qemu-e2k/hw/omap2.c
Avi Kivity 1eed09cb4a Remove io_index argument from cpu_register_io_memory()
The parameter is always zero except when registering the three internal
io regions (ROM, unassigned, notdirty).  Remove the parameter to reduce
the API's power, thus facilitating future change.

Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-06-16 15:18:37 -05:00

4875 lines
142 KiB
C

/*
* TI OMAP processors emulation.
*
* Copyright (C) 2007-2008 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "hw.h"
#include "arm-misc.h"
#include "omap.h"
#include "sysemu.h"
#include "qemu-timer.h"
#include "qemu-char.h"
#include "flash.h"
#include "soc_dma.h"
#include "audio/audio.h"
/* GP timers */
struct omap_gp_timer_s {
qemu_irq irq;
qemu_irq wkup;
qemu_irq in;
qemu_irq out;
omap_clk clk;
QEMUTimer *timer;
QEMUTimer *match;
struct omap_target_agent_s *ta;
int in_val;
int out_val;
int64_t time;
int64_t rate;
int64_t ticks_per_sec;
int16_t config;
int status;
int it_ena;
int wu_ena;
int enable;
int inout;
int capt2;
int pt;
enum {
gpt_trigger_none, gpt_trigger_overflow, gpt_trigger_both
} trigger;
enum {
gpt_capture_none, gpt_capture_rising,
gpt_capture_falling, gpt_capture_both
} capture;
int scpwm;
int ce;
int pre;
int ptv;
int ar;
int st;
int posted;
uint32_t val;
uint32_t load_val;
uint32_t capture_val[2];
uint32_t match_val;
int capt_num;
uint16_t writeh; /* LSB */
uint16_t readh; /* MSB */
};
#define GPT_TCAR_IT (1 << 2)
#define GPT_OVF_IT (1 << 1)
#define GPT_MAT_IT (1 << 0)
static inline void omap_gp_timer_intr(struct omap_gp_timer_s *timer, int it)
{
if (timer->it_ena & it) {
if (!timer->status)
qemu_irq_raise(timer->irq);
timer->status |= it;
/* Or are the status bits set even when masked?
* i.e. is masking applied before or after the status register? */
}
if (timer->wu_ena & it)
qemu_irq_pulse(timer->wkup);
}
static inline void omap_gp_timer_out(struct omap_gp_timer_s *timer, int level)
{
if (!timer->inout && timer->out_val != level) {
timer->out_val = level;
qemu_set_irq(timer->out, level);
}
}
static inline uint32_t omap_gp_timer_read(struct omap_gp_timer_s *timer)
{
uint64_t distance;
if (timer->st && timer->rate) {
distance = qemu_get_clock(vm_clock) - timer->time;
distance = muldiv64(distance, timer->rate, timer->ticks_per_sec);
if (distance >= 0xffffffff - timer->val)
return 0xffffffff;
else
return timer->val + distance;
} else
return timer->val;
}
static inline void omap_gp_timer_sync(struct omap_gp_timer_s *timer)
{
if (timer->st) {
timer->val = omap_gp_timer_read(timer);
timer->time = qemu_get_clock(vm_clock);
}
}
static inline void omap_gp_timer_update(struct omap_gp_timer_s *timer)
{
int64_t expires, matches;
if (timer->st && timer->rate) {
expires = muldiv64(0x100000000ll - timer->val,
timer->ticks_per_sec, timer->rate);
qemu_mod_timer(timer->timer, timer->time + expires);
if (timer->ce && timer->match_val >= timer->val) {
matches = muldiv64(timer->match_val - timer->val,
timer->ticks_per_sec, timer->rate);
qemu_mod_timer(timer->match, timer->time + matches);
} else
qemu_del_timer(timer->match);
} else {
qemu_del_timer(timer->timer);
qemu_del_timer(timer->match);
omap_gp_timer_out(timer, timer->scpwm);
}
}
static inline void omap_gp_timer_trigger(struct omap_gp_timer_s *timer)
{
if (timer->pt)
/* TODO in overflow-and-match mode if the first event to
* occur is the match, don't toggle. */
omap_gp_timer_out(timer, !timer->out_val);
else
/* TODO inverted pulse on timer->out_val == 1? */
qemu_irq_pulse(timer->out);
}
static void omap_gp_timer_tick(void *opaque)
{
struct omap_gp_timer_s *timer = (struct omap_gp_timer_s *) opaque;
if (!timer->ar) {
timer->st = 0;
timer->val = 0;
} else {
timer->val = timer->load_val;
timer->time = qemu_get_clock(vm_clock);
}
if (timer->trigger == gpt_trigger_overflow ||
timer->trigger == gpt_trigger_both)
omap_gp_timer_trigger(timer);
omap_gp_timer_intr(timer, GPT_OVF_IT);
omap_gp_timer_update(timer);
}
static void omap_gp_timer_match(void *opaque)
{
struct omap_gp_timer_s *timer = (struct omap_gp_timer_s *) opaque;
if (timer->trigger == gpt_trigger_both)
omap_gp_timer_trigger(timer);
omap_gp_timer_intr(timer, GPT_MAT_IT);
}
static void omap_gp_timer_input(void *opaque, int line, int on)
{
struct omap_gp_timer_s *s = (struct omap_gp_timer_s *) opaque;
int trigger;
switch (s->capture) {
default:
case gpt_capture_none:
trigger = 0;
break;
case gpt_capture_rising:
trigger = !s->in_val && on;
break;
case gpt_capture_falling:
trigger = s->in_val && !on;
break;
case gpt_capture_both:
trigger = (s->in_val == !on);
break;
}
s->in_val = on;
