qemu-e2k/hw/mcf_fec.c
Avi Kivity 1eed09cb4a Remove io_index argument from cpu_register_io_memory()
The parameter is always zero except when registering the three internal
io regions (ROM, unassigned, notdirty).  Remove the parameter to reduce
the API's power, thus facilitating future change.

Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-06-16 15:18:37 -05:00

471 lines
12 KiB
C

/*
* ColdFire Fast Ethernet Controller emulation.
*
* Copyright (c) 2007 CodeSourcery.
*
* This code is licenced under the GPL
*/
#include "hw.h"
#include "net.h"
#include "mcf.h"
/* For crc32 */
#include <zlib.h>
//#define DEBUG_FEC 1
#ifdef DEBUG_FEC
#define DPRINTF(fmt, ...) \
do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) do {} while(0)
#endif
#define FEC_MAX_FRAME_SIZE 2032
typedef struct {
qemu_irq *irq;
int mmio_index;
VLANClientState *vc;
uint32_t irq_state;
uint32_t eir;
uint32_t eimr;
int rx_enabled;
uint32_t rx_descriptor;
uint32_t tx_descriptor;
uint32_t ecr;
uint32_t mmfr;
uint32_t mscr;
uint32_t rcr;
uint32_t tcr;
uint32_t tfwr;
uint32_t rfsr;
uint32_t erdsr;
uint32_t etdsr;
uint32_t emrbr;
uint8_t macaddr[6];
} mcf_fec_state;
#define FEC_INT_HB 0x80000000
#define FEC_INT_BABR 0x40000000
#define FEC_INT_BABT 0x20000000
#define FEC_INT_GRA 0x10000000
#define FEC_INT_TXF 0x08000000
#define FEC_INT_TXB 0x04000000
#define FEC_INT_RXF 0x02000000
#define FEC_INT_RXB 0x01000000
#define FEC_INT_MII 0x00800000
#define FEC_INT_EB 0x00400000
#define FEC_INT_LC 0x00200000
#define FEC_INT_RL 0x00100000
#define FEC_INT_UN 0x00080000
#define FEC_EN 2
#define FEC_RESET 1
/* Map interrupt flags onto IRQ lines. */
#define FEC_NUM_IRQ 13
static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
FEC_INT_TXF,
FEC_INT_TXB,
FEC_INT_UN,
FEC_INT_RL,
FEC_INT_RXF,
FEC_INT_RXB,
FEC_INT_MII,
FEC_INT_LC,
FEC_INT_HB,
FEC_INT_GRA,
FEC_INT_EB,
FEC_INT_BABT,
FEC_INT_BABR
};
/* Buffer Descriptor. */
typedef struct {
uint16_t flags;
uint16_t length;
uint32_t data;
} mcf_fec_bd;
#define FEC_BD_R 0x8000
#define FEC_BD_E 0x8000
#define FEC_BD_O1 0x4000
#define FEC_BD_W 0x2000
#define FEC_BD_O2 0x1000
#define FEC_BD_L 0x0800
#define FEC_BD_TC 0x0400
#define FEC_BD_ABC 0x0200
#define FEC_BD_M 0x0100
#define FEC_BD_BC 0x0080
#define FEC_BD_MC 0x0040
#define FEC_BD_LG 0x0020
#define FEC_BD_NO 0x0010
#define FEC_BD_CR 0x0004
#define FEC_BD_OV 0x0002
#define FEC_BD_TR 0x0001
static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
{
cpu_physical_memory_read(addr, (uint8_t *)bd, sizeof(*bd));
be16_to_cpus(&bd->flags);
be16_to_cpus(&bd->length);
be32_to_cpus(&bd->data);
}
static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
{
mcf_fec_bd tmp;
tmp.flags = cpu_to_be16(bd->flags);
tmp.length = cpu_to_be16(bd->length);
tmp.data = cpu_to_be32(bd->data);
cpu_physical_memory_write(addr, (uint8_t *)&tmp, sizeof(tmp));
}
static void mcf_fec_update(mcf_fec_state *s)
{
uint32_t active;
uint32_t changed;
uint32_t mask;
int i;
active = s->eir & s->eimr;
changed = active ^s->irq_state;
for (i = 0; i < FEC_NUM_IRQ; i++) {
mask = mcf_fec_irq_map[i];
if (changed & mask) {
DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
qemu_set_irq(s->irq[i], (active & mask) != 0);
}
}
s->irq_state = active;
}
static void mcf_fec_do_tx(mcf_fec_state *s)
{
uint32_t addr;
mcf_fec_bd bd;
int frame_size;
int len;
uint8_t frame[FEC_MAX_FRAME_SIZE];
uint8_t *ptr;
DPRINTF("do_tx\n");
ptr = frame;
frame_size = 0;
