qemu-e2k/block/linux-aio.c
Emanuele Giuseppe Esposito ab50533b69 linux-aio: use LinuxAioState from the running thread
Remove usage of aio_context_acquire by always submitting asynchronous
AIO to the current thread's LinuxAioState.

In order to prevent mistakes from the caller side, avoid passing LinuxAioState
in laio_io_{plug/unplug} and laio_co_submit, and document the functions
to make clear that they work in the current thread's AioContext.

Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20230203131731.851116-2-eesposit@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2023-04-25 13:17:28 +02:00

500 lines
14 KiB
C

/*
* Linux native AIO support.
*
* Copyright (C) 2009 IBM, Corp.
* Copyright (C) 2009 Red Hat, Inc.
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "block/aio.h"
#include "qemu/queue.h"
#include "block/block.h"
#include "block/raw-aio.h"
#include "qemu/event_notifier.h"
#include "qemu/coroutine.h"
#include "qapi/error.h"
/* Only used for assertions. */
#include "qemu/coroutine_int.h"
#include <libaio.h>
/*
* Queue size (per-device).
*
* XXX: eventually we need to communicate this to the guest and/or make it
* tunable by the guest. If we get more outstanding requests at a time
* than this we will get EAGAIN from io_submit which is communicated to
* the guest as an I/O error.
*/
#define MAX_EVENTS 1024
/* Maximum number of requests in a batch. (default value) */
#define DEFAULT_MAX_BATCH 32
struct qemu_laiocb {
Coroutine *co;
LinuxAioState *ctx;
struct iocb iocb;
ssize_t ret;
size_t nbytes;
QEMUIOVector *qiov;
bool is_read;
QSIMPLEQ_ENTRY(qemu_laiocb) next;
};
typedef struct {
int plugged;
unsigned int in_queue;
unsigned int in_flight;
bool blocked;
QSIMPLEQ_HEAD(, qemu_laiocb) pending;
} LaioQueue;
struct LinuxAioState {
AioContext *aio_context;
io_context_t ctx;
EventNotifier e;
/* No locking required, only accessed from AioContext home thread */
LaioQueue io_q;
QEMUBH *completion_bh;
int event_idx;
int event_max;
};
static void ioq_submit(LinuxAioState *s);
static inline ssize_t io_event_ret(struct io_event *ev)
{
return (ssize_t)(((uint64_t)ev->res2 << 32) | ev->res);
}
/*
* Completes an AIO request.
*/
static void qemu_laio_process_completion(struct qemu_laiocb *laiocb)
{
int ret;
ret = laiocb->ret;
if (ret != -ECANCELED) {
if (ret == laiocb->nbytes) {
ret = 0;
} else if (ret >= 0) {
/* Short reads mean EOF, pad with zeros. */
if (laiocb->is_read) {
qemu_iovec_memset(laiocb->qiov, ret, 0,
laiocb->qiov->size - ret);
} else {
ret = -ENOSPC;
}
}
}
laiocb->ret = ret;
/*
* If the coroutine is already entered it must be in ioq_submit() and
* will notice laio->ret has been filled in when it eventually runs
* later. Coroutines cannot be entered recursively so avoid doing
* that!
*/
assert(laiocb->co->ctx == laiocb->ctx->aio_context);
if (!qemu_coroutine_entered(laiocb->co)) {
aio_co_wake(laiocb->co);
}
}
/**
* aio_ring buffer which is shared between userspace and kernel.
*
* This copied from linux/fs/aio.c, common header does not exist
* but AIO exists for ages so we assume ABI is stable.
*/
struct aio_ring {
unsigned id; /* kernel internal index number */
unsigned nr; /* number of io_events */
unsigned head; /* Written to by userland or by kernel. */
unsigned tail;
unsigned magic;
unsigned compat_features;
unsigned incompat_features;
unsigned header_length; /* size of aio_ring */
struct io_event io_events[];
};
/**
* io_getevents_peek:
* @ctx: AIO context
* @events: pointer on events array, output value
* Returns the number of completed events and sets a pointer
* on events array. This function does not update the internal
* ring buffer, only reads head and tail. When @events has been
* processed io_getevents_commit() must be called.
*/
static inline unsigned int io_getevents_peek(io_context_t ctx,
struct io_event **events)
{
struct aio_ring *ring = (struct aio_ring *)ctx;
unsigned int head = ring->head, tail = ring->tail;
unsigned int nr;
nr = tail >= head ? tail - head : ring->nr - head;
*events = ring->io_events + head;
/* To avoid speculative loads of s->events[i] before observing tail.
Paired with smp_wmb() inside linux/fs/aio.c: aio_complete(). */
smp_rmb();
return nr;
}
/**
* io_getevents_commit:
* @ctx: AIO context
* @nr: the number of events on which head should be advanced
*
* Advances head of a ring buffer.
*/
static inline void io_getevents_commit(io_context_t ctx, unsigned int nr)
{
struct aio_ring *ring = (struct aio_ring *)ctx;
if (nr) {
ring->head = (ring->head + nr) % ring->nr;
}
}
/**
* io_getevents_advance_and_peek:
* @ctx: AIO context
* @events: pointer on events array, output value
* @nr: the number of events on which head should be advanced
*
* Advances head of a ring buffer and returns number of elements left.