if (s->inout && trigger && s->capt_num < 2) {
s->capture_val[s->capt_num] = omap_gp_timer_read(s);
if (s->capt2 == s->capt_num ++)
omap_gp_timer_intr(s, GPT_TCAR_IT);
}
}
static void omap_gp_timer_clk_update(void *opaque, int line, int on)
{
struct omap_gp_timer_s *timer = (struct omap_gp_timer_s *) opaque;
omap_gp_timer_sync(timer);
timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
omap_gp_timer_update(timer);
}
static void omap_gp_timer_clk_setup(struct omap_gp_timer_s *timer)
{
omap_clk_adduser(timer->clk,
qemu_allocate_irqs(omap_gp_timer_clk_update, timer, 1)[0]);
timer->rate = omap_clk_getrate(timer->clk);
}
static void omap_gp_timer_reset(struct omap_gp_timer_s *s)
{
s->config = 0x000;
s->status = 0;
s->it_ena = 0;
s->wu_ena = 0;
s->inout = 0;
s->capt2 = 0;
s->capt_num = 0;
s->pt = 0;
s->trigger = gpt_trigger_none;
s->capture = gpt_capture_none;
s->scpwm = 0;
s->ce = 0;
s->pre = 0;
s->ptv = 0;
s->ar = 0;
s->st = 0;
s->posted = 1;
s->val = 0x00000000;
s->load_val = 0x00000000;
s->capture_val[0] = 0x00000000;
s->capture_val[1] = 0x00000000;
s->match_val = 0x00000000;
omap_gp_timer_update(s);
}
static uint32_t omap_gp_timer_readw(void *opaque, target_phys_addr_t addr)
{
struct omap_gp_timer_s *s = (struct omap_gp_timer_s *) opaque;
switch (addr) {
case 0x00: /* TIDR */
return 0x21;
case 0x10: /* TIOCP_CFG */
return s->config;
case 0x14: /* TISTAT */
/* ??? When's this bit reset? */
return 1; /* RESETDONE */
case 0x18: /* TISR */
return s->status;
case 0x1c: /* TIER */
return s->it_ena;
case 0x20: /* TWER */
return s->wu_ena;
case 0x24: /* TCLR */
return (s->inout << 14) |
(s->capt2 << 13) |
(s->pt << 12) |
(s->trigger << 10) |
(s->capture << 8) |
(s->scpwm << 7) |
(s->ce << 6) |
(s->pre << 5) |
(s->ptv << 2) |
(s->ar << 1) |
(s->st << 0);
case 0x28: /* TCRR */
return omap_gp_timer_read(s);
case 0x2c: /* TLDR */
return s->load_val;
case 0x30: /* TTGR */
return 0xffffffff;
case 0x34: /* TWPS */
return 0x00000000; /* No posted writes pending. */
case 0x38: /* TMAR */
return s->match_val;
case 0x3c: /* TCAR1 */
return s->capture_val[0];
case 0x40: /* TSICR */
return s->posted << 2;
case 0x44: /* TCAR2 */
return s->capture_val[1];
}
OMAP_BAD_REG(addr);
return 0;
}
static uint32_t omap_gp_timer_readh(void *opaque, target_phys_addr_t addr)
{
struct omap_gp_timer_s *s = (struct omap_gp_timer_s *) opaque;
uint32_t ret;
if (addr & 2)
return s->readh;
else {
ret = omap_gp_timer_readw(opaque, addr);
s->readh = ret >> 16;
return ret & 0xffff;
}
}
static CPUReadMemoryFunc *omap_gp_timer_readfn[] = {
omap_badwidth_read32,
omap_gp_timer_readh,
omap_gp_timer_readw,
};
static void omap_gp_timer_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_gp_timer_s *s = (struct omap_gp_timer_s *) opaque;
switch (addr) {
case 0x00: /* TIDR */
case 0x14: /* TISTAT */
case 0x34: /* TWPS */
case 0x3c: /* TCAR1 */
case 0x44: /* TCAR2 */
OMAP_RO_REG(addr);
break;
case 0x10: /* TIOCP_CFG */
s->config = value & 0x33d;
if (((value >> 3) & 3) == 3) /* IDLEMODE */
fprintf(stderr, "%s: illegal IDLEMODE value in TIOCP_CFG\n",
__FUNCTION__);
if (value & 2) /* SOFTRESET */
omap_gp_timer_reset(s);
break;
case 0x18: /* TISR */
if (value & GPT_TCAR_IT)
s->capt_num = 0;
if (s->status && !(s->status &= ~value))
qemu_irq_lower(s->irq);
break;
case 0x1c: /* TIER */
s->it_ena = value & 7;
break;
case 0x20: /* TWER */
s->wu_ena = value & 7;
break;
case 0x24: /* TCLR */
omap_gp_timer_sync(s);
s->inout = (value >> 14) & 1;
s->capt2 = (value >> 13) & 1;
s->pt = (value >> 12) & 1;
s->trigger = (value >> 10) & 3;
if (s->capture == gpt_capture_none &&
((value >> 8) & 3) != gpt_capture_none)
s->capt_num = 0;
s->capture = (value >> 8) & 3;
s->scpwm = (value >> 7) & 1;
s->ce = (value >> 6) & 1;
s->pre = (value >> 5) & 1;
s->ptv = (value >> 2) & 7;
s->ar = (value >> 1) & 1;
s->st = (value >> 0) & 1;
if (s->inout && s->trigger != gpt_trigger_none)
fprintf(stderr, "%s: GP timer pin must be an output "
"for this trigger mode\n", __FUNCTION__);
if (!s->inout && s->capture != gpt_capture_none)
fprintf(stderr, "%s: GP timer pin must be an input "
"for this capture mode\n", __FUNCTION__);
if (s->trigger == gpt_trigger_none)
omap_gp_timer_out(s, s->scpwm);
/* TODO: make sure this doesn't overflow 32-bits */
s->ticks_per_sec = ticks_per_sec << (s->pre ? s->ptv + 1 : 0);
omap_gp_timer_update(s);
break;
case 0x28: /* TCRR */
s->time = qemu_get_clock(vm_clock);
s->val = value;
omap_gp_timer_update(s);
break;
case 0x2c: /* TLDR */
s->load_val = value;
break;
case 0x30: /* TTGR */
s->time = qemu_get_clock(vm_clock);
s->val = s->load_val;
