks", .info = &qdev_prop_spinlocks },
DEFINE_PROP_BOOL("hv-relaxed", X86CPU, hyperv_relaxed_timing, false),
DEFINE_PROP_BOOL("hv-vapic", X86CPU, hyperv_vapic, false),
DEFINE_PROP_BOOL("hv-time", X86CPU, hyperv_time, false),
DEFINE_PROP_BOOL("hv-crash", X86CPU, hyperv_crash, false),
DEFINE_PROP_BOOL("hv-reset", X86CPU, hyperv_reset, false),
DEFINE_PROP_BOOL("hv-vpindex", X86CPU, hyperv_vpindex, false),
DEFINE_PROP_BOOL("hv-runtime", X86CPU, hyperv_runtime, false),
DEFINE_PROP_BOOL("hv-synic", X86CPU, hyperv_synic, false),
DEFINE_PROP_BOOL("hv-stimer", X86CPU, hyperv_stimer, false),
DEFINE_PROP_BOOL("check", X86CPU, check_cpuid, true),
DEFINE_PROP_BOOL("enforce", X86CPU, enforce_cpuid, false),
DEFINE_PROP_BOOL("kvm", X86CPU, expose_kvm, true),
DEFINE_PROP_UINT32("phys-bits", X86CPU, phys_bits, 0),
DEFINE_PROP_BOOL("host-phys-bits", X86CPU, host_phys_bits, false),
DEFINE_PROP_BOOL("fill-mtrr-mask", X86CPU, fill_mtrr_mask, true),
DEFINE_PROP_UINT32("level", X86CPU, env.cpuid_level, UINT32_MAX),
DEFINE_PROP_UINT32("xlevel", X86CPU, env.cpuid_xlevel, UINT32_MAX),
DEFINE_PROP_UINT32("xlevel2", X86CPU, env.cpuid_xlevel2, UINT32_MAX),
DEFINE_PROP_UINT32("min-level", X86CPU, env.cpuid_min_level, 0),
DEFINE_PROP_UINT32("min-xlevel", X86CPU, env.cpuid_min_xlevel, 0),
DEFINE_PROP_UINT32("min-xlevel2", X86CPU, env.cpuid_min_xlevel2, 0),
DEFINE_PROP_BOOL("full-cpuid-auto-level", X86CPU, full_cpuid_auto_level, true),
DEFINE_PROP_STRING("hv-vendor-id", X86CPU, hyperv_vendor_id),
DEFINE_PROP_BOOL("cpuid-0xb", X86CPU, enable_cpuid_0xb, true),
DEFINE_PROP_BOOL("lmce", X86CPU, enable_lmce, false),
DEFINE_PROP_BOOL("l3-cache", X86CPU, enable_l3_cache, true),
DEFINE_PROP_BOOL("kvm-no-smi-migration", X86CPU, kvm_no_smi_migration,
false),
DEFINE_PROP_BOOL("vmware-cpuid-freq", X86CPU, vmware_cpuid_freq, true),
DEFINE_PROP_BOOL("tcg-cpuid", X86CPU, expose_tcg, true),
/*
* From "Requirements for Implementing the Microsoft
* Hypervisor Interface":
* https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs
*
* "Starting with Windows Server 2012 and Windows 8, if
* CPUID.40000005.EAX contains a value of -1, Windows assumes that
* the hypervisor imposes no specific limit to the number of VPs.
* In this case, Windows Server 2012 guest VMs may use more than
* 64 VPs, up to the maximum supported number of processors applicable
* to the specific Windows version being used."
