qemu-e2k/hw/musicpal.c
balrog 7c6ce4baed musicpal: Improve button handling (Jan Kiszka).
Looking at the hold-button-on-powerup thing, I came across some
improvable parts in the MusicPal's button handling. This patch allows
for repeated wheel events by keying the arrow keys pressed, corrects
some constant name, and introduces an explicitly maintained GPIO_ISR
state.

Signed-off-by: Jan Kiszka <jan.kiszka@web.de>


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4476 c046a42c-6fe2-441c-8c8c-71466251a162
2008-05-17 18:18:04 +00:00

1517 lines
40 KiB
C

/*
* Marvell MV88W8618 / Freecom MusicPal emulation.
*
* Copyright (c) 2008 Jan Kiszka
*
* This code is licenced under the GNU GPL v2.
*/
#include "hw.h"
#include "arm-misc.h"
#include "devices.h"
#include "net.h"
#include "sysemu.h"
#include "boards.h"
#include "pc.h"
#include "qemu-timer.h"
#include "block.h"
#include "flash.h"
#include "console.h"
#include "audio/audio.h"
#include "i2c.h"
#define MP_ETH_BASE 0x80008000
#define MP_ETH_SIZE 0x00001000
#define MP_UART1_BASE 0x8000C840
#define MP_UART2_BASE 0x8000C940
#define MP_FLASHCFG_BASE 0x90006000
#define MP_FLASHCFG_SIZE 0x00001000
#define MP_AUDIO_BASE 0x90007000
#define MP_AUDIO_SIZE 0x00001000
#define MP_PIC_BASE 0x90008000
#define MP_PIC_SIZE 0x00001000
#define MP_PIT_BASE 0x90009000
#define MP_PIT_SIZE 0x00001000
#define MP_LCD_BASE 0x9000c000
#define MP_LCD_SIZE 0x00001000
#define MP_SRAM_BASE 0xC0000000
#define MP_SRAM_SIZE 0x00020000
#define MP_RAM_DEFAULT_SIZE 32*1024*1024
#define MP_FLASH_SIZE_MAX 32*1024*1024
#define MP_TIMER1_IRQ 4
/* ... */
#define MP_TIMER4_IRQ 7
#define MP_EHCI_IRQ 8
#define MP_ETH_IRQ 9
#define MP_UART1_IRQ 11
#define MP_UART2_IRQ 11
#define MP_GPIO_IRQ 12
#define MP_RTC_IRQ 28
#define MP_AUDIO_IRQ 30
static uint32_t gpio_in_state = 0xffffffff;
static uint32_t gpio_isr;
static uint32_t gpio_out_state;
static ram_addr_t sram_off;
/* Address conversion helpers */
static void *target2host_addr(uint32_t addr)
{
if (addr < MP_SRAM_BASE) {
if (addr >= MP_RAM_DEFAULT_SIZE)
return NULL;
return (void *)(phys_ram_base + addr);
} else {
if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE)
return NULL;
return (void *)(phys_ram_base + sram_off + addr - MP_SRAM_BASE);
}
}
static uint32_t host2target_addr(void *addr)
{
if (addr < ((void *)phys_ram_base) + sram_off)
return (unsigned long)addr - (unsigned long)phys_ram_base;
else
return (unsigned long)addr - (unsigned long)phys_ram_base -
sram_off + MP_SRAM_BASE;
}
typedef enum i2c_state {
STOPPED = 0,
INITIALIZING,
SENDING_BIT7,
SENDING_BIT6,
SENDING_BIT5,
SENDING_BIT4,
SENDING_BIT3,
SENDING_BIT2,
SENDING_BIT1,
SENDING_BIT0,
WAITING_FOR_ACK,
RECEIVING_BIT7,
RECEIVING_BIT6,
RECEIVING_BIT5,
RECEIVING_BIT4,
RECEIVING_BIT3,
RECEIVING_BIT2,
RECEIVING_BIT1,
RECEIVING_BIT0,
SENDING_ACK
} i2c_state;
typedef struct i2c_interface {
i2c_bus *bus;
i2c_state state;
int last_data;
int last_clock;
uint8_t buffer;
int current_addr;
} i2c_interface;
static void i2c_enter_stop(i2c_interface *i2c)
{
if (i2c->current_addr >= 0)
i2c_end_transfer(i2c->bus);
i2c->current_addr = -1;
i2c->state = STOPPED;
}
static void i2c_state_update(i2c_interface *i2c, int data, int clock)
{
if (!i2c)
return;
switch (i2c->state) {
case STOPPED:
if (data == 0 && i2c->last_data == 1 && clock == 1)
i2c->state = INITIALIZING;
break;
case INITIALIZING:
if (clock == 0 && i2c->last_clock == 1 && data == 0)
i2c->state = SENDING_BIT7;
else
i2c_enter_stop(i2c);
break;
case SENDING_BIT7 ... SENDING_BIT0:
if (clock == 0 && i2c->last_clock == 1) {
i2c->buffer = (i2c->buffer << 1) | data;
i2c->state++; /* will end up in WAITING_FOR_ACK */
} else if (data == 1 && i2c->last_data == 0 && clock == 1)
i2c_enter_stop(i2c);
break;
case WAITING_FOR_ACK:
if (clock == 0 && i2c->last_clock == 1) {
if (i2c->current_addr < 0) {
i2c->current_addr = i2c->buffer;
i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
i2c->buffer & 1);
} else
i2c_send(i2c->bus, i2c->buffer);
if (i2c->current_addr & 1) {