omap_gp_timer_update(s);
break;
case 0x38: /* TMAR */
omap_gp_timer_sync(s);
s->match_val = value;
omap_gp_timer_update(s);
break;
case 0x40: /* TSICR */
s->posted = (value >> 2) & 1;
if (value & 2) /* How much exactly are we supposed to reset? */
omap_gp_timer_reset(s);
break;
default:
OMAP_BAD_REG(addr);
}
}
static void omap_gp_timer_writeh(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_gp_timer_s *s = (struct omap_gp_timer_s *) opaque;
if (addr & 2)
return omap_gp_timer_write(opaque, addr, (value << 16) | s->writeh);
else
s->writeh = (uint16_t) value;
}
static CPUWriteMemoryFunc *omap_gp_timer_writefn[] = {
omap_badwidth_write32,
omap_gp_timer_writeh,
omap_gp_timer_write,
};
struct omap_gp_timer_s *omap_gp_timer_init(struct omap_target_agent_s *ta,
qemu_irq irq, omap_clk fclk, omap_clk iclk)
{
int iomemtype;
struct omap_gp_timer_s *s = (struct omap_gp_timer_s *)
qemu_mallocz(sizeof(struct omap_gp_timer_s));
s->ta = ta;
s->irq = irq;
s->clk = fclk;
s->timer = qemu_new_timer(vm_clock, omap_gp_timer_tick, s);
s->match = qemu_new_timer(vm_clock, omap_gp_timer_match, s);
s->in = qemu_allocate_irqs(omap_gp_timer_input, s, 1)[0];
omap_gp_timer_reset(s);
omap_gp_timer_clk_setup(s);
iomemtype = l4_register_io_memory(omap_gp_timer_readfn,
omap_gp_timer_writefn, s);
omap_l4_attach(ta, 0, iomemtype);
return s;
}
/* 32-kHz Sync Timer of the OMAP2 */
static uint32_t omap_synctimer_read(struct omap_synctimer_s *s) {
return muldiv64(qemu_get_clock(vm_clock), 0x8000, ticks_per_sec);
}
static void omap_synctimer_reset(struct omap_synctimer_s *s)
{
s->val = omap_synctimer_read(s);
}
static uint32_t omap_synctimer_readw(void *opaque, target_phys_addr_t addr)
{
struct omap_synctimer_s *s = (struct omap_synctimer_s *) opaque;
switch (addr) {
case 0x00: /* 32KSYNCNT_REV */
return 0x21;
case 0x10: /* CR */
return omap_synctimer_read(s) - s->val;
}
OMAP_BAD_REG(addr);
return 0;
}
static uint32_t omap_synctimer_readh(void *opaque, target_phys_addr_t addr)
{
struct omap_synctimer_s *s = (struct omap_synctimer_s *) opaque;
uint32_t ret;
if (addr & 2)
return s->readh;
else {
ret = omap_synctimer_readw(opaque, addr);
s->readh = ret >> 16;
return ret & 0xffff;
}
}
static CPUReadMemoryFunc *omap_synctimer_readfn[] = {
omap_badwidth_read32,
omap_synctimer_readh,
omap_synctimer_readw,
};
static void omap_synctimer_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
OMAP_BAD_REG(addr);
}
static CPUWriteMemoryFunc *omap_synctimer_writefn[] = {
omap_badwidth_write32,
omap_synctimer_write,
omap_synctimer_write,
};
void omap_synctimer_init(struct omap_target_agent_s *ta,
struct omap_mpu_state_s *mpu, omap_clk fclk, omap_clk iclk)
{
struct omap_synctimer_s *s = &mpu->synctimer;
omap_synctimer_reset(s);
omap_l4_attach(ta, 0, l4_register_io_memory(
omap_synctimer_readfn, omap_synctimer_writefn, s));
}
/* General-Purpose Interface of OMAP2 */
struct omap2_gpio_s {
qemu_irq irq[2];
qemu_irq wkup;
qemu_irq *in;
qemu_irq handler[32];
uint8_t config[2];
uint32_t inputs;
uint32_t outputs;
uint32_t dir;
uint32_t level[2];
uint32_t edge[2];
uint32_t mask[2];
uint32_t wumask;
uint32_t ints[2];
uint32_t debounce;
uint8_t delay;
};
static inline void omap_gpio_module_int_update(struct omap2_gpio_s *s,
int line)
{
qemu_set_irq(s->irq[line], s->ints[line] & s->mask[line]);
}
static void omap_gpio_module_wake(struct omap2_gpio_s *s, int line)
{
if (!(s->config[0] & (1 << 2))) /* ENAWAKEUP */
return;
if (!(s->config[0] & (3 << 3))) /* Force Idle */
return;
if (!(s->wumask & (1 << line)))
return;
qemu_irq_raise(s->wkup);
}
static inline void omap_gpio_module_out_update(struct omap2_gpio_s *s,
uint32_t diff)
{
int ln;
s->outputs ^= diff;
diff &= ~s->dir;
while ((ln = ffs(diff))) {
ln --;
qemu_set_irq(s->handler[ln], (s->outputs >> ln) & 1);
diff &= ~(1 << ln);
}
}
static void omap_gpio_module_level_update(struct omap2_gpio_s *s, int line)
{
s->ints[line] |= s->dir &
((s->inputs & s->level[1]) | (~s->inputs & s->level[0]));
omap_gpio_module_int_update(s, line);
}
static inline void omap_gpio_module_int(struct omap2_gpio_s *s, int line)
{
s->ints[0] |= 1 << line;
omap_gpio_module_int_update(s, 0);
s->ints[1] |= 1 << line;
omap_gpio_module_int_update(s, 1);
omap_gpio_module_wake(s, line);
}
static void omap_gpio_module_set(void *opaque, int line, int level)
{
struct omap2_gpio_s *s = (struct omap2_gpio_s *) opaque;
if (level) {
if (s->dir & (1 << line) & ((~s->inputs & s->edge[0]) | s->level[1]))
omap_gpio_module_int(s, line);
s->inputs |= 1 << line;
} else {
if (s->dir & (1 << line) & ((s->inputs & s->edge[1]) | s->level[0]))