addr = s->tx_descriptor;
while (1) {
mcf_fec_read_bd(&bd, addr);
DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
addr, bd.flags, bd.length, bd.data);
if ((bd.flags & FEC_BD_R) == 0) {
/* Run out of descriptors to transmit. */
break;
}
len = bd.length;
if (frame_size + len > FEC_MAX_FRAME_SIZE) {
len = FEC_MAX_FRAME_SIZE - frame_size;
s->eir |= FEC_INT_BABT;
}
cpu_physical_memory_read(bd.data, ptr, len);
ptr += len;
frame_size += len;
if (bd.flags & FEC_BD_L) {
/* Last buffer in frame. */
DPRINTF("Sending packet\n");
qemu_send_packet(s->vc, frame, len);
ptr = frame;
frame_size = 0;
s->eir |= FEC_INT_TXF;
}
s->eir |= FEC_INT_TXB;
bd.flags &= ~FEC_BD_R;
/* Write back the modified descriptor. */
mcf_fec_write_bd(&bd, addr);
/* Advance to the next descriptor. */
if ((bd.flags & FEC_BD_W) != 0) {
addr = s->etdsr;
} else {
addr += 8;
}
}
s->tx_descriptor = addr;
}
static void mcf_fec_enable_rx(mcf_fec_state *s)
{
mcf_fec_bd bd;
mcf_fec_read_bd(&bd, s->rx_descriptor);
s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
if (!s->rx_enabled)
DPRINTF("RX buffer full\n");
}
static void mcf_fec_reset(mcf_fec_state *s)
{
s->eir = 0;
s->eimr = 0;
s->rx_enabled = 0;
s->ecr = 0;
s->mscr = 0;
s->rcr = 0x05ee0001;
s->tcr = 0;
s->tfwr = 0;
s->rfsr = 0x500;
}
static uint32_t mcf_fec_read(void *opaque, target_phys_addr_t addr)
{
mcf_fec_state *s = (mcf_fec_state *)opaque;
switch (addr & 0x3ff) {
case 0x004: return s->eir;
case 0x008: return s->eimr;
case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
case 0x014: return 0; /* TDAR */
case 0x024: return s->ecr;
case 0x040: return s->mmfr;
case 0x044: return s->mscr;
case 0x064: return 0; /* MIBC */
case 0x084: return s->rcr;
case 0x0c4: return s->tcr;
case 0x0e4: /* PALR */
return (s->macaddr[0] << 24) | (s->macaddr[1] << 16)
| (s->macaddr[2] << 8) | s->macaddr[3];
break;
case 0x0e8: /* PAUR */
return (s->macaddr[4] << 24) | (s->macaddr[5] << 16) | 0x8808;
case 0x0ec: return 0x10000; /* OPD */
case 0x118: return 0;
case 0x11c: return 0;
case 0x120: return 0;
case 0x124: return 0;
case 0x144: return s->tfwr;
case 0x14c: return 0x600;
case 0x150: return s->rfsr;
case 0x180: return s->erdsr;
case 0x184: return s->etdsr;
case 0x188: return s->emrbr;
default:
hw_error("mcf_fec_read: Bad address 0x%x\n", (int)addr);
return 0;
}
}
static void mcf_fec_write(void *opaque, target_phys_addr_t addr, uint32_t value)
{
mcf_fec_state *s = (mcf_fec_state *)opaque;
switch (addr & 0x3ff) {
case 0x004:
s->eir &= ~value;
break;
case 0x008:
s->eimr = value;
break;
case 0x010: /* RDAR */
if ((s->ecr & FEC_EN) && !s->rx_enabled) {
DPRINTF("RX enable\n");
mcf_fec_enable_rx(s);
}
break;
case 0x014: /* TDAR */
if (s->ecr & FEC_EN) {
mcf_fec_do_tx(s);
}
break;
case 0x024:
s->ecr = value;
if (value & FEC_RESET) {
DPRINTF("Reset\n");
mcf_fec_reset(s);
}
if ((s->ecr & FEC_EN) == 0) {
s->rx_enabled = 0;
}
break;
case 0x040:
/* TODO: Implement MII. */
s->mmfr = value;
break;
case 0x044:
s->mscr = value & 0xfe;
break;
case 0x064:
/* TODO: Implement MIB. */
break;
case 0x084:
s->rcr = value & 0x07ff003f;
/* TODO: Implement LOOP mode. */
break;
case 0x0c4: /* TCR */
/* We transmit immediately, so raise GRA immediately. */
s->tcr = value;
if (value & 1)
s->eir |= FEC_INT_GRA;
break;
case 0x0e4: /* PALR */
s->macaddr[0] = value >> 24;
s->macaddr[1] = value >> 16;
s->macaddr[2] = value >> 8;
s->macaddr[3] = value;
break;
case 0x0e8: /* PAUR */