i2c->state = RECEIVING_BIT7;
i2c->buffer = i2c_recv(i2c->bus);
} else
i2c->state = SENDING_BIT7;
} else if (data == 1 && i2c->last_data == 0 && clock == 1)
i2c_enter_stop(i2c);
break;
case RECEIVING_BIT7 ... RECEIVING_BIT0:
if (clock == 0 && i2c->last_clock == 1) {
i2c->state++; /* will end up in SENDING_ACK */
i2c->buffer <<= 1;
} else if (data == 1 && i2c->last_data == 0 && clock == 1)
i2c_enter_stop(i2c);
break;
case SENDING_ACK:
if (clock == 0 && i2c->last_clock == 1) {
i2c->state = RECEIVING_BIT7;
if (data == 0)
i2c->buffer = i2c_recv(i2c->bus);
else
i2c_nack(i2c->bus);
} else if (data == 1 && i2c->last_data == 0 && clock == 1)
i2c_enter_stop(i2c);
break;
}
i2c->last_data = data;
i2c->last_clock = clock;
}
static int i2c_get_data(i2c_interface *i2c)
{
if (!i2c)
return 0;
switch (i2c->state) {
case RECEIVING_BIT7 ... RECEIVING_BIT0:
return (i2c->buffer >> 7);
case WAITING_FOR_ACK:
default:
return 0;
}
}
static i2c_interface *mixer_i2c;
#ifdef HAS_AUDIO
/* Audio register offsets */
#define MP_AUDIO_PLAYBACK_MODE 0x00
#define MP_AUDIO_CLOCK_DIV 0x18
#define MP_AUDIO_IRQ_STATUS 0x20
#define MP_AUDIO_IRQ_ENABLE 0x24
#define MP_AUDIO_TX_START_LO 0x28
#define MP_AUDIO_TX_THRESHOLD 0x2C
#define MP_AUDIO_TX_STATUS 0x38
#define MP_AUDIO_TX_START_HI 0x40
/* Status register and IRQ enable bits */
#define MP_AUDIO_TX_HALF (1 << 6)
#define MP_AUDIO_TX_FULL (1 << 7)
/* Playback mode bits */
#define MP_AUDIO_16BIT_SAMPLE (1 << 0)
#define MP_AUDIO_PLAYBACK_EN (1 << 7)
#define MP_AUDIO_CLOCK_24MHZ (1 << 9)
#define MP_AUDIO_MONO (1 << 14)
/* Wolfson 8750 I2C address */
#define MP_WM_ADDR 0x34
const char audio_name[] = "mv88w8618";
typedef struct musicpal_audio_state {
uint32_t base;
qemu_irq irq;
uint32_t playback_mode;
uint32_t status;
uint32_t irq_enable;
unsigned long phys_buf;
int8_t *target_buffer;
unsigned int threshold;
unsigned int play_pos;
unsigned int last_free;
uint32_t clock_div;
i2c_slave *wm;
} musicpal_audio_state;
static void audio_callback(void *opaque, int free_out, int free_in)
{
musicpal_audio_state *s = opaque;
int16_t *codec_buffer;
int8_t *mem_buffer;
int pos, block_size;
if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
return;
if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
free_out <<= 1;
if (!(s->playback_mode & MP_AUDIO_MONO))
free_out <<= 1;
block_size = s->threshold/2;
if (free_out - s->last_free < block_size)
return;
mem_buffer = s->target_buffer + s->play_pos;
if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
if (s->playback_mode & MP_AUDIO_MONO) {
codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
for (pos = 0; pos < block_size; pos += 2) {
*codec_buffer++ = *(int16_t *)mem_buffer;
*codec_buffer++ = *(int16_t *)mem_buffer;
mem_buffer += 2;
}
} else
memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
(uint32_t *)mem_buffer, block_size);
} else {
if (s->playback_mode & MP_AUDIO_MONO) {
codec_buffer = wm8750_dac_buffer(s->wm, block_size);
for (pos = 0; pos < block_size; pos++) {
*codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
*codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
}
} else {
codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
for (pos = 0; pos < block_size; pos += 2) {
*codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
*codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
}
}
}
wm8750_dac_commit(s->wm);
s->last_free = free_out - block_size;
if (s->play_pos == 0) {
s->status |= MP_AUDIO_TX_HALF;
s->play_pos = block_size;
} else {
s->status |= MP_AUDIO_TX_FULL;
s->play_pos = 0;
}
if (s->status & s->irq_enable)
qemu_irq_raise(s->irq);
}
static void musicpal_audio_clock_update(musicpal_audio_state *s)
{
int rate;
if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
rate = 24576000 / 64; /* 24.576MHz */
else
rate = 11289600 / 64; /* 11.2896MHz */
rate /= ((s->clock_div >> 8) & 0xff) + 1;
wm8750_set_bclk_in(s->wm, rate);
}
static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
{