*/
static inline unsigned int
io_getevents_advance_and_peek(io_context_t ctx,
struct io_event **events,
unsigned int nr)
{
io_getevents_commit(ctx, nr);
return io_getevents_peek(ctx, events);
}
/**
* qemu_laio_process_completions:
* @s: AIO state
*
* Fetches completed I/O requests and invokes their callbacks.
*
* The function is somewhat tricky because it supports nested event loops, for
* example when a request callback invokes aio_poll(). In order to do this,
* indices are kept in LinuxAioState. Function schedules BH completion so it
* can be called again in a nested event loop. When there are no events left
* to complete the BH is being canceled.
*/
static void qemu_laio_process_completions(LinuxAioState *s)
{
struct io_event *events;
/* Reschedule so nested event loops see currently pending completions */
qemu_bh_schedule(s->completion_bh);
while ((s->event_max = io_getevents_advance_and_peek(s->ctx, &events,
s->event_idx))) {
for (s->event_idx = 0; s->event_idx < s->event_max; ) {
struct iocb *iocb = events[s->event_idx].obj;
struct qemu_laiocb *laiocb =
container_of(iocb, struct qemu_laiocb, iocb);
laiocb->ret = io_event_ret(&events[s->event_idx]);
/* Change counters one-by-one because we can be nested. */
s->io_q.in_flight--;
s->event_idx++;
qemu_laio_process_completion(laiocb);
}
}
qemu_bh_cancel(s->completion_bh);
/* If we are nested we have to notify the level above that we are done
* by setting event_max to zero, upper level will then jump out of it's
* own `for` loop. If we are the last all counters droped to zero. */
s->event_max = 0;
s->event_idx = 0;
}
static void qemu_laio_process_completions_and_submit(LinuxAioState *s)
{
qemu_laio_process_completions(s);
if (!s->io_q.plugged && !QSIMPLEQ_EMPTY(&s->io_q.pending)) {
ioq_submit(s);
}
}
static void qemu_laio_completion_bh(void *opaque)
{
LinuxAioState *s = opaque;
qemu_laio_process_completions_and_submit(s);
}
static void qemu_laio_completion_cb(EventNotifier *e)
{
LinuxAioState *s = container_of(e, LinuxAioState, e);
if (event_notifier_test_and_clear(&s->e)) {
qemu_laio_process_completions_and_submit(s);
}
}
static bool qemu_laio_poll_cb(void *opaque)
{
EventNotifier *e = opaque;
LinuxAioState *s = container_of(e, LinuxAioState, e);
struct io_event *events;
return io_getevents_peek(s->ctx, &events);
}
static void qemu_laio_poll_ready(EventNotifier *opaque)
{
EventNotifier *e = opaque;
LinuxAioState *s = container_of(e, LinuxAioState, e);
qemu_laio_process_completions_and_submit(s);
}
static void ioq_init(LaioQueue *io_q)
{
QSIMPLEQ_INIT(&io_q->pending);
io_q->plugged = 0;
io_q->in_queue = 0;
io_q->in_flight = 0;
io_q->blocked = false;
}
static void ioq_submit(LinuxAioState *s)
{
int ret, len;
struct qemu_laiocb *aiocb;
struct iocb *iocbs[MAX_EVENTS];
QSIMPLEQ_HEAD(, qemu_laiocb) completed;
do {
if (s->io_q.in_flight >= MAX_EVENTS) {
break;
}
len = 0;
QSIMPLEQ_FOREACH(aiocb, &s->io_q.pending, next) {
iocbs[len++] = &aiocb->iocb;
if (s->io_q.in_flight + len >= MAX_EVENTS) {
break;
}
}
ret = io_submit(s->ctx, len, iocbs);
if (ret == -EAGAIN) {
break;
}
if (ret < 0) {
/* Fail the first request, retry the rest */
aiocb = QSIMPLEQ_FIRST(&s->io_q.pending);
QSIMPLEQ_REMOVE_HEAD(&s->io_q.pending, next);
s->io_q.in_queue--;
aiocb->ret = ret;
qemu_laio_process_completion(aiocb);
continue;
}
s->io_q.in_flight += ret;
s->io_q.in_queue -= ret;
aiocb = container_of(iocbs[ret - 1], struct qemu_laiocb, iocb);
QSIMPLEQ_SPLIT_AFTER(&s->io_q.pending, aiocb, next, &completed);
} while (ret == len && !QSIMPLEQ_EMPTY(&s->io_q.pending));
s->io_q.blocked = (s->io_q.in_queue > 0);
if (s->io_q.in_flight) {
/* We can try to complete something just right away if there are
* still requests in-flight. */
qemu_laio_process_completions(s);
/*
* Even we have completed everything (in_flight == 0), the queue can
* have still pended requests (in_queue > 0). We do not attempt to
* repeat submission to avoid IO hang. The reason is simple: s->e is
* still set and completion callback will be called shortly and all
* pended requests will be submitted from there.
