qemu-e2k/target-i386/cpu.c
Crístian Viana 93bfef4c6e Allow machines to configure the QEMU_VERSION that's exposed via hardware
QEMU exposes its version to the guest's hardware and in some cases that is wrong
(e.g. Windows prints messages about driver updates when you switch
the QEMU version).
There is a new field now on the struct QEmuMachine, hw_version, which may
contain the version that the specific machine should report. If that field is
set, then that machine will report that version to the guest.

Signed-off-by: Crístian Viana <vianac@linux.vnet.ibm.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-06-19 13:36:56 -05:00

1775 lines
58 KiB
C

/*
* i386 CPUID helper functions
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "cpu.h"
#include "kvm.h"
#include "qemu-option.h"
#include "qemu-config.h"
#include "qapi/qapi-visit-core.h"
#include "hyperv.h"
/* feature flags taken from "Intel Processor Identification and the CPUID
* Instruction" and AMD's "CPUID Specification". In cases of disagreement
* between feature naming conventions, aliases may be added.
*/
static const char *feature_name[] = {
"fpu", "vme", "de", "pse",
"tsc", "msr", "pae", "mce",
"cx8", "apic", NULL, "sep",
"mtrr", "pge", "mca", "cmov",
"pat", "pse36", "pn" /* Intel psn */, "clflush" /* Intel clfsh */,
NULL, "ds" /* Intel dts */, "acpi", "mmx",
"fxsr", "sse", "sse2", "ss",
"ht" /* Intel htt */, "tm", "ia64", "pbe",
};
static const char *ext_feature_name[] = {
"pni|sse3" /* Intel,AMD sse3 */, "pclmulqdq|pclmuldq", "dtes64", "monitor",
"ds_cpl", "vmx", "smx", "est",
"tm2", "ssse3", "cid", NULL,
"fma", "cx16", "xtpr", "pdcm",
NULL, NULL, "dca", "sse4.1|sse4_1",
"sse4.2|sse4_2", "x2apic", "movbe", "popcnt",
"tsc-deadline", "aes", "xsave", "osxsave",
"avx", NULL, NULL, "hypervisor",
};
static const char *ext2_feature_name[] = {
"fpu", "vme", "de", "pse",
"tsc", "msr", "pae", "mce",
"cx8" /* AMD CMPXCHG8B */, "apic", NULL, "syscall",
"mtrr", "pge", "mca", "cmov",
"pat", "pse36", NULL, NULL /* Linux mp */,
"nx|xd", NULL, "mmxext", "mmx",
"fxsr", "fxsr_opt|ffxsr", "pdpe1gb" /* AMD Page1GB */, "rdtscp",
NULL, "lm|i64", "3dnowext", "3dnow",
};
static const char *ext3_feature_name[] = {
"lahf_lm" /* AMD LahfSahf */, "cmp_legacy", "svm", "extapic" /* AMD ExtApicSpace */,
"cr8legacy" /* AMD AltMovCr8 */, "abm", "sse4a", "misalignsse",
"3dnowprefetch", "osvw", "ibs", "xop",
"skinit", "wdt", NULL, NULL,
"fma4", NULL, "cvt16", "nodeid_msr",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
};
static const char *kvm_feature_name[] = {
"kvmclock", "kvm_nopiodelay", "kvm_mmu", "kvmclock", "kvm_asyncpf", NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
};
static const char *svm_feature_name[] = {
"npt", "lbrv", "svm_lock", "nrip_save",
"tsc_scale", "vmcb_clean", "flushbyasid", "decodeassists",
NULL, NULL, "pause_filter", NULL,
"pfthreshold", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
};
/* collects per-function cpuid data
*/
typedef struct model_features_t {
uint32_t *guest_feat;
uint32_t *host_feat;
uint32_t check_feat;
const char **flag_names;
uint32_t cpuid;
} model_features_t;
int check_cpuid = 0;
int enforce_cpuid = 0;
void host_cpuid(uint32_t function, uint32_t count,
uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
#if defined(CONFIG_KVM)
uint32_t vec[4];
#ifdef __x86_64__
asm volatile("cpuid"
: "=a"(vec[0]), "=b"(vec[1]),
"=c"(vec[2]), "=d"(vec[3])
: "0"(function), "c"(count) : "cc");
#else
asm volatile("pusha \n\t"
"cpuid \n\t"
"mov %%eax, 0(%2) \n\t"
"mov %%ebx, 4(%2) \n\t"
"mov %%ecx, 8(%2) \n\t"
"mov %%edx, 12(%2) \n\t"
"popa"
: : "a"(function), "c"(count), "S"(vec)
: "memory", "cc");
#endif
if (eax)
*eax = vec[0];
if (ebx)
*ebx = vec[1];
if (ecx)
*ecx = vec[2];
if (edx)
*edx = vec[3];
#endif
}
#define iswhite(c) ((c) && ((c) <= ' ' || '~' < (c)))
/* general substring compare of *[s1..e1) and *[s2..e2). sx is start of
* a substring. ex if !NULL points to the first char after a substring,
* otherwise the string is assumed to sized by a terminating nul.
* Return lexical ordering of *s1:*s2.
*/
static int sstrcmp(const char *s1, const char *e1, const char *s2,
const char *e2)
{
for (;;) {
if (!*s1 || !*s2 || *s1 != *s2)
return (*s1 - *s2);
++s1, ++s2;
if (s1 == e1 && s2 == e2)
return (0);
else if (s1 == e1)
return (*s2);
else if (s2 == e2)
return (*s1);
}
}
/* compare *[s..e) to *altstr. *altstr may be a simple string or multiple
* '|' delimited (possibly empty) strings in which case search for a match
* within the alternatives proceeds left to right. Return 0 for success,
* non-zero otherwise.