musicpal_audio_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_AUDIO_PLAYBACK_MODE:
return s->playback_mode;
case MP_AUDIO_CLOCK_DIV:
return s->clock_div;
case MP_AUDIO_IRQ_STATUS:
return s->status;
case MP_AUDIO_IRQ_ENABLE:
return s->irq_enable;
case MP_AUDIO_TX_STATUS:
return s->play_pos >> 2;
default:
return 0;
}
}
static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
musicpal_audio_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_AUDIO_PLAYBACK_MODE:
if (value & MP_AUDIO_PLAYBACK_EN &&
!(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
s->status = 0;
s->last_free = 0;
s->play_pos = 0;
}
s->playback_mode = value;
musicpal_audio_clock_update(s);
break;
case MP_AUDIO_CLOCK_DIV:
s->clock_div = value;
s->last_free = 0;
s->play_pos = 0;
musicpal_audio_clock_update(s);
break;
case MP_AUDIO_IRQ_STATUS:
s->status &= ~value;
break;
case MP_AUDIO_IRQ_ENABLE:
s->irq_enable = value;
if (s->status & s->irq_enable)
qemu_irq_raise(s->irq);
break;
case MP_AUDIO_TX_START_LO:
s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
s->target_buffer = target2host_addr(s->phys_buf);
s->play_pos = 0;
s->last_free = 0;
break;
case MP_AUDIO_TX_THRESHOLD:
s->threshold = (value + 1) * 4;
break;
case MP_AUDIO_TX_START_HI:
s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
s->target_buffer = target2host_addr(s->phys_buf);
s->play_pos = 0;
s->last_free = 0;
break;
}
}
static void musicpal_audio_reset(void *opaque)
{
musicpal_audio_state *s = opaque;
s->playback_mode = 0;
s->status = 0;
s->irq_enable = 0;
}
static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
musicpal_audio_read,
musicpal_audio_read,
musicpal_audio_read
};
static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
musicpal_audio_write,
musicpal_audio_write,
musicpal_audio_write
};
static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
{
AudioState *audio;
musicpal_audio_state *s;
i2c_interface *i2c;
int iomemtype;
audio = AUD_init();
if (!audio) {
AUD_log(audio_name, "No audio state\n");
return NULL;
}
s = qemu_mallocz(sizeof(musicpal_audio_state));
if (!s)
return NULL;
s->base = base;
s->irq = irq;
i2c = qemu_mallocz(sizeof(i2c_interface));
if (!i2c)
return NULL;
i2c->bus = i2c_init_bus();
i2c->current_addr = -1;
s->wm = wm8750_init(i2c->bus, audio);
if (!s->wm)
return NULL;
i2c_set_slave_address(s->wm, MP_WM_ADDR);
wm8750_data_req_set(s->wm, audio_callback, s);
iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
musicpal_audio_writefn, s);
cpu_register_physical_memory(base, MP_AUDIO_SIZE, iomemtype);
qemu_register_reset(musicpal_audio_reset, s);
return i2c;
}
#else /* !HAS_AUDIO */
static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
{
return NULL;
}
#endif /* !HAS_AUDIO */
/* Ethernet register offsets */
#define MP_ETH_SMIR 0x010
#define MP_ETH_PCXR 0x408
#define MP_ETH_SDCMR 0x448
#define MP_ETH_ICR 0x450
#define MP_ETH_IMR 0x458
#define MP_ETH_FRDP0 0x480
#define MP_ETH_FRDP1 0x484
#define MP_ETH_FRDP2 0x488
#define MP_ETH_FRDP3 0x48C
#define MP_ETH_CRDP0 0x4A0
#define MP_ETH_CRDP1 0x4A4
#define MP_ETH_CRDP2 0x4A8
#define MP_ETH_CRDP3 0x4AC
#define MP_ETH_CTDP0 0x4E0
#define MP_ETH_CTDP1 0x4E4
#define MP_ETH_CTDP2 0x4E8
#define MP_ETH_CTDP3 0x4EC
/* MII PHY access */
#define MP_ETH_SMIR_DATA 0x0000FFFF
#define MP_ETH_SMIR_ADDR 0x03FF0000
#define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */
#define MP_ETH_SMIR_RDVALID (1 << 27)
/* PHY registers */
#define MP_ETH_PHY1_BMSR 0x00210000
#define MP_ETH_PHY1_PHYSID1 0x00410000
#define MP_ETH_PHY1_PHYSID2 0x00610000
#define MP_PHY_BMSR_LINK 0x0004
#define MP_PHY_BMSR_AUTONEG 0x0008
#define MP_PHY_88E3015 0x01410E20
/* TX descriptor status */
#define MP_ETH_TX_OWN (1 << 31)
/* RX descriptor status */
#define MP_ETH_RX_OWN (1 << 31)
/* Interrupt cause/mask bits */
#define MP_ETH_IRQ_RX_BIT 0
#define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT)
#define MP_ETH_IRQ_TXHI_BIT 2
#define MP_ETH_IRQ_TXLO_BIT 3
/* Port config bits */
#define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */
/* SDMA command bits */