omap_gpio_module_int(s, line);
s->inputs &= ~(1 << line);
}
}
static void omap_gpio_module_reset(struct omap2_gpio_s *s)
{
s->config[0] = 0;
s->config[1] = 2;
s->ints[0] = 0;
s->ints[1] = 0;
s->mask[0] = 0;
s->mask[1] = 0;
s->wumask = 0;
s->dir = ~0;
s->level[0] = 0;
s->level[1] = 0;
s->edge[0] = 0;
s->edge[1] = 0;
s->debounce = 0;
s->delay = 0;
}
static uint32_t omap_gpio_module_read(void *opaque, target_phys_addr_t addr)
{
struct omap2_gpio_s *s = (struct omap2_gpio_s *) opaque;
switch (addr) {
case 0x00: /* GPIO_REVISION */
return 0x18;
case 0x10: /* GPIO_SYSCONFIG */
return s->config[0];
case 0x14: /* GPIO_SYSSTATUS */
return 0x01;
case 0x18: /* GPIO_IRQSTATUS1 */
return s->ints[0];
case 0x1c: /* GPIO_IRQENABLE1 */
case 0x60: /* GPIO_CLEARIRQENABLE1 */
case 0x64: /* GPIO_SETIRQENABLE1 */
return s->mask[0];
case 0x20: /* GPIO_WAKEUPENABLE */
case 0x80: /* GPIO_CLEARWKUENA */
case 0x84: /* GPIO_SETWKUENA */
return s->wumask;
case 0x28: /* GPIO_IRQSTATUS2 */
return s->ints[1];
case 0x2c: /* GPIO_IRQENABLE2 */
case 0x70: /* GPIO_CLEARIRQENABLE2 */
case 0x74: /* GPIO_SETIREQNEABLE2 */
return s->mask[1];
case 0x30: /* GPIO_CTRL */
return s->config[1];
case 0x34: /* GPIO_OE */
return s->dir;
case 0x38: /* GPIO_DATAIN */
return s->inputs;
case 0x3c: /* GPIO_DATAOUT */
case 0x90: /* GPIO_CLEARDATAOUT */
case 0x94: /* GPIO_SETDATAOUT */
return s->outputs;
case 0x40: /* GPIO_LEVELDETECT0 */
return s->level[0];
case 0x44: /* GPIO_LEVELDETECT1 */
return s->level[1];
case 0x48: /* GPIO_RISINGDETECT */
return s->edge[0];
case 0x4c: /* GPIO_FALLINGDETECT */
return s->edge[1];
case 0x50: /* GPIO_DEBOUNCENABLE */
return s->debounce;
case 0x54: /* GPIO_DEBOUNCINGTIME */
return s->delay;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_gpio_module_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap2_gpio_s *s = (struct omap2_gpio_s *) opaque;
uint32_t diff;
int ln;
switch (addr) {
case 0x00: /* GPIO_REVISION */
case 0x14: /* GPIO_SYSSTATUS */
case 0x38: /* GPIO_DATAIN */
OMAP_RO_REG(addr);
break;
case 0x10: /* GPIO_SYSCONFIG */
if (((value >> 3) & 3) == 3)
fprintf(stderr, "%s: bad IDLEMODE value\n", __FUNCTION__);
if (value & 2)
omap_gpio_module_reset(s);
s->config[0] = value & 0x1d;
break;
case 0x18: /* GPIO_IRQSTATUS1 */
if (s->ints[0] & value) {
s->ints[0] &= ~value;
omap_gpio_module_level_update(s, 0);
}
break;
case 0x1c: /* GPIO_IRQENABLE1 */
s->mask[0] = value;
omap_gpio_module_int_update(s, 0);
break;
case 0x20: /* GPIO_WAKEUPENABLE */
s->wumask = value;
break;
case 0x28: /* GPIO_IRQSTATUS2 */
if (s->ints[1] & value) {
s->ints[1] &= ~value;
omap_gpio_module_level_update(s, 1);
}
break;
case 0x2c: /* GPIO_IRQENABLE2 */
s->mask[1] = value;
omap_gpio_module_int_update(s, 1);
break;
case 0x30: /* GPIO_CTRL */
s->config[1] = value & 7;
break;
case 0x34: /* GPIO_OE */
diff = s->outputs & (s->dir ^ value);
s->dir = value;
value = s->outputs & ~s->dir;
while ((ln = ffs(diff))) {
diff &= ~(1 <<-- ln);
qemu_set_irq(s->handler[ln], (value >> ln) & 1);
}
omap_gpio_module_level_update(s, 0);
omap_gpio_module_level_update(s, 1);
break;
case 0x3c: /* GPIO_DATAOUT */
omap_gpio_module_out_update(s, s->outputs ^ value);
break;
case 0x40: /* GPIO_LEVELDETECT0 */
s->level[0] = value;
omap_gpio_module_level_update(s, 0);
omap_gpio_module_level_update(s, 1);
break;
case 0x44: /* GPIO_LEVELDETECT1 */
s->level[1] = value;
omap_gpio_module_level_update(s, 0);
omap_gpio_module_level_update(s, 1);
break;
case 0x48: /* GPIO_RISINGDETECT */
s->edge[0] = value;
break;
case 0x4c: /* GPIO_FALLINGDETECT */
s->edge[1] = value;
break;
case 0x50: /* GPIO_DEBOUNCENABLE */
s->debounce = value;
break;
case 0x54: /* GPIO_DEBOUNCINGTIME */
s->delay = value;
break;
case 0x60: /* GPIO_CLEARIRQENABLE1 */
s->mask[0] &= ~value;
omap_gpio_module_int_update(s, 0);
break;
case 0x64: /* GPIO_SETIRQENABLE1 */
s->mask[0] |= value;
omap_gpio_module_int_update(s, 0);
break;
case 0x70: /* GPIO_CLEARIRQENABLE2 */
s->mask[1] &= ~value;
omap_gpio_module_int_update(s, 1);
break;
case 0x74: /* GPIO_SETIREQNEABLE2 */
s->mask[1] |= value;
omap_gpio_module_int_update(s, 1);
break;
case 0x80: /* GPIO_CLEARWKUENA */
s->wumask &= ~value;
break;
case 0x84: /* GPIO_SETWKUENA */
s->wumask |= value;
break;
case 0x90: /* GPIO_CLEARDATAOUT */
omap_gpio_module_out_update(s, s->outputs & value);
break;
case 0x94: /* GPIO_SETDATAOUT */
omap_gpio_module_out_update(s, ~s->outputs & value);
break;
default:
OMAP_BAD_REG(addr);
return;
}
}
static uint32_t omap_gpio_module_readp(void *opaque, target_phys_addr_t addr)
{