*/
static int altcmp(const char *s, const char *e, const char *altstr)
{
const char *p, *q;
for (q = p = altstr; ; ) {
while (*p && *p != '|')
++p;
if ((q == p && !*s) || (q != p && !sstrcmp(s, e, q, p)))
return (0);
if (!*p)
return (1);
else
q = ++p;
}
}
/* search featureset for flag *[s..e), if found set corresponding bit in
* *pval and return true, otherwise return false
*/
static bool lookup_feature(uint32_t *pval, const char *s, const char *e,
const char **featureset)
{
uint32_t mask;
const char **ppc;
bool found = false;
for (mask = 1, ppc = featureset; mask; mask <<= 1, ++ppc) {
if (*ppc && !altcmp(s, e, *ppc)) {
*pval |= mask;
found = true;
}
}
return found;
}
static void add_flagname_to_bitmaps(const char *flagname, uint32_t *features,
uint32_t *ext_features,
uint32_t *ext2_features,
uint32_t *ext3_features,
uint32_t *kvm_features,
uint32_t *svm_features)
{
if (!lookup_feature(features, flagname, NULL, feature_name) &&
!lookup_feature(ext_features, flagname, NULL, ext_feature_name) &&
!lookup_feature(ext2_features, flagname, NULL, ext2_feature_name) &&
!lookup_feature(ext3_features, flagname, NULL, ext3_feature_name) &&
!lookup_feature(kvm_features, flagname, NULL, kvm_feature_name) &&
!lookup_feature(svm_features, flagname, NULL, svm_feature_name))
fprintf(stderr, "CPU feature %s not found\n", flagname);
}
typedef struct x86_def_t {
struct x86_def_t *next;
const char *name;
uint32_t level;
uint32_t vendor1, vendor2, vendor3;
int family;
int model;
int stepping;
int tsc_khz;
uint32_t features, ext_features, ext2_features, ext3_features;
uint32_t kvm_features, svm_features;
uint32_t xlevel;
char model_id[48];
int vendor_override;
uint32_t flags;
/* Store the results of Centaur's CPUID instructions */
uint32_t ext4_features;
uint32_t xlevel2;
/* The feature bits on CPUID[EAX=7,ECX=0].EBX */
uint32_t cpuid_7_0_ebx_features;
} x86_def_t;
#define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE)
#define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX | CPUID_APIC)
#define PENTIUM2_FEATURES (PENTIUM_FEATURES | CPUID_PAE | CPUID_SEP | \
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
CPUID_PSE36 | CPUID_FXSR)
#define PENTIUM3_FEATURES (PENTIUM2_FEATURES | CPUID_SSE)
#define PPRO_FEATURES (CPUID_FP87 | CPUID_DE | CPUID_PSE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_PGE | CPUID_CMOV | \
CPUID_PAT | CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | \
CPUID_PAE | CPUID_SEP | CPUID_APIC)
#define EXT2_FEATURE_MASK 0x0183F3FF
#define TCG_FEATURES (CPUID_FP87 | CPUID_PSE | CPUID_TSC | CPUID_MSR | \
CPUID_PAE | CPUID_MCE | CPUID_CX8 | CPUID_APIC | CPUID_SEP | \
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
CPUID_PSE36 | CPUID_CLFLUSH | CPUID_ACPI | CPUID_MMX | \
CPUID_FXSR | CPUID_SSE | CPUID_SSE2 | CPUID_SS)
/* partly implemented:
CPUID_MTRR, CPUID_MCA, CPUID_CLFLUSH (needed for Win64)
CPUID_PSE36 (needed for Solaris) */
/* missing:
CPUID_VME, CPUID_DTS, CPUID_SS, CPUID_HT, CPUID_TM, CPUID_PBE */
#define TCG_EXT_FEATURES (CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | \
CPUID_EXT_CX16 | CPUID_EXT_POPCNT | \
CPUID_EXT_HYPERVISOR)
/* missing:
CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_VMX, CPUID_EXT_EST,
CPUID_EXT_TM2, CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_XSAVE */
#define TCG_EXT2_FEATURES ((TCG_FEATURES & EXT2_FEATURE_MASK) | \
CPUID_EXT2_NX | CPUID_EXT2_MMXEXT | CPUID_EXT2_RDTSCP | \
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT)
/* missing:
CPUID_EXT2_PDPE1GB */
#define TCG_EXT3_FEATURES (CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | \
CPUID_EXT3_CR8LEG | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A)
#define TCG_SVM_FEATURES 0
/* maintains list of cpu model definitions
*/
static x86_def_t *x86_defs = {NULL};
/* built-in cpu model definitions (deprecated)
*/
static x86_def_t builtin_x86_defs[] = {
{
.name = "qemu64",
.level = 4,
.vendor1 = CPUID_VENDOR_AMD_1,
.vendor2 = CPUID_VENDOR_AMD_2,
.vendor3 = CPUID_VENDOR_AMD_3,
.family = 6,
.model = 2,
.stepping = 3,
.features = PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
.ext_features = CPUID_EXT_SSE3 | CPUID_EXT_CX16 | CPUID_EXT_POPCNT,
.ext2_features = (PPRO_FEATURES & EXT2_FEATURE_MASK) |
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.ext3_features = CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM |
CPUID_EXT3_ABM | CPUID_EXT3_SSE4A,
.xlevel = 0x8000000A,
},
{
.name = "phenom",
.level = 5,
.vendor1 = CPUID_VENDOR_AMD_1,
.vendor2 = CPUID_VENDOR_AMD_2,
.vendor3 = CPUID_VENDOR_AMD_3,
.family = 16,
.model = 2,
.stepping = 3,
.features = PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36 | CPUID_VME | CPUID_HT,
.ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_CX16 |
CPUID_EXT_POPCNT,
.ext2_features = (PPRO_FEATURES & EXT2_FEATURE_MASK) |
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX |
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_MMXEXT |
CPUID_EXT2_FFXSR | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP,
/* Missing: CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS */
.ext3_features = CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM |
CPUID_EXT3_ABM | CPUID_EXT3_SSE4A,
.svm_features = CPUID_SVM_NPT | CPUID_SVM_LBRV,
.xlevel = 0x8000001A,
.model_id = "AMD Phenom(tm) 9550 Quad-Core Processor"
},
{
.name = "core2duo",
.level = 10,
.family = 6,
.model = 15,
.stepping = 11,
.features = PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36 | CPUID_VME | CPUID_DTS | CPUID_ACPI | CPUID_SS |
CPUID_HT | CPUID_TM | CPUID_PBE,
.ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
CPUID_EXT_DTES64 | CPUID_EXT_DSCPL | CPUID_EXT_VMX | CPUID_EXT_EST |
CPUID_EXT_TM2 | CPUID_EXT_CX16 | CPUID_EXT_XTPR | CPUID_EXT_PDCM,
.ext2_features = CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.ext3_features = CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz",