#define MP_ETH_CMD_TXHI (1 << 23)
#define MP_ETH_CMD_TXLO (1 << 22)
typedef struct mv88w8618_tx_desc {
uint32_t cmdstat;
uint16_t res;
uint16_t bytes;
uint32_t buffer;
uint32_t next;
} mv88w8618_tx_desc;
typedef struct mv88w8618_rx_desc {
uint32_t cmdstat;
uint16_t bytes;
uint16_t buffer_size;
uint32_t buffer;
uint32_t next;
} mv88w8618_rx_desc;
typedef struct mv88w8618_eth_state {
uint32_t base;
qemu_irq irq;
uint32_t smir;
uint32_t icr;
uint32_t imr;
int vlan_header;
mv88w8618_tx_desc *tx_queue[2];
mv88w8618_rx_desc *rx_queue[4];
mv88w8618_rx_desc *frx_queue[4];
mv88w8618_rx_desc *cur_rx[4];
VLANClientState *vc;
} mv88w8618_eth_state;
static int eth_can_receive(void *opaque)
{
return 1;
}
static void eth_receive(void *opaque, const uint8_t *buf, int size)
{
mv88w8618_eth_state *s = opaque;
mv88w8618_rx_desc *desc;
int i;
for (i = 0; i < 4; i++) {
desc = s->cur_rx[i];
if (!desc)
continue;
do {
if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN &&
le16_to_cpu(desc->buffer_size) >= size) {
memcpy(target2host_addr(le32_to_cpu(desc->buffer) +
s->vlan_header),
buf, size);
desc->bytes = cpu_to_le16(size + s->vlan_header);
desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN);
s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next));
s->icr |= MP_ETH_IRQ_RX;
if (s->icr & s->imr)
qemu_irq_raise(s->irq);
return;
}
desc = target2host_addr(le32_to_cpu(desc->next));
} while (desc != s->rx_queue[i]);
}
}
static void eth_send(mv88w8618_eth_state *s, int queue_index)
{
mv88w8618_tx_desc *desc = s->tx_queue[queue_index];
do {
if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) {
qemu_send_packet(s->vc,
target2host_addr(le32_to_cpu(desc->buffer)),
le16_to_cpu(desc->bytes));
desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN);
s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
}
desc = target2host_addr(le32_to_cpu(desc->next));
} while (desc != s->tx_queue[queue_index]);
}
static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
{
mv88w8618_eth_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_ETH_SMIR:
if (s->smir & MP_ETH_SMIR_OPCODE) {
switch (s->smir & MP_ETH_SMIR_ADDR) {
case MP_ETH_PHY1_BMSR:
return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
MP_ETH_SMIR_RDVALID;
case MP_ETH_PHY1_PHYSID1:
return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
case MP_ETH_PHY1_PHYSID2:
return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
default:
return MP_ETH_SMIR_RDVALID;
}
}
return 0;
case MP_ETH_ICR:
return s->icr;
case MP_ETH_IMR:
return s->imr;
case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]);
case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]);
case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]);
default:
return 0;
}
}
static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
mv88w8618_eth_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_ETH_SMIR:
s->smir = value;
break;
case MP_ETH_PCXR:
s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
break;
case MP_ETH_SDCMR:
if (value & MP_ETH_CMD_TXHI)
eth_send(s, 1);
if (value & MP_ETH_CMD_TXLO)
eth_send(s, 0);
if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
qemu_irq_raise(s->irq);
break;
case MP_ETH_ICR:
s->icr &= value;
break;
case MP_ETH_IMR:
s->imr = value;
if (s->icr & s->imr)
qemu_irq_raise(s->irq);
break;
case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value);
break;
case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value);
break;
case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value);
break;
}
}
static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
mv88w8618_eth_read,
mv88w8618_eth_read,
mv88w8618_eth_read
};
static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
mv88w8618_eth_write,
mv88w8618_eth_write,
mv88w8618_eth_write
};
static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
{
mv88w8618_eth_state *s;
int iomemtype;
s = qemu_mallocz(sizeof(mv88w8618_eth_state));
if (!s)
return;
s->base = base;
s->irq = irq;