return omap_gpio_module_readp(opaque, addr) >> ((addr & 3) << 3);
}
static void omap_gpio_module_writep(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
uint32_t cur = 0;
uint32_t mask = 0xffff;
switch (addr & ~3) {
case 0x00: /* GPIO_REVISION */
case 0x14: /* GPIO_SYSSTATUS */
case 0x38: /* GPIO_DATAIN */
OMAP_RO_REG(addr);
break;
case 0x10: /* GPIO_SYSCONFIG */
case 0x1c: /* GPIO_IRQENABLE1 */
case 0x20: /* GPIO_WAKEUPENABLE */
case 0x2c: /* GPIO_IRQENABLE2 */
case 0x30: /* GPIO_CTRL */
case 0x34: /* GPIO_OE */
case 0x3c: /* GPIO_DATAOUT */
case 0x40: /* GPIO_LEVELDETECT0 */
case 0x44: /* GPIO_LEVELDETECT1 */
case 0x48: /* GPIO_RISINGDETECT */
case 0x4c: /* GPIO_FALLINGDETECT */
case 0x50: /* GPIO_DEBOUNCENABLE */
case 0x54: /* GPIO_DEBOUNCINGTIME */
cur = omap_gpio_module_read(opaque, addr & ~3) &
~(mask << ((addr & 3) << 3));
/* Fall through. */
case 0x18: /* GPIO_IRQSTATUS1 */
case 0x28: /* GPIO_IRQSTATUS2 */
case 0x60: /* GPIO_CLEARIRQENABLE1 */
case 0x64: /* GPIO_SETIRQENABLE1 */
case 0x70: /* GPIO_CLEARIRQENABLE2 */
case 0x74: /* GPIO_SETIREQNEABLE2 */
case 0x80: /* GPIO_CLEARWKUENA */
case 0x84: /* GPIO_SETWKUENA */
case 0x90: /* GPIO_CLEARDATAOUT */
case 0x94: /* GPIO_SETDATAOUT */
value <<= (addr & 3) << 3;
omap_gpio_module_write(opaque, addr, cur | value);
break;
default:
OMAP_BAD_REG(addr);
return;
}
}
static CPUReadMemoryFunc *omap_gpio_module_readfn[] = {
omap_gpio_module_readp,
omap_gpio_module_readp,
omap_gpio_module_read,
};
static CPUWriteMemoryFunc *omap_gpio_module_writefn[] = {
omap_gpio_module_writep,
omap_gpio_module_writep,
omap_gpio_module_write,
};
static void omap_gpio_module_init(struct omap2_gpio_s *s,
struct omap_target_agent_s *ta, int region,
qemu_irq mpu, qemu_irq dsp, qemu_irq wkup,
omap_clk fclk, omap_clk iclk)
{
int iomemtype;
s->irq[0] = mpu;
s->irq[1] = dsp;
s->wkup = wkup;
s->in = qemu_allocate_irqs(omap_gpio_module_set, s, 32);
iomemtype = l4_register_io_memory(omap_gpio_module_readfn,
omap_gpio_module_writefn, s);
omap_l4_attach(ta, region, iomemtype);
}
struct omap_gpif_s {
struct omap2_gpio_s module[5];
int modules;
int autoidle;
int gpo;
};
static void omap_gpif_reset(struct omap_gpif_s *s)
{
int i;
for (i = 0; i < s->modules; i ++)
omap_gpio_module_reset(s->module + i);
s->autoidle = 0;
s->gpo = 0;
}
static uint32_t omap_gpif_top_read(void *opaque, target_phys_addr_t addr)
{
struct omap_gpif_s *s = (struct omap_gpif_s *) opaque;
switch (addr) {
case 0x00: /* IPGENERICOCPSPL_REVISION */
return 0x18;
case 0x10: /* IPGENERICOCPSPL_SYSCONFIG */
return s->autoidle;
case 0x14: /* IPGENERICOCPSPL_SYSSTATUS */
return 0x01;
case 0x18: /* IPGENERICOCPSPL_IRQSTATUS */
return 0x00;
case 0x40: /* IPGENERICOCPSPL_GPO */
return s->gpo;
case 0x50: /* IPGENERICOCPSPL_GPI */
return 0x00;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_gpif_top_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_gpif_s *s = (struct omap_gpif_s *) opaque;
switch (addr) {
case 0x00: /* IPGENERICOCPSPL_REVISION */
case 0x14: /* IPGENERICOCPSPL_SYSSTATUS */
case 0x18: /* IPGENERICOCPSPL_IRQSTATUS */
case 0x50: /* IPGENERICOCPSPL_GPI */
OMAP_RO_REG(addr);
break;
case 0x10: /* IPGENERICOCPSPL_SYSCONFIG */
if (value & (1 << 1)) /* SOFTRESET */
omap_gpif_reset(s);
s->autoidle = value & 1;
break;
case 0x40: /* IPGENERICOCPSPL_GPO */
s->gpo = value & 1;
break;
default:
OMAP_BAD_REG(addr);
return;
}
}
static CPUReadMemoryFunc *omap_gpif_top_readfn[] = {
omap_gpif_top_read,
omap_gpif_top_read,
omap_gpif_top_read,
};
static CPUWriteMemoryFunc *omap_gpif_top_writefn[] = {
omap_gpif_top_write,
omap_gpif_top_write,
omap_gpif_top_write,
};
struct omap_gpif_s *omap2_gpio_init(struct omap_target_agent_s *ta,
qemu_irq *irq, omap_clk *fclk, omap_clk iclk, int modules)
{
int iomemtype, i;
struct omap_gpif_s *s = (struct omap_gpif_s *)
qemu_mallocz(sizeof(struct omap_gpif_s));
int region[4] = { 0, 2, 4, 5 };
s->modules = modules;
for (i = 0; i < modules; i ++)
omap_gpio_module_init(s->module + i, ta, region[i],
irq[i], 0, 0, fclk[i], iclk);
omap_gpif_reset(s);
iomemtype = l4_register_io_memory(omap_gpif_top_readfn,
omap_gpif_top_writefn, s);
omap_l4_attach(ta, 1, iomemtype);
return s;
}
qemu_irq *omap2_gpio_in_get(struct omap_gpif_s *s, int start)
{
if (start >= s->modules * 32 || start < 0)
hw_error("%s: No GPIO line %i\n", __FUNCTION__, start);
return s->module[start >> 5].in + (start & 31);
}
void omap2_gpio_out_set(struct omap_gpif_s *s, int line, qemu_irq handler)
{
if (line >= s->modules * 32 || line < 0)
hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
s->module[line >> 5].handler[line & 31] = handler;