},
{
.name = "kvm64",
.level = 5,
.vendor1 = CPUID_VENDOR_INTEL_1,
.vendor2 = CPUID_VENDOR_INTEL_2,
.vendor3 = CPUID_VENDOR_INTEL_3,
.family = 15,
.model = 6,
.stepping = 1,
/* Missing: CPUID_VME, CPUID_HT */
.features = PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
/* Missing: CPUID_EXT_POPCNT, CPUID_EXT_MONITOR */
.ext_features = CPUID_EXT_SSE3 | CPUID_EXT_CX16,
/* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */
.ext2_features = (PPRO_FEATURES & EXT2_FEATURE_MASK) |
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
/* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS, CPUID_EXT3_SVM */
.ext3_features = 0,
.xlevel = 0x80000008,
.model_id = "Common KVM processor"
},
{
.name = "qemu32",
.level = 4,
.family = 6,
.model = 3,
.stepping = 3,
.features = PPRO_FEATURES,
.ext_features = CPUID_EXT_SSE3 | CPUID_EXT_POPCNT,
.xlevel = 0x80000004,
},
{
.name = "kvm32",
.level = 5,
.family = 15,
.model = 6,
.stepping = 1,
.features = PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36,
.ext_features = CPUID_EXT_SSE3,
.ext2_features = PPRO_FEATURES & EXT2_FEATURE_MASK,
.ext3_features = 0,
.xlevel = 0x80000008,
.model_id = "Common 32-bit KVM processor"
},
{
.name = "coreduo",
.level = 10,
.family = 6,
.model = 14,
.stepping = 8,
.features = PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_DTS | CPUID_ACPI |
CPUID_SS | CPUID_HT | CPUID_TM | CPUID_PBE,
.ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_VMX |
CPUID_EXT_EST | CPUID_EXT_TM2 | CPUID_EXT_XTPR | CPUID_EXT_PDCM,
.ext2_features = CPUID_EXT2_NX,
.xlevel = 0x80000008,
.model_id = "Genuine Intel(R) CPU T2600 @ 2.16GHz",
},
{
.name = "486",
.level = 1,
.family = 4,
.model = 0,
.stepping = 0,
.features = I486_FEATURES,
.xlevel = 0,
},
{
.name = "pentium",
.level = 1,
.family = 5,
.model = 4,
.stepping = 3,
.features = PENTIUM_FEATURES,
.xlevel = 0,
},
{
.name = "pentium2",
.level = 2,
.family = 6,
.model = 5,
.stepping = 2,
.features = PENTIUM2_FEATURES,
.xlevel = 0,
},
{
.name = "pentium3",
.level = 2,
.family = 6,
.model = 7,
.stepping = 3,
.features = PENTIUM3_FEATURES,
.xlevel = 0,
},
{
.name = "athlon",
.level = 2,
.vendor1 = CPUID_VENDOR_AMD_1,
.vendor2 = CPUID_VENDOR_AMD_2,
.vendor3 = CPUID_VENDOR_AMD_3,
.family = 6,
.model = 2,
.stepping = 3,
.features = PPRO_FEATURES | CPUID_PSE36 | CPUID_VME | CPUID_MTRR | CPUID_MCA,
.ext2_features = (PPRO_FEATURES & EXT2_FEATURE_MASK) | CPUID_EXT2_MMXEXT | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT,
.xlevel = 0x80000008,
},
{
.name = "n270",
/* original is on level 10 */
.level = 5,
.family = 6,
.model = 28,
.stepping = 2,
.features = PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_VME | CPUID_DTS |
CPUID_ACPI | CPUID_SS | CPUID_HT | CPUID_TM | CPUID_PBE,
/* Some CPUs got no CPUID_SEP */
.ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
CPUID_EXT_DSCPL | CPUID_EXT_EST | CPUID_EXT_TM2 | CPUID_EXT_XTPR,
.ext2_features = (PPRO_FEATURES & EXT2_FEATURE_MASK) | CPUID_EXT2_NX,
.ext3_features = CPUID_EXT3_LAHF_LM,
.xlevel = 0x8000000A,
.model_id = "Intel(R) Atom(TM) CPU N270 @ 1.60GHz",
},
};
static int cpu_x86_fill_model_id(char *str)
{
uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
int i;
for (i = 0; i < 3; i++) {
host_cpuid(0x80000002 + i, 0, &eax, &ebx, &ecx, &edx);
memcpy(str + i * 16 + 0, &eax, 4);
memcpy(str + i * 16 + 4, &ebx, 4);
memcpy(str + i * 16 + 8, &ecx, 4);
memcpy(str + i * 16 + 12, &edx, 4);
}
return 0;
}
static int cpu_x86_fill_host(x86_def_t *x86_cpu_def)
{
uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
x86_cpu_def->name = "host";
host_cpuid(0x0, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_def->level = eax;
x86_cpu_def->vendor1 = ebx;
x86_cpu_def->vendor2 = edx;
x86_cpu_def->vendor3 = ecx;
host_cpuid(0x1, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_def->family = ((eax >> 8) & 0x0F) + ((eax >> 20) & 0xFF);
x86_cpu_def->model = ((eax >> 4) & 0x0F) | ((eax & 0xF0000) >> 12);
x86_cpu_def->stepping = eax & 0x0F;
x86_cpu_def->ext_features = ecx;
x86_cpu_def->features = edx;
if (kvm_enabled() && x86_cpu_def->level >= 7) {
x86_cpu_def->cpuid_7_0_ebx_features = kvm_arch_get_supported_cpuid(kvm_state, 0x7, 0, R_EBX);
} else {
x86_cpu_def->cpuid_7_0_ebx_features = 0;
}
host_cpuid(0x80000000, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_def->xlevel = eax;
host_cpuid(0x80000001, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_def->ext2_features = edx;
x86_cpu_def->ext3_features = ecx;
cpu_x86_fill_model_id(x86_cpu_def->model_id);
x86_cpu_def->vendor_override = 0;
/* Call Centaur's CPUID instruction. */
if (x86_cpu_def->vendor1 == CPUID_VENDOR_VIA_1 &&
x86_cpu_def->vendor2 == CPUID_VENDOR_VIA_2 &&
x86_cpu_def->vendor3 == CPUID_VENDOR_VIA_3) {
host_cpuid(0xC0000000, 0, &eax, &ebx, &ecx, &edx);
if (eax >= 0xC0000001) {
/* Support VIA max extended level */
x86_cpu_def->xlevel2 = eax;
host_cpuid(0xC0000001, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_def->ext4_features = edx;
}
}
/*
* Every SVM feature requires emulation support in KVM - so we can't just
* read the host features here. KVM might even support SVM features not
* available on the host hardware. Just set all bits and mask out the
* unsupported ones later.
*/
x86_cpu_def->svm_features = -1;
return 0;
}
static int unavailable_host_feature(struct model_features_t *f, uint32_t mask)
{
int i;
for (i = 0; i < 32; ++i)
if (1 << i & mask) {
fprintf(stderr, "warning: host cpuid %04x_%04x lacks requested"
" flag '%s' [0x%08x]\n",
f->cpuid >> 16, f->cpuid & 0xffff,
f->flag_names[i] ? f->flag_names[i] : "[reserved]", mask);
break;
}
return 0;
}
/* best effort attempt to inform user requested cpu flags aren't making
* their way to the guest. Note: ft[].check_feat ideally should be
* specified via a guest_def field to suppress report of extraneous flags.