s->vc = qemu_new_vlan_client(nd->vlan, eth_receive, eth_can_receive, s);
iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn,
mv88w8618_eth_writefn, s);
cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype);
}
/* LCD register offsets */
#define MP_LCD_IRQCTRL 0x180
#define MP_LCD_IRQSTAT 0x184
#define MP_LCD_SPICTRL 0x1ac
#define MP_LCD_INST 0x1bc
#define MP_LCD_DATA 0x1c0
/* Mode magics */
#define MP_LCD_SPI_DATA 0x00100011
#define MP_LCD_SPI_CMD 0x00104011
#define MP_LCD_SPI_INVALID 0x00000000
/* Commmands */
#define MP_LCD_INST_SETPAGE0 0xB0
/* ... */
#define MP_LCD_INST_SETPAGE7 0xB7
#define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */
typedef struct musicpal_lcd_state {
uint32_t base;
uint32_t mode;
uint32_t irqctrl;
int page;
int page_off;
DisplayState *ds;
uint8_t video_ram[128*64/8];
} musicpal_lcd_state;
static uint32_t lcd_brightness;
static uint8_t scale_lcd_color(uint8_t col)
{
int tmp = col;
switch (lcd_brightness) {
case 0x00000007: /* 0 */
return 0;
case 0x00020000: /* 1 */
return (tmp * 1) / 7;
case 0x00020001: /* 2 */
return (tmp * 2) / 7;
case 0x00040000: /* 3 */
return (tmp * 3) / 7;
case 0x00010006: /* 4 */
return (tmp * 4) / 7;
case 0x00020005: /* 5 */
return (tmp * 5) / 7;
case 0x00040003: /* 6 */
return (tmp * 6) / 7;
case 0x00030004: /* 7 */
default:
return col;
}
}
#define SET_LCD_PIXEL(depth, type) \
static inline void glue(set_lcd_pixel, depth) \
(musicpal_lcd_state *s, int x, int y, type col) \
{ \
int dx, dy; \
type *pixel = &((type *) s->ds->data)[(y * 128 * 3 + x) * 3]; \
\
for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
for (dx = 0; dx < 3; dx++, pixel++) \
*pixel = col; \
}
SET_LCD_PIXEL(8, uint8_t)
SET_LCD_PIXEL(16, uint16_t)
SET_LCD_PIXEL(32, uint32_t)
#include "pixel_ops.h"
static void lcd_refresh(void *opaque)
{
musicpal_lcd_state *s = opaque;
int x, y, col;
switch (s->ds->depth) {
case 0:
return;
#define LCD_REFRESH(depth, func) \
case depth: \
col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
for (x = 0; x < 128; x++) \
for (y = 0; y < 64; y++) \
if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
glue(set_lcd_pixel, depth)(s, x, y, col); \
else \
glue(set_lcd_pixel, depth)(s, x, y, 0); \
break;
LCD_REFRESH(8, rgb_to_pixel8)
LCD_REFRESH(16, rgb_to_pixel16)
LCD_REFRESH(32, (s->ds->bgr ? rgb_to_pixel32bgr : rgb_to_pixel32))
default:
cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
s->ds->depth);
}
dpy_update(s->ds, 0, 0, 128*3, 64*3);
}
static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
{
musicpal_lcd_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_LCD_IRQCTRL:
return s->irqctrl;
default:
return 0;
}
}
static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
musicpal_lcd_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_LCD_IRQCTRL:
s->irqctrl = value;
break;
case MP_LCD_SPICTRL:
if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
s->mode = value;
else
s->mode = MP_LCD_SPI_INVALID;
break;
case MP_LCD_INST:
if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
s->page = value - MP_LCD_INST_SETPAGE0;
s->page_off = 0;
}
break;
case MP_LCD_DATA:
if (s->mode == MP_LCD_SPI_CMD) {
if (value >= MP_LCD_INST_SETPAGE0 &&
value <= MP_LCD_INST_SETPAGE7) {
s->page = value - MP_LCD_INST_SETPAGE0;
s->page_off = 0;
}
} else if (s->mode == MP_LCD_SPI_DATA) {
s->video_ram[s->page*128 + s->page_off] = value;
s->page_off = (s->page_off + 1) & 127;
}
break;
}
}
static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
musicpal_lcd_read,
musicpal_lcd_read,
musicpal_lcd_read
};
static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
musicpal_lcd_write,
musicpal_lcd_write,
musicpal_lcd_write
};
static void musicpal_lcd_init(DisplayState *ds, uint32_t base)
{
musicpal_lcd_state *s;
int iomemtype;
s = qemu_mallocz(sizeof(musicpal_lcd_state));
if (!s)
return;
s->base = base;
s->ds = ds;
iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
musicpal_lcd_writefn, s);
cpu_register_physical_memory(base, MP_LCD_SIZE, iomemtype);