}
/* Multichannel SPI */
struct omap_mcspi_s {
qemu_irq irq;
int chnum;
uint32_t sysconfig;
uint32_t systest;
uint32_t irqst;
uint32_t irqen;
uint32_t wken;
uint32_t control;
struct omap_mcspi_ch_s {
qemu_irq txdrq;
qemu_irq rxdrq;
uint32_t (*txrx)(void *opaque, uint32_t, int);
void *opaque;
uint32_t tx;
uint32_t rx;
uint32_t config;
uint32_t status;
uint32_t control;
} ch[4];
};
static inline void omap_mcspi_interrupt_update(struct omap_mcspi_s *s)
{
qemu_set_irq(s->irq, s->irqst & s->irqen);
}
static inline void omap_mcspi_dmarequest_update(struct omap_mcspi_ch_s *ch)
{
qemu_set_irq(ch->txdrq,
(ch->control & 1) && /* EN */
(ch->config & (1 << 14)) && /* DMAW */
(ch->status & (1 << 1)) && /* TXS */
((ch->config >> 12) & 3) != 1); /* TRM */
qemu_set_irq(ch->rxdrq,
(ch->control & 1) && /* EN */
(ch->config & (1 << 15)) && /* DMAW */
(ch->status & (1 << 0)) && /* RXS */
((ch->config >> 12) & 3) != 2); /* TRM */
}
static void omap_mcspi_transfer_run(struct omap_mcspi_s *s, int chnum)
{
struct omap_mcspi_ch_s *ch = s->ch + chnum;
if (!(ch->control & 1)) /* EN */
return;
if ((ch->status & (1 << 0)) && /* RXS */
((ch->config >> 12) & 3) != 2 && /* TRM */
!(ch->config & (1 << 19))) /* TURBO */
goto intr_update;
if ((ch->status & (1 << 1)) && /* TXS */
((ch->config >> 12) & 3) != 1) /* TRM */
goto intr_update;
if (!(s->control & 1) || /* SINGLE */
(ch->config & (1 << 20))) { /* FORCE */
if (ch->txrx)
ch->rx = ch->txrx(ch->opaque, ch->tx, /* WL */
1 + (0x1f & (ch->config >> 7)));
}
ch->tx = 0;
ch->status |= 1 << 2; /* EOT */
ch->status |= 1 << 1; /* TXS */
if (((ch->config >> 12) & 3) != 2) /* TRM */
ch->status |= 1 << 0; /* RXS */
intr_update:
if ((ch->status & (1 << 0)) && /* RXS */
((ch->config >> 12) & 3) != 2 && /* TRM */
!(ch->config & (1 << 19))) /* TURBO */
s->irqst |= 1 << (2 + 4 * chnum); /* RX_FULL */
if ((ch->status & (1 << 1)) && /* TXS */
((ch->config >> 12) & 3) != 1) /* TRM */
s->irqst |= 1 << (0 + 4 * chnum); /* TX_EMPTY */
omap_mcspi_interrupt_update(s);
omap_mcspi_dmarequest_update(ch);
}
static void omap_mcspi_reset(struct omap_mcspi_s *s)
{
int ch;
s->sysconfig = 0;
s->systest = 0;
s->irqst = 0;
s->irqen = 0;
s->wken = 0;
s->control = 4;
for (ch = 0; ch < 4; ch ++) {
s->ch[ch].config = 0x060000;
s->ch[ch].status = 2; /* TXS */
s->ch[ch].control = 0;
omap_mcspi_dmarequest_update(s->ch + ch);
}
omap_mcspi_interrupt_update(s);
}
static uint32_t omap_mcspi_read(void *opaque, target_phys_addr_t addr)
{
struct omap_mcspi_s *s = (struct omap_mcspi_s *) opaque;
int ch = 0;
uint32_t ret;
switch (addr) {
case 0x00: /* MCSPI_REVISION */
return 0x91;
case 0x10: /* MCSPI_SYSCONFIG */
return s->sysconfig;
case 0x14: /* MCSPI_SYSSTATUS */
return 1; /* RESETDONE */
case 0x18: /* MCSPI_IRQSTATUS */
return s->irqst;
case 0x1c: /* MCSPI_IRQENABLE */
return s->irqen;
case 0x20: /* MCSPI_WAKEUPENABLE */
return s->wken;
case 0x24: /* MCSPI_SYST */
return s->systest;
case 0x28: /* MCSPI_MODULCTRL */
return s->control;
case 0x68: ch ++;
case 0x54: ch ++;
case 0x40: ch ++;
case 0x2c: /* MCSPI_CHCONF */
return s->ch[ch].config;
case 0x6c: ch ++;
case 0x58: ch ++;
case 0x44: ch ++;
case 0x30: /* MCSPI_CHSTAT */
return s->ch[ch].status;
case 0x70: ch ++;
case 0x5c: ch ++;
case 0x48: ch ++;
case 0x34: /* MCSPI_CHCTRL */
return s->ch[ch].control;
case 0x74: ch ++;
case 0x60: ch ++;
case 0x4c: ch ++;
case 0x38: /* MCSPI_TX */
return s->ch[ch].tx;
case 0x78: ch ++;
case 0x64: ch ++;
case 0x50: ch ++;
case 0x3c: /* MCSPI_RX */
s->ch[ch].status &= ~(1 << 0); /* RXS */
ret = s->ch[ch].rx;
omap_mcspi_transfer_run(s, ch);
return ret;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_mcspi_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_mcspi_s *s = (struct omap_mcspi_s *) opaque;
int ch = 0;
switch (addr) {
case 0x00: /* MCSPI_REVISION */
case 0x14: /* MCSPI_SYSSTATUS */
case 0x30: /* MCSPI_CHSTAT0 */
case 0x3c: /* MCSPI_RX0 */
case 0x44: /* MCSPI_CHSTAT1 */
case 0x50: /* MCSPI_RX1 */
case 0x58: /* MCSPI_CHSTAT2 */
case 0x64: /* MCSPI_RX2 */
case 0x6c: /* MCSPI_CHSTAT3 */
case 0x78: /* MCSPI_RX3 */
OMAP_RO_REG(addr);
return;
case 0x10: /* MCSPI_SYSCONFIG */
if (value & (1 << 1)) /* SOFTRESET */
omap_mcspi_reset(s);
s->sysconfig = value & 0x31d;
break;
case 0x18: /* MCSPI_IRQSTATUS */
if (!((s->control & (1 << 3)) && (s->systest & (1 << 11)))) {
s->irqst &= ~value;
omap_mcspi_interrupt_update(s);
}
break;
case 0x1c: /* MCSPI_IRQENABLE */
s->irqen = value & 0x1777f;
omap_mcspi_interrupt_update(s);
break;
case 0x20: /* MCSPI_WAKEUPENABLE */
s->wken = value & 1;
break;
case 0x24: /* MCSPI_SYST */