*/
static int check_features_against_host(x86_def_t *guest_def)
{
x86_def_t host_def;
uint32_t mask;
int rv, i;
struct model_features_t ft[] = {
{&guest_def->features, &host_def.features,
~0, feature_name, 0x00000000},
{&guest_def->ext_features, &host_def.ext_features,
~CPUID_EXT_HYPERVISOR, ext_feature_name, 0x00000001},
{&guest_def->ext2_features, &host_def.ext2_features,
~PPRO_FEATURES, ext2_feature_name, 0x80000000},
{&guest_def->ext3_features, &host_def.ext3_features,
~CPUID_EXT3_SVM, ext3_feature_name, 0x80000001}};
cpu_x86_fill_host(&host_def);
for (rv = 0, i = 0; i < ARRAY_SIZE(ft); ++i)
for (mask = 1; mask; mask <<= 1)
if (ft[i].check_feat & mask && *ft[i].guest_feat & mask &&
!(*ft[i].host_feat & mask)) {
unavailable_host_feature(&ft[i], mask);
rv = 1;
}
return rv;
}
static void x86_cpuid_version_get_family(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = (env->cpuid_version >> 8) & 0xf;
if (value == 0xf) {
value += (env->cpuid_version >> 20) & 0xff;
}
visit_type_int(v, &value, name, errp);
}
static void x86_cpuid_version_set_family(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xff + 0xf;
int64_t value;
visit_type_int(v, &value, name, errp);
if (error_is_set(errp)) {
return;
}
if (value < min || value > max) {
error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xff00f00;
if (value > 0x0f) {
env->cpuid_version |= 0xf00 | ((value - 0x0f) << 20);
} else {
env->cpuid_version |= value << 8;
}
}
static void x86_cpuid_version_get_model(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = (env->cpuid_version >> 4) & 0xf;
value |= ((env->cpuid_version >> 16) & 0xf) << 4;
visit_type_int(v, &value, name, errp);
}
static void x86_cpuid_version_set_model(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xff;
int64_t value;
visit_type_int(v, &value, name, errp);
if (error_is_set(errp)) {
return;
}
if (value < min || value > max) {
error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xf00f0;
env->cpuid_version |= ((value & 0xf) << 4) | ((value >> 4) << 16);
}
static void x86_cpuid_version_get_stepping(Object *obj, Visitor *v,
void *opaque, const char *name,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = env->cpuid_version & 0xf;
visit_type_int(v, &value, name, errp);
}
static void x86_cpuid_version_set_stepping(Object *obj, Visitor *v,
void *opaque, const char *name,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xf;
int64_t value;
visit_type_int(v, &value, name, errp);
if (error_is_set(errp)) {
return;
}
if (value < min || value > max) {
error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xf;
env->cpuid_version |= value & 0xf;
}
static void x86_cpuid_get_level(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
visit_type_uint32(v, &cpu->env.cpuid_level, name, errp);
}
static void x86_cpuid_set_level(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
visit_type_uint32(v, &cpu->env.cpuid_level, name, errp);
}
static void x86_cpuid_get_xlevel(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
visit_type_uint32(v, &cpu->env.cpuid_xlevel, name, errp);
}
static void x86_cpuid_set_xlevel(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
visit_type_uint32(v, &cpu->env.cpuid_xlevel, name, errp);
}
static char *x86_cpuid_get_vendor(Object *obj, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
char *value;
int i;
value = (char *)g_malloc(12 + 1);
for (i = 0; i < 4; i++) {
value[i ] = env->cpuid_vendor1 >> (8 * i);
value[i + 4] = env->cpuid_vendor2 >> (8 * i);
value[i + 8] = env->cpuid_vendor3 >> (8 * i);
}
value[12] = '\0';
return value;
}
static void x86_cpuid_set_vendor(Object *obj, const char *value,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int i;
if (strlen(value) != 12) {
error_set(errp, QERR_PROPERTY_VALUE_BAD, "",
"vendor", value);
return;
}
env->cpuid_vendor1 = 0;
env->cpuid_vendor2 = 0;
env->cpuid_vendor3 = 0;
for (i = 0; i < 4; i++) {
env->cpuid_vendor1 |= ((uint8_t)value[i ]) << (8 * i);
env->cpuid_vendor2 |= ((uint8_t)value[i + 4]) << (8 * i);
env->cpuid_vendor3 |= ((uint8_t)value[i + 8]) << (8 * i);
}
env->cpuid_vendor_override = 1;
}
static char *x86_cpuid_get_model_id(Object *obj, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
char *value;
int i;
value = g_malloc(48 + 1);
for (i = 0; i < 48; i++) {
value[i] = env->cpuid_model[i >> 2] >> (8 * (i & 3));
}
value[48] = '\0';
return value;
}
static void x86_cpuid_set_model_id(Object *obj, const char *model_id,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int c, len, i;
if (model_id == NULL) {
model_id = "";
}
len = strlen(model_id);
memset(env->cpuid_model, 0, 48);
for (i = 0; i < 48; i++) {
if (i >= len) {
c = '\0';
} else {
c = (uint8_t)model_id[i];
}
env->cpuid_model[i >> 2] |= c << (8 * (i & 3));
}
}
static void x86_cpuid_get_tsc_freq(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
int64_t value;
value = cpu->env.tsc_khz * 1000;
visit_type_int(v, &value, name, errp);
}
static void x86_cpuid_set_tsc_freq(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
const int64_t min = 0;
const int64_t max = INT_MAX;
int64_t value;
visit_type_int(v, &value, name, errp);
if (error_is_set(errp)) {
return;
}
if (value < min || value > max) {
error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
cpu->env.tsc_khz = value / 1000;
}
static int cpu_x86_find_by_name(x86_def_t *x86_cpu_def, const char *cpu_model)
{
unsigned int i;
x86_def_t *def;
char *s = g_strdup(cpu_model);
char *featurestr, *name = strtok(s, ",");
/* Features to be added*/
uint32_t plus_features = 0, plus_ext_features = 0;
uint32_t plus_ext2_features = 0, plus_ext3_features = 0;
uint32_t plus_kvm_features = 0, plus_svm_features = 0;
/* Features to be removed */
uint32_t minus_features = 0, minus_ext_features = 0;
uint32_t minus_ext2_features = 0, minus_ext3_features = 0;
uint32_t minus_kvm_features = 0, minus_svm_features = 0;
uint32_t numvalue;
for (def = x86_defs; def; def = def->next)
if (name && !strcmp(name, def->name))
break;
if (kvm_enabled() && name && strcmp(name, "host") == 0) {
cpu_x86_fill_host(x86_cpu_def);
} else if (!def) {
goto error;
} else {
memcpy(x86_cpu_def, def, sizeof(*def));
}
plus_kvm_features = ~0; /* not supported bits will be filtered out later */
add_flagname_to_bitmaps("hypervisor", &plus_features,
&plus_ext_features, &plus_ext2_features, &plus_ext3_features,
&plus_kvm_features, &plus_svm_features);