graphic_console_init(ds, lcd_refresh, NULL, NULL, NULL, s);
dpy_resize(ds, 128*3, 64*3);
}
/* PIC register offsets */
#define MP_PIC_STATUS 0x00
#define MP_PIC_ENABLE_SET 0x08
#define MP_PIC_ENABLE_CLR 0x0C
typedef struct mv88w8618_pic_state
{
uint32_t base;
uint32_t level;
uint32_t enabled;
qemu_irq parent_irq;
} mv88w8618_pic_state;
static void mv88w8618_pic_update(mv88w8618_pic_state *s)
{
qemu_set_irq(s->parent_irq, (s->level & s->enabled));
}
static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
{
mv88w8618_pic_state *s = opaque;
if (level)
s->level |= 1 << irq;
else
s->level &= ~(1 << irq);
mv88w8618_pic_update(s);
}
static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
{
mv88w8618_pic_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_PIC_STATUS:
return s->level & s->enabled;
default:
return 0;
}
}
static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
mv88w8618_pic_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_PIC_ENABLE_SET:
s->enabled |= value;
break;
case MP_PIC_ENABLE_CLR:
s->enabled &= ~value;
s->level &= ~value;
break;
}
mv88w8618_pic_update(s);
}
static void mv88w8618_pic_reset(void *opaque)
{
mv88w8618_pic_state *s = opaque;
s->level = 0;
s->enabled = 0;
}
static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
mv88w8618_pic_read,
mv88w8618_pic_read,
mv88w8618_pic_read
};
static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
mv88w8618_pic_write,
mv88w8618_pic_write,
mv88w8618_pic_write
};
static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
{
mv88w8618_pic_state *s;
int iomemtype;
qemu_irq *qi;
s = qemu_mallocz(sizeof(mv88w8618_pic_state));
if (!s)
return NULL;
qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
s->base = base;
s->parent_irq = parent_irq;
iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
mv88w8618_pic_writefn, s);
cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
qemu_register_reset(mv88w8618_pic_reset, s);
return qi;
}
/* PIT register offsets */
#define MP_PIT_TIMER1_LENGTH 0x00
/* ... */
#define MP_PIT_TIMER4_LENGTH 0x0C
#define MP_PIT_CONTROL 0x10
#define MP_PIT_TIMER1_VALUE 0x14
/* ... */
#define MP_PIT_TIMER4_VALUE 0x20
#define MP_BOARD_RESET 0x34
/* Magic board reset value (probably some watchdog behind it) */
#define MP_BOARD_RESET_MAGIC 0x10000
typedef struct mv88w8618_timer_state {
ptimer_state *timer;
uint32_t limit;
int freq;
qemu_irq irq;
} mv88w8618_timer_state;
typedef struct mv88w8618_pit_state {
void *timer[4];
uint32_t control;
uint32_t base;
} mv88w8618_pit_state;
static void mv88w8618_timer_tick(void *opaque)
{
mv88w8618_timer_state *s = opaque;
qemu_irq_raise(s->irq);
}
static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
{
mv88w8618_timer_state *s;
QEMUBH *bh;
s = qemu_mallocz(sizeof(mv88w8618_timer_state));
s->irq = irq;
s->freq = freq;
bh = qemu_bh_new(mv88w8618_timer_tick, s);
s->timer = ptimer_init(bh);
return s;
}
static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
{
mv88w8618_pit_state *s = opaque;
mv88w8618_timer_state *t;
offset -= s->base;
switch (offset) {
case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
return ptimer_get_count(t->timer);
default:
return 0;
}
}
static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
mv88w8618_pit_state *s = opaque;
mv88w8618_timer_state *t;
int i;
offset -= s->base;
switch (offset) {
case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
t = s->timer[offset >> 2];
t->limit = value;
ptimer_set_limit(t->timer, t->limit, 1);
break;
case MP_PIT_CONTROL:
for (i = 0; i < 4; i++) {
if (value & 0xf) {
t = s->timer[i];
ptimer_set_limit(t->timer, t->limit, 0);
ptimer_set_freq(t->timer, t->freq);
ptimer_run(t->timer, 0);
}
value >>= 4;
}
break;
case MP_BOARD_RESET:
if (value == MP_BOARD_RESET_MAGIC)
qemu_system_reset_request();
break;
}
}
static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
mv88w8618_pit_read,
mv88w8618_pit_read,
mv88w8618_pit_read
};
static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
mv88w8618_pit_write,
mv88w8618_pit_write,