if (s->control & (1 << 3)) /* SYSTEM_TEST */
if (value & (1 << 11)) { /* SSB */
s->irqst |= 0x1777f;
omap_mcspi_interrupt_update(s);
}
s->systest = value & 0xfff;
break;
case 0x28: /* MCSPI_MODULCTRL */
if (value & (1 << 3)) /* SYSTEM_TEST */
if (s->systest & (1 << 11)) { /* SSB */
s->irqst |= 0x1777f;
omap_mcspi_interrupt_update(s);
}
s->control = value & 0xf;
break;
case 0x68: ch ++;
case 0x54: ch ++;
case 0x40: ch ++;
case 0x2c: /* MCSPI_CHCONF */
if ((value ^ s->ch[ch].config) & (3 << 14)) /* DMAR | DMAW */
omap_mcspi_dmarequest_update(s->ch + ch);
if (((value >> 12) & 3) == 3) /* TRM */
fprintf(stderr, "%s: invalid TRM value (3)\n", __FUNCTION__);
if (((value >> 7) & 0x1f) < 3) /* WL */
fprintf(stderr, "%s: invalid WL value (%i)\n",
__FUNCTION__, (value >> 7) & 0x1f);
s->ch[ch].config = value & 0x7fffff;
break;
case 0x70: ch ++;
case 0x5c: ch ++;
case 0x48: ch ++;
case 0x34: /* MCSPI_CHCTRL */
if (value & ~s->ch[ch].control & 1) { /* EN */
s->ch[ch].control |= 1;
omap_mcspi_transfer_run(s, ch);
} else
s->ch[ch].control = value & 1;
break;
case 0x74: ch ++;
case 0x60: ch ++;
case 0x4c: ch ++;
case 0x38: /* MCSPI_TX */
s->ch[ch].tx = value;
s->ch[ch].status &= ~(1 << 1); /* TXS */
omap_mcspi_transfer_run(s, ch);
break;
default:
OMAP_BAD_REG(addr);
return;
}
}
static CPUReadMemoryFunc *omap_mcspi_readfn[] = {
omap_badwidth_read32,
omap_badwidth_read32,
omap_mcspi_read,
};
static CPUWriteMemoryFunc *omap_mcspi_writefn[] = {
omap_badwidth_write32,
omap_badwidth_write32,
omap_mcspi_write,
};
struct omap_mcspi_s *omap_mcspi_init(struct omap_target_agent_s *ta, int chnum,
qemu_irq irq, qemu_irq *drq, omap_clk fclk, omap_clk iclk)
{
int iomemtype;
struct omap_mcspi_s *s = (struct omap_mcspi_s *)
qemu_mallocz(sizeof(struct omap_mcspi_s));
struct omap_mcspi_ch_s *ch = s->ch;
s->irq = irq;
s->chnum = chnum;
while (chnum --) {
ch->txdrq = *drq ++;
ch->rxdrq = *drq ++;
ch ++;
}
omap_mcspi_reset(s);
iomemtype = l4_register_io_memory(omap_mcspi_readfn,
omap_mcspi_writefn, s);
omap_l4_attach(ta, 0, iomemtype);
return s;
}
void omap_mcspi_attach(struct omap_mcspi_s *s,
uint32_t (*txrx)(void *opaque, uint32_t, int), void *opaque,
int chipselect)
{
if (chipselect < 0 || chipselect >= s->chnum)
hw_error("%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
s->ch[chipselect].txrx = txrx;
s->ch[chipselect].opaque = opaque;
}
/* Enhanced Audio Controller (CODEC only) */
struct omap_eac_s {
qemu_irq irq;
uint16_t sysconfig;
uint8_t config[4];
uint8_t control;
uint8_t address;
uint16_t data;
uint8_t vtol;
uint8_t vtsl;
uint16_t mixer;
uint16_t gain[4];
uint8_t att;
uint16_t max[7];
struct {
qemu_irq txdrq;
qemu_irq rxdrq;
uint32_t (*txrx)(void *opaque, uint32_t, int);
void *opaque;
#define EAC_BUF_LEN 1024
uint32_t rxbuf[EAC_BUF_LEN];
int rxoff;
int rxlen;
int rxavail;
uint32_t txbuf[EAC_BUF_LEN];
int txlen;
int txavail;
int enable;
int rate;
uint16_t config[4];
/* These need to be moved to the actual codec */
QEMUSoundCard card;
SWVoiceIn *in_voice;
SWVoiceOut *out_voice;
int hw_enable;
} codec;
struct {
uint8_t control;
uint16_t config;
} modem, bt;
};
static inline void omap_eac_interrupt_update(struct omap_eac_s *s)
{
qemu_set_irq(s->irq, (s->codec.config[1] >> 14) & 1); /* AURDI */
}
static inline void omap_eac_in_dmarequest_update(struct omap_eac_s *s)
{
qemu_set_irq(s->codec.rxdrq, (s->codec.rxavail || s->codec.rxlen) &&
((s->codec.config[1] >> 12) & 1)); /* DMAREN */
}
static inline void omap_eac_out_dmarequest_update(struct omap_eac_s *s)
{
qemu_set_irq(s->codec.txdrq, s->codec.txlen < s->codec.txavail &&
((s->codec.config[1] >> 11) & 1)); /* DMAWEN */
}
static inline void omap_eac_in_refill(struct omap_eac_s *s)
{
int left = MIN(EAC_BUF_LEN - s->codec.rxlen, s->codec.rxavail) << 2;
int start = ((s->codec.rxoff + s->codec.rxlen) & (EAC_BUF_LEN - 1)) << 2;
int leftwrap = MIN(left, (EAC_BUF_LEN << 2) - start);
int recv = 1;
uint8_t *buf = (uint8_t *) s->codec.rxbuf + start;
left -= leftwrap;
start = 0;
while (leftwrap && (recv = AUD_read(s->codec.in_voice, buf + start,
leftwrap)) > 0) { /* Be defensive */
start += recv;
leftwrap -= recv;
}
if (recv <= 0)
s->codec.rxavail = 0;
else
s->codec.rxavail -= start >> 2;
s->codec.rxlen += start >> 2;
if (recv > 0 && left > 0) {
start = 0;
while (left && (recv = AUD_read(s->codec.in_voice,
(uint8_t *) s->codec.rxbuf + start,
left)) > 0) { /* Be defensive */
start += recv;
left -= recv;
}
if (recv <= 0)
s->codec.rxavail = 0;
else
s->codec.rxavail -= start >> 2;
s->codec.rxlen += start >> 2;
}
}
static inline void omap_eac_out_empty(struct omap_eac_s *s)