featurestr = strtok(NULL, ",");
while (featurestr) {
char *val;
if (featurestr[0] == '+') {
add_flagname_to_bitmaps(featurestr + 1, &plus_features,
&plus_ext_features, &plus_ext2_features,
&plus_ext3_features, &plus_kvm_features,
&plus_svm_features);
} else if (featurestr[0] == '-') {
add_flagname_to_bitmaps(featurestr + 1, &minus_features,
&minus_ext_features, &minus_ext2_features,
&minus_ext3_features, &minus_kvm_features,
&minus_svm_features);
} else if ((val = strchr(featurestr, '='))) {
*val = 0; val++;
if (!strcmp(featurestr, "family")) {
char *err;
numvalue = strtoul(val, &err, 0);
if (!*val || *err || numvalue > 0xff + 0xf) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
x86_cpu_def->family = numvalue;
} else if (!strcmp(featurestr, "model")) {
char *err;
numvalue = strtoul(val, &err, 0);
if (!*val || *err || numvalue > 0xff) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
x86_cpu_def->model = numvalue;
} else if (!strcmp(featurestr, "stepping")) {
char *err;
numvalue = strtoul(val, &err, 0);
if (!*val || *err || numvalue > 0xf) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
x86_cpu_def->stepping = numvalue ;
} else if (!strcmp(featurestr, "level")) {
char *err;
numvalue = strtoul(val, &err, 0);
if (!*val || *err) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
x86_cpu_def->level = numvalue;
} else if (!strcmp(featurestr, "xlevel")) {
char *err;
numvalue = strtoul(val, &err, 0);
if (!*val || *err) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
if (numvalue < 0x80000000) {
numvalue += 0x80000000;
}
x86_cpu_def->xlevel = numvalue;
} else if (!strcmp(featurestr, "vendor")) {
if (strlen(val) != 12) {
fprintf(stderr, "vendor string must be 12 chars long\n");
goto error;
}
x86_cpu_def->vendor1 = 0;
x86_cpu_def->vendor2 = 0;
x86_cpu_def->vendor3 = 0;
for(i = 0; i < 4; i++) {
x86_cpu_def->vendor1 |= ((uint8_t)val[i ]) << (8 * i);
x86_cpu_def->vendor2 |= ((uint8_t)val[i + 4]) << (8 * i);
x86_cpu_def->vendor3 |= ((uint8_t)val[i + 8]) << (8 * i);
}
x86_cpu_def->vendor_override = 1;
} else if (!strcmp(featurestr, "model_id")) {
pstrcpy(x86_cpu_def->model_id, sizeof(x86_cpu_def->model_id),
val);
} else if (!strcmp(featurestr, "tsc_freq")) {
int64_t tsc_freq;
char *err;
tsc_freq = strtosz_suffix_unit(val, &err,
STRTOSZ_DEFSUFFIX_B, 1000);
if (tsc_freq < 0 || *err) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
x86_cpu_def->tsc_khz = tsc_freq / 1000;
} else if (!strcmp(featurestr, "hv_spinlocks")) {
char *err;
numvalue = strtoul(val, &err, 0);
if (!*val || *err) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
hyperv_set_spinlock_retries(numvalue);
} else {
fprintf(stderr, "unrecognized feature %s\n", featurestr);
goto error;
}
} else if (!strcmp(featurestr, "check")) {
check_cpuid = 1;
} else if (!strcmp(featurestr, "enforce")) {
check_cpuid = enforce_cpuid = 1;
} else if (!strcmp(featurestr, "hv_relaxed")) {
hyperv_enable_relaxed_timing(true);
} else if (!strcmp(featurestr, "hv_vapic")) {
hyperv_enable_vapic_recommended(true);
} else {
fprintf(stderr, "feature string `%s' not in format (+feature|-feature|feature=xyz)\n", featurestr);
goto error;
}
featurestr = strtok(NULL, ",");
}
x86_cpu_def->features |= plus_features;
x86_cpu_def->ext_features |= plus_ext_features;
x86_cpu_def->ext2_features |= plus_ext2_features;
x86_cpu_def->ext3_features |= plus_ext3_features;
x86_cpu_def->kvm_features |= plus_kvm_features;
x86_cpu_def->svm_features |= plus_svm_features;
x86_cpu_def->features &= ~minus_features;
x86_cpu_def->ext_features &= ~minus_ext_features;
x86_cpu_def->ext2_features &= ~minus_ext2_features;
x86_cpu_def->ext3_features &= ~minus_ext3_features;
x86_cpu_def->kvm_features &= ~minus_kvm_features;
x86_cpu_def->svm_features &= ~minus_svm_features;
if (check_cpuid) {
if (check_features_against_host(x86_cpu_def) && enforce_cpuid)
goto error;
}
g_free(s);
return 0;
error:
g_free(s);
return -1;
}
/* generate a composite string into buf of all cpuid names in featureset
* selected by fbits. indicate truncation at bufsize in the event of overflow.
* if flags, suppress names undefined in featureset.
*/
static void listflags(char *buf, int bufsize, uint32_t fbits,
const char **featureset, uint32_t flags)
{
const char **p = &featureset[31];
char *q, *b, bit;
int nc;
b = 4 <= bufsize ? buf + (bufsize -= 3) - 1 : NULL;
*buf = '\0';
for (q = buf, bit = 31; fbits && bufsize; --p, fbits &= ~(1 << bit), --bit)
if (fbits & 1 << bit && (*p || !flags)) {
if (*p)
nc = snprintf(q, bufsize, "%s%s", q == buf ? "" : " ", *p);
else
nc = snprintf(q, bufsize, "%s[%d]", q == buf ? "" : " ", bit);
if (bufsize <= nc) {
if (b) {
memcpy(b, "...", sizeof("..."));
}
return;
}
q += nc;
bufsize -= nc;
}
}
/* generate CPU information:
* -? list model names
* -?model list model names/IDs
* -?dump output all model (x86_def_t) data
* -?cpuid list all recognized cpuid flag names
*/
void x86_cpu_list(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
{
unsigned char model = !strcmp("?model", optarg);
unsigned char dump = !strcmp("?dump", optarg);
unsigned char cpuid = !strcmp("?cpuid", optarg);
x86_def_t *def;
char buf[256];
if (cpuid) {
(*cpu_fprintf)(f, "Recognized CPUID flags:\n");
listflags(buf, sizeof (buf), (uint32_t)~0, feature_name, 1);
(*cpu_fprintf)(f, " f_edx: %s\n", buf);
listflags(buf, sizeof (buf), (uint32_t)~0, ext_feature_name, 1);
(*cpu_fprintf)(f, " f_ecx: %s\n", buf);
listflags(buf, sizeof (buf), (uint32_t)~0, ext2_feature_name, 1);
(*cpu_fprintf)(f, " extf_edx: %s\n", buf);
listflags(buf, sizeof (buf), (uint32_t)~0, ext3_feature_name, 1);
(*cpu_fprintf)(f, " extf_ecx: %s\n", buf);
return;
}
for (def = x86_defs; def; def = def->next) {
snprintf(buf, sizeof (buf), def->flags ? "[%s]": "%s", def->name);
if (model || dump) {
(*cpu_fprintf)(f, "x86 %16s %-48s\n", buf, def->model_id);
} else {
(*cpu_fprintf)(f, "x86 %16s\n", buf);
}
if (dump) {
memcpy(buf, &def->vendor1, sizeof (def->vendor1));
memcpy(buf + 4, &def->vendor2, sizeof (def->vendor2));
memcpy(buf + 8, &def->vendor3, sizeof (def->vendor3));
buf[12] = '\0';
(*cpu_fprintf)(f,
" family %d model %d stepping %d level %d xlevel 0x%x"
" vendor \"%s\"\n",
def->family, def->model, def->stepping, def->level,
def->xlevel, buf);
listflags(buf, sizeof (buf), def->features, feature_name, 0);
(*cpu_fprintf)(f, " feature_edx %08x (%s)\n", def->features,