s->macaddr[4] = value >> 24;
s->macaddr[5] = value >> 16;
break;
case 0x0ec:
/* OPD */
break;
case 0x118:
case 0x11c:
case 0x120:
case 0x124:
/* TODO: implement MAC hash filtering. */
break;
case 0x144:
s->tfwr = value & 3;
break;
case 0x14c:
/* FRBR writes ignored. */
break;
case 0x150:
s->rfsr = (value & 0x3fc) | 0x400;
break;
case 0x180:
s->erdsr = value & ~3;
s->rx_descriptor = s->erdsr;
break;
case 0x184:
s->etdsr = value & ~3;
s->tx_descriptor = s->etdsr;
break;
case 0x188:
s->emrbr = value & 0x7f0;
break;
default:
hw_error("mcf_fec_write Bad address 0x%x\n", (int)addr);
}
mcf_fec_update(s);
}
static int mcf_fec_can_receive(VLANClientState *vc)
{
mcf_fec_state *s = vc->opaque;
return s->rx_enabled;
}
static ssize_t mcf_fec_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
{
mcf_fec_state *s = vc->opaque;
mcf_fec_bd bd;
uint32_t flags = 0;
uint32_t addr;
uint32_t crc;
uint32_t buf_addr;
uint8_t *crc_ptr;
unsigned int buf_len;
DPRINTF("do_rx len %d\n", size);
if (!s->rx_enabled) {
fprintf(stderr, "mcf_fec_receive: Unexpected packet\n");
}
/* 4 bytes for the CRC. */
size += 4;
crc = cpu_to_be32(crc32(~0, buf, size));
crc_ptr = (uint8_t *)&crc;
/* Huge frames are truncted. */
if (size > FEC_MAX_FRAME_SIZE) {
size = FEC_MAX_FRAME_SIZE;
flags |= FEC_BD_TR | FEC_BD_LG;
}
/* Frames larger than the user limit just set error flags. */
if (size > (s->rcr >> 16)) {
flags |= FEC_BD_LG;
}
addr = s->rx_descriptor;
while (size > 0) {
mcf_fec_read_bd(&bd, addr);
if ((bd.flags & FEC_BD_E) == 0) {
/* No descriptors available. Bail out. */
/* FIXME: This is wrong. We should probably either save the
remainder for when more RX buffers are available, or
flag an error. */
fprintf(stderr, "mcf_fec: Lost end of frame\n");
break;
}
buf_len = (size <= s->emrbr) ? size: s->emrbr;
bd.length = buf_len;
size -= buf_len;
DPRINTF("rx_bd %x length %d\n", addr, bd.length);
/* The last 4 bytes are the CRC. */
if (size < 4)
buf_len += size - 4;
buf_addr = bd.data;
cpu_physical_memory_write(buf_addr, buf, buf_len);
buf += buf_len;
if (size < 4) {
cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
crc_ptr += 4 - size;
}
bd.flags &= ~FEC_BD_E;
if (size == 0) {
/* Last buffer in frame. */
bd.flags |= flags | FEC_BD_L;
DPRINTF("rx frame flags %04x\n", bd.flags);
s->eir |= FEC_INT_RXF;
} else {
s->eir |= FEC_INT_RXB;
}
mcf_fec_write_bd(&bd, addr);
/* Advance to the next descriptor. */
if ((bd.flags & FEC_BD_W) != 0) {
addr = s->erdsr;
} else {
addr += 8;
}
}
s->rx_descriptor = addr;
mcf_fec_enable_rx(s);
mcf_fec_update(s);
return size;
}
static CPUReadMemoryFunc *mcf_fec_readfn[] = {
mcf_fec_read,
mcf_fec_read,
mcf_fec_read
};
static CPUWriteMemoryFunc *mcf_fec_writefn[] = {
mcf_fec_write,
mcf_fec_write,
mcf_fec_write
};
static void mcf_fec_cleanup(VLANClientState *vc)
{
mcf_fec_state *s = vc->opaque;
cpu_unregister_io_memory(s->mmio_index);
qemu_free(s);
}
void mcf_fec_init(NICInfo *nd, target_phys_addr_t base, qemu_irq *irq)
{
mcf_fec_state *s;
qemu_check_nic_model(nd, "mcf_fec");
s = (mcf_fec_state *)qemu_mallocz(sizeof(mcf_fec_state));
s->irq = irq;
s->mmio_index = cpu_register_io_memory(mcf_fec_readfn,
mcf_fec_writefn, s);
cpu_register_physical_memory(base, 0x400, s->mmio_index);
s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
mcf_fec_can_receive, mcf_fec_receive, NULL,
mcf_fec_cleanup, s);
memcpy(s->macaddr, nd->macaddr, 6);
qemu_format_nic_info_str(s->vc, s->macaddr);
}