*/
DEFINE_PROP_INT32("x-hv-max-vps", X86CPU, hv_max_vps, -1),
DEFINE_PROP_END_OF_LIST()
};
static void x86_cpu_common_class_init(ObjectClass *oc, void *data)
{
X86CPUClass *xcc = X86_CPU_CLASS(oc);
CPUClass *cc = CPU_CLASS(oc);
DeviceClass *dc = DEVICE_CLASS(oc);
device_class_set_parent_realize(dc, x86_cpu_realizefn,
&xcc->parent_realize);
device_class_set_parent_unrealize(dc, x86_cpu_unrealizefn,
&xcc->parent_unrealize);
dc->props = x86_cpu_properties;
xcc->parent_reset = cc->reset;
cc->reset = x86_cpu_reset;
cc->reset_dump_flags = CPU_DUMP_FPU | CPU_DUMP_CCOP;
cc->class_by_name = x86_cpu_class_by_name;
cc->parse_features = x86_cpu_parse_featurestr;
cc->has_work = x86_cpu_has_work;
#ifdef CONFIG_TCG
cc->do_interrupt = x86_cpu_do_interrupt;
cc->cpu_exec_interrupt = x86_cpu_exec_interrupt;
#endif
cc->dump_state = x86_cpu_dump_state;
cc->get_crash_info = x86_cpu_get_crash_info;
cc->set_pc = x86_cpu_set_pc;
cc->synchronize_from_tb = x86_cpu_synchronize_from_tb;
cc->gdb_read_register = x86_cpu_gdb_read_register;
cc->gdb_write_register = x86_cpu_gdb_write_register;
cc->get_arch_id = x86_cpu_get_arch_id;
cc->get_paging_enabled = x86_cpu_get_paging_enabled;
#ifdef CONFIG_USER_ONLY
cc->handle_mmu_fault = x86_cpu_handle_mmu_fault;
#else
cc->asidx_from_attrs = x86_asidx_from_attrs;
cc->get_memory_mapping = x86_cpu_get_memory_mapping;
cc->get_phys_page_debug = x86_cpu_get_phys_page_debug;
cc->write_elf64_note = x86_cpu_write_elf64_note;
cc->write_elf64_qemunote = x86_cpu_write_elf64_qemunote;
cc->write_elf32_note = x86_cpu_write_elf32_note;
cc->write_elf32_qemunote = x86_cpu_write_elf32_qemunote;
cc->vmsd = &vmstate_x86_cpu;
#endif
cc->gdb_arch_name = x86_gdb_arch_name;
#ifdef TARGET_X86_64
cc->gdb_core_xml_file = "i386-64bit.xml";
cc->gdb_num_core_regs = 57;
#else
cc->gdb_core_xml_file = "i386-32bit.xml";
cc->gdb_num_core_regs = 41;
#endif
#if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
cc->debug_excp_handler = breakpoint_handler;
#endif
cc->cpu_exec_enter = x86_cpu_exec_enter;
cc->cpu_exec_exit = x86_cpu_exec_exit;
#ifdef CONFIG_TCG
cc->tcg_initialize = tcg_x86_init;
#endif
cc->disas_set_info = x86_disas_set_info;
dc->user_creatable = true;
}
static const TypeInfo x86_cpu_type_info = {
.name = TYPE_X86_CPU,
.parent = TYPE_CPU,
.instance_size = sizeof(X86CPU),
.instance_init = x86_cpu_initfn,
.abstract = true,
.class_size = sizeof(X86CPUClass),
.class_init = x86_cpu_common_class_init,
};
/* "base" CPU model, used by query-cpu-model-expansion */
static void x86_cpu_base_class_init(ObjectClass *oc, void *data)
{
X86CPUClass *xcc = X86_CPU_CLASS(oc);
xcc->static_model = true;
xcc->migration_safe = true;
xcc->model_description = "base CPU model type with no features enabled";
xcc->ordering = 8;
}
static const TypeInfo x86_base_cpu_type_info = {
.name = X86_CPU_TYPE_NAME("base"),
.parent = TYPE_X86_CPU,
.class_init = x86_cpu_base_class_init,
};
static void x86_cpu_register_types(void)
{
int i;
type_register_static(&x86_cpu_type_info);
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) {
x86_register_cpudef_type(&builtin_x86_defs[i]);
}
type_register_static(&max_x86_cpu_type_info);
type_register_static(&x86_base_cpu_type_info);
#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
type_register_static(&host_x86_cpu_type_info);
#endif
}
type_init(x86_cpu_register_types)