buf);
listflags(buf, sizeof (buf), def->ext_features, ext_feature_name,
0);
(*cpu_fprintf)(f, " feature_ecx %08x (%s)\n", def->ext_features,
buf);
listflags(buf, sizeof (buf), def->ext2_features, ext2_feature_name,
0);
(*cpu_fprintf)(f, " extfeature_edx %08x (%s)\n",
def->ext2_features, buf);
listflags(buf, sizeof (buf), def->ext3_features, ext3_feature_name,
0);
(*cpu_fprintf)(f, " extfeature_ecx %08x (%s)\n",
def->ext3_features, buf);
(*cpu_fprintf)(f, "\n");
}
}
if (kvm_enabled()) {
(*cpu_fprintf)(f, "x86 %16s\n", "[host]");
}
}
int cpu_x86_register(X86CPU *cpu, const char *cpu_model)
{
CPUX86State *env = &cpu->env;
x86_def_t def1, *def = &def1;
Error *error = NULL;
memset(def, 0, sizeof(*def));
if (cpu_x86_find_by_name(def, cpu_model) < 0)
return -1;
if (def->vendor1) {
env->cpuid_vendor1 = def->vendor1;
env->cpuid_vendor2 = def->vendor2;
env->cpuid_vendor3 = def->vendor3;
} else {
env->cpuid_vendor1 = CPUID_VENDOR_INTEL_1;
env->cpuid_vendor2 = CPUID_VENDOR_INTEL_2;
env->cpuid_vendor3 = CPUID_VENDOR_INTEL_3;
}
env->cpuid_vendor_override = def->vendor_override;
object_property_set_int(OBJECT(cpu), def->level, "level", &error);
object_property_set_int(OBJECT(cpu), def->family, "family", &error);
object_property_set_int(OBJECT(cpu), def->model, "model", &error);
object_property_set_int(OBJECT(cpu), def->stepping, "stepping", &error);
env->cpuid_features = def->features;
env->cpuid_ext_features = def->ext_features;
env->cpuid_ext2_features = def->ext2_features;
env->cpuid_ext3_features = def->ext3_features;
object_property_set_int(OBJECT(cpu), def->xlevel, "xlevel", &error);
env->cpuid_kvm_features = def->kvm_features;
env->cpuid_svm_features = def->svm_features;
env->cpuid_ext4_features = def->ext4_features;
env->cpuid_7_0_ebx = def->cpuid_7_0_ebx_features;
env->cpuid_xlevel2 = def->xlevel2;
object_property_set_int(OBJECT(cpu), (int64_t)def->tsc_khz * 1000,
"tsc-frequency", &error);
if (!kvm_enabled()) {
env->cpuid_features &= TCG_FEATURES;
env->cpuid_ext_features &= TCG_EXT_FEATURES;
env->cpuid_ext2_features &= (TCG_EXT2_FEATURES
#ifdef TARGET_X86_64
| CPUID_EXT2_SYSCALL | CPUID_EXT2_LM
#endif
);
env->cpuid_ext3_features &= TCG_EXT3_FEATURES;
env->cpuid_svm_features &= TCG_SVM_FEATURES;
}
object_property_set_str(OBJECT(cpu), def->model_id, "model-id", &error);
if (error_is_set(&error)) {
error_free(error);
return -1;
}
return 0;
}
#if !defined(CONFIG_USER_ONLY)
/* copy vendor id string to 32 bit register, nul pad as needed
*/
static void cpyid(const char *s, uint32_t *id)
{
char *d = (char *)id;
char i;
for (i = sizeof (*id); i--; )
*d++ = *s ? *s++ : '\0';
}
/* interpret radix and convert from string to arbitrary scalar,
* otherwise flag failure
*/
#define setscalar(pval, str, perr) \
{ \
char *pend; \
unsigned long ul; \
\
ul = strtoul(str, &pend, 0); \
*str && !*pend ? (*pval = ul) : (*perr = 1); \
}
/* map cpuid options to feature bits, otherwise return failure
* (option tags in *str are delimited by whitespace)
*/
static void setfeatures(uint32_t *pval, const char *str,
const char **featureset, int *perr)
{
const char *p, *q;
for (q = p = str; *p || *q; q = p) {
while (iswhite(*p))
q = ++p;
while (*p && !iswhite(*p))
++p;
if (!*q && !*p)
return;
if (!lookup_feature(pval, q, p, featureset)) {
fprintf(stderr, "error: feature \"%.*s\" not available in set\n",
(int)(p - q), q);
*perr = 1;
return;
}
}
}
/* map config file options to x86_def_t form
*/
static int cpudef_setfield(const char *name, const char *str, void *opaque)
{
x86_def_t *def = opaque;
int err = 0;
if (!strcmp(name, "name")) {
g_free((void *)def->name);
def->name = g_strdup(str);
} else if (!strcmp(name, "model_id")) {
strncpy(def->model_id, str, sizeof (def->model_id));
} else if (!strcmp(name, "level")) {
setscalar(&def->level, str, &err)
} else if (!strcmp(name, "vendor")) {
cpyid(&str[0], &def->vendor1);
cpyid(&str[4], &def->vendor2);
cpyid(&str[8], &def->vendor3);
} else if (!strcmp(name, "family")) {
setscalar(&def->family, str, &err)
} else if (!strcmp(name, "model")) {
setscalar(&def->model, str, &err)
} else if (!strcmp(name, "stepping")) {
setscalar(&def->stepping, str, &err)
} else if (!strcmp(name, "feature_edx")) {
setfeatures(&def->features, str, feature_name, &err);
} else if (!strcmp(name, "feature_ecx")) {
setfeatures(&def->ext_features, str, ext_feature_name, &err);
} else if (!strcmp(name, "extfeature_edx")) {
setfeatures(&def->ext2_features, str, ext2_feature_name, &err);
} else if (!strcmp(name, "extfeature_ecx")) {
setfeatures(&def->ext3_features, str, ext3_feature_name, &err);
} else if (!strcmp(name, "xlevel")) {
setscalar(&def->xlevel, str, &err)
} else {
fprintf(stderr, "error: unknown option [%s = %s]\n", name, str);
return (1);
}
if (err) {
fprintf(stderr, "error: bad option value [%s = %s]\n", name, str);
return (1);
}
return (0);
}
/* register config file entry as x86_def_t
*/
static int cpudef_register(QemuOpts *opts, void *opaque)
{
x86_def_t *def = g_malloc0(sizeof (x86_def_t));
qemu_opt_foreach(opts, cpudef_setfield, def, 1);
def->next = x86_defs;
x86_defs = def;
return (0);
}
void cpu_clear_apic_feature(CPUX86State *env)
{
env->cpuid_features &= ~CPUID_APIC;
}
#endif /* !CONFIG_USER_ONLY */
/* register "cpudef" models defined in configuration file. Here we first
* preload any built-in definitions
*/
void x86_cpudef_setup(void)
{
int i, j;
static const char *model_with_versions[] = { "qemu32", "qemu64", "athlon" };
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); ++i) {
builtin_x86_defs[i].next = x86_defs;
builtin_x86_defs[i].flags = 1;
/* Look for specific "cpudef" models that */
/* have the QEmu version in .model_id */
for (j = 0; j < ARRAY_SIZE(model_with_versions); j++) {
if (strcmp(model_with_versions[j], builtin_x86_defs[i].name) == 0) {
pstrcpy(builtin_x86_defs[i].model_id, sizeof(builtin_x86_defs[i].model_id), "QEMU Virtual CPU version ");
pstrcat(builtin_x86_defs[i].model_id, sizeof(builtin_x86_defs[i].model_id), qemu_get_version());
break;
}
}
x86_defs = &builtin_x86_defs[i];
}
#if !defined(CONFIG_USER_ONLY)
qemu_opts_foreach(qemu_find_opts("cpudef"), cpudef_register, NULL, 0);
#endif
}
static void get_cpuid_vendor(CPUX86State *env, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
/* sysenter isn't supported on compatibility mode on AMD, syscall
* isn't supported in compatibility mode on Intel.