*/
}
}
static uint64_t laio_max_batch(LinuxAioState *s, uint64_t dev_max_batch)
{
uint64_t max_batch = s->aio_context->aio_max_batch ?: DEFAULT_MAX_BATCH;
/*
* AIO context can be shared between multiple block devices, so
* `dev_max_batch` allows reducing the batch size for latency-sensitive
* devices.
*/
max_batch = MIN_NON_ZERO(dev_max_batch, max_batch);
/* limit the batch with the number of available events */
max_batch = MIN_NON_ZERO(MAX_EVENTS - s->io_q.in_flight, max_batch);
return max_batch;
}
void laio_io_plug(void)
{
AioContext *ctx = qemu_get_current_aio_context();
LinuxAioState *s = aio_get_linux_aio(ctx);
s->io_q.plugged++;
}
void laio_io_unplug(uint64_t dev_max_batch)
{
AioContext *ctx = qemu_get_current_aio_context();
LinuxAioState *s = aio_get_linux_aio(ctx);
assert(s->io_q.plugged);
s->io_q.plugged--;
/*
* Why max batch checking is performed here:
* Another BDS may have queued requests with a higher dev_max_batch and
* therefore in_queue could now exceed our dev_max_batch. Re-check the max
* batch so we can honor our device's dev_max_batch.
*/
if (s->io_q.in_queue >= laio_max_batch(s, dev_max_batch) ||
(!s->io_q.plugged &&
!s->io_q.blocked && !QSIMPLEQ_EMPTY(&s->io_q.pending))) {
ioq_submit(s);
}
}
static int laio_do_submit(int fd, struct qemu_laiocb *laiocb, off_t offset,
int type, uint64_t dev_max_batch)
{
LinuxAioState *s = laiocb->ctx;
struct iocb *iocbs = &laiocb->iocb;
QEMUIOVector *qiov = laiocb->qiov;
switch (type) {
case QEMU_AIO_WRITE:
io_prep_pwritev(iocbs, fd, qiov->iov, qiov->niov, offset);
break;
case QEMU_AIO_READ:
io_prep_preadv(iocbs, fd, qiov->iov, qiov->niov, offset);
break;
/* Currently Linux kernel does not support other operations */
default:
fprintf(stderr, "%s: invalid AIO request type 0x%x.\n",
__func__, type);
return -EIO;
}
io_set_eventfd(&laiocb->iocb, event_notifier_get_fd(&s->e));
QSIMPLEQ_INSERT_TAIL(&s->io_q.pending, laiocb, next);
s->io_q.in_queue++;
if (!s->io_q.blocked &&
(!s->io_q.plugged ||
s->io_q.in_queue >= laio_max_batch(s, dev_max_batch))) {
ioq_submit(s);
}
return 0;
}
int coroutine_fn laio_co_submit(int fd, uint64_t offset, QEMUIOVector *qiov,
int type, uint64_t dev_max_batch)
{
int ret;
AioContext *ctx = qemu_get_current_aio_context();
struct qemu_laiocb laiocb = {
.co = qemu_coroutine_self(),
.nbytes = qiov->size,
.ctx = aio_get_linux_aio(ctx),
.ret = -EINPROGRESS,
.is_read = (type == QEMU_AIO_READ),
.qiov = qiov,
};
ret = laio_do_submit(fd, &laiocb, offset, type, dev_max_batch);
if (ret < 0) {
return ret;
}
if (laiocb.ret == -EINPROGRESS) {
qemu_coroutine_yield();
}
return laiocb.ret;
}
void laio_detach_aio_context(LinuxAioState *s, AioContext *old_context)
{
aio_set_event_notifier(old_context, &s->e, false, NULL, NULL, NULL);
qemu_bh_delete(s->completion_bh);
s->aio_context = NULL;
}
void laio_attach_aio_context(LinuxAioState *s, AioContext *new_context)
{
s->aio_context = new_context;
s->completion_bh = aio_bh_new(new_context, qemu_laio_completion_bh, s);
aio_set_event_notifier(new_context, &s->e, false,
qemu_laio_completion_cb,
qemu_laio_poll_cb,
qemu_laio_poll_ready);
}
LinuxAioState *laio_init(Error **errp)
{
int rc;
LinuxAioState *s;
s = g_malloc0(sizeof(*s));
rc = event_notifier_init(&s->e, false);
if (rc < 0) {
error_setg_errno(errp, -rc, "failed to initialize event notifier");
goto out_free_state;
}
rc = io_setup(MAX_EVENTS, &s->ctx);
if (rc < 0) {
error_setg_errno(errp, -rc, "failed to create linux AIO context");
goto out_close_efd;
}
ioq_init(&s->io_q);
return s;
out_close_efd:
event_notifier_cleanup(&s->e);
out_free_state:
g_free(s);
return NULL;
}
void laio_cleanup(LinuxAioState *s)
{
event_notifier_cleanup(&s->e);
if (io_destroy(s->ctx) != 0) {
fprintf(stderr, "%s: destroy AIO context %p failed\n",
__func__, &s->ctx);
}
g_free(s);
}