mv88w8618_pit_write
};
static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
{
int iomemtype;
mv88w8618_pit_state *s;
s = qemu_mallocz(sizeof(mv88w8618_pit_state));
if (!s)
return;
s->base = base;
/* Letting them all run at 1 MHz is likely just a pragmatic
* simplification. */
s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
mv88w8618_pit_writefn, s);
cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
}
/* Flash config register offsets */
#define MP_FLASHCFG_CFGR0 0x04
typedef struct mv88w8618_flashcfg_state {
uint32_t base;
uint32_t cfgr0;
} mv88w8618_flashcfg_state;
static uint32_t mv88w8618_flashcfg_read(void *opaque,
target_phys_addr_t offset)
{
mv88w8618_flashcfg_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_FLASHCFG_CFGR0:
return s->cfgr0;
default:
return 0;
}
}
static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
mv88w8618_flashcfg_state *s = opaque;
offset -= s->base;
switch (offset) {
case MP_FLASHCFG_CFGR0:
s->cfgr0 = value;
break;
}
}
static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
mv88w8618_flashcfg_read,
mv88w8618_flashcfg_read,
mv88w8618_flashcfg_read
};
static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
mv88w8618_flashcfg_write,
mv88w8618_flashcfg_write,
mv88w8618_flashcfg_write
};
static void mv88w8618_flashcfg_init(uint32_t base)
{
int iomemtype;
mv88w8618_flashcfg_state *s;
s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
if (!s)
return;
s->base = base;
s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
mv88w8618_flashcfg_writefn, s);
cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
}
/* Various registers in the 0x80000000 domain */
#define MP_BOARD_REVISION 0x2018
#define MP_WLAN_MAGIC1 0xc11c
#define MP_WLAN_MAGIC2 0xc124
#define MP_GPIO_OE_LO 0xd008
#define MP_GPIO_OUT_LO 0xd00c
#define MP_GPIO_IN_LO 0xd010
#define MP_GPIO_ISR_LO 0xd020
#define MP_GPIO_OE_HI 0xd508
#define MP_GPIO_OUT_HI 0xd50c
#define MP_GPIO_IN_HI 0xd510
#define MP_GPIO_ISR_HI 0xd520
/* GPIO bits & masks */
#define MP_GPIO_WHEEL_VOL (1 << 8)
#define MP_GPIO_WHEEL_VOL_INV (1 << 9)
#define MP_GPIO_WHEEL_NAV (1 << 10)
#define MP_GPIO_WHEEL_NAV_INV (1 << 11)
#define MP_GPIO_LCD_BRIGHTNESS 0x00070000
#define MP_GPIO_BTN_FAVORITS (1 << 19)
#define MP_GPIO_BTN_MENU (1 << 20)
#define MP_GPIO_BTN_VOLUME (1 << 21)
#define MP_GPIO_BTN_NAVIGATION (1 << 22)
#define MP_GPIO_I2C_DATA_BIT 29
#define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT)
#define MP_GPIO_I2C_CLOCK_BIT 30
/* LCD brightness bits in GPIO_OE_HI */
#define MP_OE_LCD_BRIGHTNESS 0x0007
static uint32_t musicpal_read(void *opaque, target_phys_addr_t offset)
{
offset -= 0x80000000;
switch (offset) {
case MP_BOARD_REVISION:
return 0x0031;
case MP_GPIO_OE_HI: /* used for LCD brightness control */
return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
case MP_GPIO_OUT_LO:
return gpio_out_state & 0xFFFF;
case MP_GPIO_OUT_HI:
return gpio_out_state >> 16;
case MP_GPIO_IN_LO:
return gpio_in_state & 0xFFFF;
case MP_GPIO_IN_HI:
/* Update received I2C data */
gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
(i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
return gpio_in_state >> 16;
case MP_GPIO_ISR_LO:
return gpio_isr & 0xFFFF;
case MP_GPIO_ISR_HI:
return gpio_isr >> 16;
/* Workaround to allow loading the binary-only wlandrv.ko crap
* from the original Freecom firmware. */
case MP_WLAN_MAGIC1:
return ~3;
case MP_WLAN_MAGIC2:
return -1;
default:
return 0;
}
}
static void musicpal_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
offset -= 0x80000000;
switch (offset) {
case MP_GPIO_OE_HI: /* used for LCD brightness control */
lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
(value & MP_OE_LCD_BRIGHTNESS);
break;
case MP_GPIO_OUT_LO:
gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
break;
case MP_GPIO_OUT_HI:
gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
lcd_brightness = (lcd_brightness & 0xFFFF) |
(gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
i2c_state_update(mixer_i2c,
(gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
(gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
break;
}
}
/* Keyboard codes & masks */
#define KEY_RELEASED 0x80
#define KEY_CODE 0x7f
#define KEYCODE_TAB 0x0f
#define KEYCODE_ENTER 0x1c
#define KEYCODE_F 0x21
#define KEYCODE_M 0x32
#define KEYCODE_EXTENDED 0xe0
#define KEYCODE_UP 0x48
#define KEYCODE_DOWN 0x50
#define KEYCODE_LEFT 0x4b
#define KEYCODE_RIGHT 0x4d
static void musicpal_key_event(void *opaque, int keycode)
{
qemu_irq irq = opaque;
uint32_t event = 0;
static int kbd_extended;
if (keycode == KEYCODE_EXTENDED) {
kbd_extended = 1;
return;
}
if (kbd_extended)
switch (keycode & KEY_CODE) {
case KEYCODE_UP:
event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
break;
case KEYCODE_DOWN:
event = MP_GPIO_WHEEL_NAV;
break;
case KEYCODE_LEFT:
event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
break;
case KEYCODE_RIGHT:
event = MP_GPIO_WHEEL_VOL;
break;
}
else {
switch (keycode & KEY_CODE) {
case KEYCODE_F:
event = MP_GPIO_BTN_FAVORITS;
break;
case KEYCODE_TAB:
event = MP_GPIO_BTN_VOLUME;
break;
case KEYCODE_ENTER:
event = MP_GPIO_BTN_NAVIGATION;
break;
case KEYCODE_M:
event = MP_GPIO_BTN_MENU;
break;
}
/* Do not repeat already pressed buttons */
if (!(keycode & KEY_RELEASED) && !(gpio_in_state & event))
event = 0;
}
if (event) {
if (keycode & KEY_RELEASED) {
gpio_in_state |= event;
} else {
gpio_in_state &= ~event;
gpio_isr = event;
qemu_irq_raise(irq);
}
}
kbd_extended = 0;
}
static CPUReadMemoryFunc *musicpal_readfn[] = {
musicpal_read,
musicpal_read,
musicpal_read,
};
static CPUWriteMemoryFunc *musicpal_writefn[] = {
musicpal_write,
musicpal_write,
musicpal_write,
};
static struct arm_boot_info musicpal_binfo = {
.loader_start = 0x0,
.board_id = 0x20e,
};
static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env;
qemu_irq *pic;
int index;
int iomemtype;
unsigned long flash_size;
if (!cpu_model)
cpu_model = "arm926";
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
pic = arm_pic_init_cpu(env);
/* For now we use a fixed - the original - RAM size */
cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
/* Catch various stuff not handled by separate subsystems */
iomemtype = cpu_register_io_memory(0, musicpal_readfn,
musicpal_writefn, env);
cpu_register_physical_memory(0x80000000, 0x10000, iomemtype);
pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
if (serial_hds[0])
serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
serial_hds[0], 1);
if (serial_hds[1])
serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
serial_hds[1], 1);
/* Register flash */
index = drive_get_index(IF_PFLASH, 0, 0);
if (index != -1) {
flash_size = bdrv_getlength(drives_table[index].bdrv);
if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
flash_size != 32*1024*1024) {
fprintf(stderr, "Invalid flash image size\n");
exit(1);
}
/*
* The original U-Boot accesses the flash at 0xFE000000 instead of
* 0xFF800000 (if there is 8 MB flash). So remap flash access if the
* image is smaller than 32 MB.
*/
pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
drives_table[index].bdrv, 0x10000,
(flash_size + 0xffff) >> 16,
MP_FLASH_SIZE_MAX / flash_size,
2, 0x00BF, 0x236D, 0x0000, 0x0000,
0x5555, 0x2AAA);
}
mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
musicpal_lcd_init(ds, MP_LCD_BASE);
qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
/*
* Wait a bit to catch menu button during U-Boot start-up
* (to trigger emergency update).
*/
sleep(1);
mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]);
musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
musicpal_binfo.kernel_filename = kernel_filename;
musicpal_binfo.kernel_cmdline = kernel_cmdline;
musicpal_binfo.initrd_filename = initrd_filename;
arm_load_kernel(env, &musicpal_binfo);
}
QEMUMachine musicpal_machine = {
"musicpal",
"Marvell 88w8618 / MusicPal (ARM926EJ-S)",
musicpal_init,
MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE + MP_FLASH_SIZE_MAX + RAMSIZE_FIXED
};