* Normally we advertise the actual cpu vendor, but you can override
* this if you want to use KVM's sysenter/syscall emulation
* in compatibility mode and when doing cross vendor migration
*/
if (kvm_enabled() && ! env->cpuid_vendor_override) {
host_cpuid(0, 0, NULL, ebx, ecx, edx);
}
}
void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
/* test if maximum index reached */
if (index & 0x80000000) {
if (index > env->cpuid_xlevel) {
if (env->cpuid_xlevel2 > 0) {
/* Handle the Centaur's CPUID instruction. */
if (index > env->cpuid_xlevel2) {
index = env->cpuid_xlevel2;
} else if (index < 0xC0000000) {
index = env->cpuid_xlevel;
}
} else {
index = env->cpuid_xlevel;
}
}
} else {
if (index > env->cpuid_level)
index = env->cpuid_level;
}
switch(index) {
case 0:
*eax = env->cpuid_level;
get_cpuid_vendor(env, ebx, ecx, edx);
break;
case 1:
*eax = env->cpuid_version;
*ebx = (env->cpuid_apic_id << 24) | 8 << 8; /* CLFLUSH size in quad words, Linux wants it. */
*ecx = env->cpuid_ext_features;
*edx = env->cpuid_features;
if (env->nr_cores * env->nr_threads > 1) {
*ebx |= (env->nr_cores * env->nr_threads) << 16;
*edx |= 1 << 28; /* HTT bit */
}
break;
case 2:
/* cache info: needed for Pentium Pro compatibility */
*eax = 1;
*ebx = 0;
*ecx = 0;
*edx = 0x2c307d;
break;
case 4:
/* cache info: needed for Core compatibility */
if (env->nr_cores > 1) {
*eax = (env->nr_cores - 1) << 26;
} else {
*eax = 0;
}
switch (count) {
case 0: /* L1 dcache info */
*eax |= 0x0000121;
*ebx = 0x1c0003f;
*ecx = 0x000003f;
*edx = 0x0000001;
break;
case 1: /* L1 icache info */
*eax |= 0x0000122;
*ebx = 0x1c0003f;
*ecx = 0x000003f;
*edx = 0x0000001;
break;
case 2: /* L2 cache info */
*eax |= 0x0000143;
if (env->nr_threads > 1) {
*eax |= (env->nr_threads - 1) << 14;
}
*ebx = 0x3c0003f;
*ecx = 0x0000fff;
*edx = 0x0000001;
break;
default: /* end of info */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
break;
case 5:
/* mwait info: needed for Core compatibility */
*eax = 0; /* Smallest monitor-line size in bytes */
*ebx = 0; /* Largest monitor-line size in bytes */
*ecx = CPUID_MWAIT_EMX | CPUID_MWAIT_IBE;
*edx = 0;
break;
case 6:
/* Thermal and Power Leaf */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 7:
/* Structured Extended Feature Flags Enumeration Leaf */
if (count == 0) {
*eax = 0; /* Maximum ECX value for sub-leaves */
*ebx = env->cpuid_7_0_ebx; /* Feature flags */
*ecx = 0; /* Reserved */
*edx = 0; /* Reserved */
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 9:
/* Direct Cache Access Information Leaf */
*eax = 0; /* Bits 0-31 in DCA_CAP MSR */
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xA:
/* Architectural Performance Monitoring Leaf */
if (kvm_enabled()) {
KVMState *s = env->kvm_state;
*eax = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EAX);
*ebx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EBX);
*ecx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_ECX);
*edx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EDX);
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0xD:
/* Processor Extended State */
if (!(env->cpuid_ext_features & CPUID_EXT_XSAVE)) {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
if (kvm_enabled()) {
KVMState *s = env->kvm_state;
*eax = kvm_arch_get_supported_cpuid(s, 0xd, count, R_EAX);
*ebx = kvm_arch_get_supported_cpuid(s, 0xd, count, R_EBX);
*ecx = kvm_arch_get_supported_cpuid(s, 0xd, count, R_ECX);
*edx = kvm_arch_get_supported_cpuid(s, 0xd, count, R_EDX);
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0x80000000:
*eax = env->cpuid_xlevel;
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
break;
case 0x80000001:
*eax = env->cpuid_version;
*ebx = 0;
*ecx = env->cpuid_ext3_features;
*edx = env->cpuid_ext2_features;
/* The Linux kernel checks for the CMPLegacy bit and
* discards multiple thread information if it is set.
* So dont set it here for Intel to make Linux guests happy.
*/
if (env->nr_cores * env->nr_threads > 1) {
uint32_t tebx, tecx, tedx;
get_cpuid_vendor(env, &tebx, &tecx, &tedx);
if (tebx != CPUID_VENDOR_INTEL_1 ||
tedx != CPUID_VENDOR_INTEL_2 ||
tecx != CPUID_VENDOR_INTEL_3) {
*ecx |= 1 << 1; /* CmpLegacy bit */
}
}
break;
case 0x80000002:
case 0x80000003:
case 0x80000004:
*eax = env->cpuid_model[(index - 0x80000002) * 4 + 0];
*ebx = env->cpuid_model[(index - 0x80000002) * 4 + 1];
*ecx = env->cpuid_model[(index - 0x80000002) * 4 + 2];
*edx = env->cpuid_model[(index - 0x80000002) * 4 + 3];
break;
case 0x80000005:
/* cache info (L1 cache) */
*eax = 0x01ff01ff;
*ebx = 0x01ff01ff;
*ecx = 0x40020140;
*edx = 0x40020140;
break;
case 0x80000006:
/* cache info (L2 cache) */
*eax = 0;
*ebx = 0x42004200;
*ecx = 0x02008140;
*edx = 0;
break;
case 0x80000008:
/* virtual & phys address size in low 2 bytes. */
/* XXX: This value must match the one used in the MMU code. */
if (env->cpuid_ext2_features & CPUID_EXT2_LM) {
/* 64 bit processor */
/* XXX: The physical address space is limited to 42 bits in exec.c. */
*eax = 0x00003028; /* 48 bits virtual, 40 bits physical */
} else {
if (env->cpuid_features & CPUID_PSE36)
*eax = 0x00000024; /* 36 bits physical */
else
*eax = 0x00000020; /* 32 bits physical */
}
*ebx = 0;
*ecx = 0;
*edx = 0;
if (env->nr_cores * env->nr_threads > 1) {
*ecx |= (env->nr_cores * env->nr_threads) - 1;
}
break;
case 0x8000000A:
if (env->cpuid_ext3_features & CPUID_EXT3_SVM) {
*eax = 0x00000001; /* SVM Revision */
*ebx = 0x00000010; /* nr of ASIDs */
*ecx = 0;
*edx = env->cpuid_svm_features; /* optional features */
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0xC0000000:
*eax = env->cpuid_xlevel2;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xC0000001:
/* Support for VIA CPU's CPUID instruction */
*eax = env->cpuid_version;
*ebx = 0;
*ecx = 0;
*edx = env->cpuid_ext4_features;
break;
case 0xC0000002:
case 0xC0000003:
case 0xC0000004:
/* Reserved for the future, and now filled with zero */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
default:
/* reserved values: zero */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
}
/* CPUClass::reset() */
static void x86_cpu_reset(CPUState *s)
{
X86CPU *cpu = X86_CPU(s);
X86CPUClass *xcc = X86_CPU_GET_CLASS(cpu);
CPUX86State *env = &cpu->env;
int i;
if (qemu_loglevel_mask(CPU_LOG_RESET)) {
qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
}
xcc->parent_reset(s);
memset(env, 0, offsetof(CPUX86State, breakpoints));
tlb_flush(env, 1);
env->old_exception = -1;
/* init to reset state */
#ifdef CONFIG_SOFTMMU
env->hflags |= HF_SOFTMMU_MASK;
#endif
env->hflags2 |= HF2_GIF_MASK;
cpu_x86_update_cr0(env, 0x60000010);
env->a20_mask = ~0x0;
env->smbase = 0x30000;
env->idt.limit = 0xffff;
env->gdt.limit = 0xffff;
env->ldt.limit = 0xffff;
env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT);
env->tr.limit = 0xffff;
env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT);
cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK |
DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
env->eip = 0xfff0;
env->regs[R_EDX] = env->cpuid_version;
env->eflags = 0x2;
/* FPU init */
for (i = 0; i < 8; i++) {
env->fptags[i] = 1;
}
env->fpuc = 0x37f;
env->mxcsr = 0x1f80;
env->pat = 0x0007040600070406ULL;
env->msr_ia32_misc_enable = MSR_IA32_MISC_ENABLE_DEFAULT;
memset(env->dr, 0, sizeof(env->dr));
env->dr[6] = DR6_FIXED_1;
env->dr[7] = DR7_FIXED_1;
cpu_breakpoint_remove_all(env, BP_CPU);
cpu_watchpoint_remove_all(env, BP_CPU);
}
static void mce_init(X86CPU *cpu)
{
CPUX86State *cenv = &cpu->env;
unsigned int bank;
if (((cenv->cpuid_version >> 8) & 0xf) >= 6
&& (cenv->cpuid_features & (CPUID_MCE | CPUID_MCA)) ==
(CPUID_MCE | CPUID_MCA)) {
cenv->mcg_cap = MCE_CAP_DEF | MCE_BANKS_DEF;
cenv->mcg_ctl = ~(uint64_t)0;
for (bank = 0; bank < MCE_BANKS_DEF; bank++) {
cenv->mce_banks[bank * 4] = ~(uint64_t)0;
}
}
}
void x86_cpu_realize(Object *obj, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
mce_init(cpu);
qemu_init_vcpu(&cpu->env);
}
static void x86_cpu_initfn(Object *obj)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
cpu_exec_init(env);
object_property_add(obj, "family", "int",
x86_cpuid_version_get_family,
x86_cpuid_version_set_family, NULL, NULL, NULL);
object_property_add(obj, "model", "int",
x86_cpuid_version_get_model,
x86_cpuid_version_set_model, NULL, NULL, NULL);
object_property_add(obj, "stepping", "int",
x86_cpuid_version_get_stepping,
x86_cpuid_version_set_stepping, NULL, NULL, NULL);
object_property_add(obj, "level", "int",
x86_cpuid_get_level,
x86_cpuid_set_level, NULL, NULL, NULL);
object_property_add(obj, "xlevel", "int",
x86_cpuid_get_xlevel,
x86_cpuid_set_xlevel, NULL, NULL, NULL);
object_property_add_str(obj, "vendor",
x86_cpuid_get_vendor,
x86_cpuid_set_vendor, NULL);
object_property_add_str(obj, "model-id",
x86_cpuid_get_model_id,
x86_cpuid_set_model_id, NULL);
object_property_add(obj, "tsc-frequency", "int",
x86_cpuid_get_tsc_freq,
x86_cpuid_set_tsc_freq, NULL, NULL, NULL);
env->cpuid_apic_id = env->cpu_index;
}
static void x86_cpu_common_class_init(ObjectClass *oc, void *data)
{
X86CPUClass *xcc = X86_CPU_CLASS(oc);
CPUClass *cc = CPU_CLASS(oc);
xcc->parent_reset = cc->reset;
cc->reset = x86_cpu_reset;
}
static const TypeInfo x86_cpu_type_info = {
.name = TYPE_X86_CPU,
.parent = TYPE_CPU,
.instance_size = sizeof(X86CPU),
.instance_init = x86_cpu_initfn,
.abstract = false,
.class_size = sizeof(X86CPUClass),
.class_init = x86_cpu_common_class_init,
};
static void x86_cpu_register_types(void)
{
type_register_static(&x86_cpu_type_info);
}
type_init(x86_cpu_register_types)