{
int left = s->codec.txlen << 2;
int start = 0;
int sent = 1;
while (left && (sent = AUD_write(s->codec.out_voice,
(uint8_t *) s->codec.txbuf + start,
left)) > 0) { /* Be defensive */
start += sent;
left -= sent;
}
if (!sent) {
s->codec.txavail = 0;
omap_eac_out_dmarequest_update(s);
}
if (start)
s->codec.txlen = 0;
}
static void omap_eac_in_cb(void *opaque, int avail_b)
{
struct omap_eac_s *s = (struct omap_eac_s *) opaque;
s->codec.rxavail = avail_b >> 2;
omap_eac_in_refill(s);
/* TODO: possibly discard current buffer if overrun */
omap_eac_in_dmarequest_update(s);
}
static void omap_eac_out_cb(void *opaque, int free_b)
{
struct omap_eac_s *s = (struct omap_eac_s *) opaque;
s->codec.txavail = free_b >> 2;
if (s->codec.txlen)
omap_eac_out_empty(s);
else
omap_eac_out_dmarequest_update(s);
}
static void omap_eac_enable_update(struct omap_eac_s *s)
{
s->codec.enable = !(s->codec.config[1] & 1) && /* EACPWD */
(s->codec.config[1] & 2) && /* AUDEN */
s->codec.hw_enable;
}
static const int omap_eac_fsint[4] = {
8000,
11025,
22050,
44100,
};
static const int omap_eac_fsint2[8] = {
8000,
11025,
22050,
44100,
48000,
0, 0, 0,
};
static const int omap_eac_fsint3[16] = {
8000,
11025,
16000,
22050,
24000,
32000,
44100,
48000,
0, 0, 0, 0, 0, 0, 0, 0,
};
static void omap_eac_rate_update(struct omap_eac_s *s)
{
int fsint[3];
fsint[2] = (s->codec.config[3] >> 9) & 0xf;
fsint[1] = (s->codec.config[2] >> 0) & 0x7;
fsint[0] = (s->codec.config[0] >> 6) & 0x3;
if (fsint[2] < 0xf)
s->codec.rate = omap_eac_fsint3[fsint[2]];
else if (fsint[1] < 0x7)
s->codec.rate = omap_eac_fsint2[fsint[1]];
else
s->codec.rate = omap_eac_fsint[fsint[0]];
}
static void omap_eac_volume_update(struct omap_eac_s *s)
{
/* TODO */
}
static void omap_eac_format_update(struct omap_eac_s *s)
{
struct audsettings fmt;
/* The hardware buffers at most one sample */
if (s->codec.rxlen)
s->codec.rxlen = 1;
if (s->codec.in_voice) {
AUD_set_active_in(s->codec.in_voice, 0);
AUD_close_in(&s->codec.card, s->codec.in_voice);
s->codec.in_voice = 0;
}
if (s->codec.out_voice) {
omap_eac_out_empty(s);
AUD_set_active_out(s->codec.out_voice, 0);
AUD_close_out(&s->codec.card, s->codec.out_voice);
s->codec.out_voice = 0;
s->codec.txavail = 0;
}
/* Discard what couldn't be written */
s->codec.txlen = 0;
omap_eac_enable_update(s);
if (!s->codec.enable)
return;
omap_eac_rate_update(s);
fmt.endianness = ((s->codec.config[0] >> 8) & 1); /* LI_BI */
fmt.nchannels = ((s->codec.config[0] >> 10) & 1) ? 2 : 1; /* MN_ST */
fmt.freq = s->codec.rate;
/* TODO: signedness possibly depends on the CODEC hardware - or
* does I2S specify it? */
/* All register writes are 16 bits so we we store 16-bit samples
* in the buffers regardless of AGCFR[B8_16] value. */
fmt.fmt = AUD_FMT_U16;
s->codec.in_voice = AUD_open_in(&s->codec.card, s->codec.in_voice,
"eac.codec.in", s, omap_eac_in_cb, &fmt);
s->codec.out_voice = AUD_open_out(&s->codec.card, s->codec.out_voice,
"eac.codec.out", s, omap_eac_out_cb, &fmt);
omap_eac_volume_update(s);
AUD_set_active_in(s->codec.in_voice, 1);
AUD_set_active_out(s->codec.out_voice, 1);
}
static void omap_eac_reset(struct omap_eac_s *s)
{
s->sysconfig = 0;
s->config[0] = 0x0c;
s->config[1] = 0x09;
s->config[2] = 0xab;
s->config[3] = 0x03;
s->control = 0x00;
s->address = 0x00;
s->data = 0x0000;
s->vtol = 0x00;
s->vtsl = 0x00;
s->mixer = 0x0000;
s->gain[0] = 0xe7e7;
s->gain[1] = 0x6767;
s->gain[2] = 0x6767;
s->gain[3] = 0x6767;
s->att = 0xce;
s->max[0] = 0;
s->max[1] = 0;
s->max[2] = 0;
s->max[3] = 0;
s->max[4] = 0;
s->max[5] = 0;
s->max[6] = 0;
s->modem.control = 0x00;
s->modem.config = 0x0000;
s->bt.control = 0x00;
s->bt.config = 0x0000;
s->codec.config[0] = 0x0649;
s->codec.config[1] = 0x0000;
s->codec.config[2] = 0x0007;
s->codec.config[3] = 0x1ffc;
s->codec.rxoff = 0;
s->codec.rxlen = 0;
s->codec.txlen = 0;
s->codec.rxavail = 0;
s->codec.txavail = 0;
omap_eac_format_update(s);
omap_eac_interrupt_update(s);
}
static uint32_t omap_eac_read(void *opaque, target_phys_addr_t addr)
{
struct omap_eac_s *s = (struct omap_eac_s *) opaque;
uint32_t ret;
switch (addr) {
case 0x000: /* CPCFR1 */
return s->config[0];
case 0x004: /* CPCFR2 */
return s->config[1];
case 0x008: /* CPCFR3 */
return s->config[2];
case 0x00c: /* CPCFR4 */
return s->config[3];
case 0x010: /* CPTCTL */
return s->control | ((s->codec.rxavail + s->codec.rxlen > 0) << 7) |
((s->codec.txlen < s->codec.txavail) << 5);
case 0x014: /* CPTTADR */
return s->address;
case 0x018: /* CPTDATL */
return s->data & 0xff;
case 0x01c: /* CPTDATH */
return s->data >> 8;
case 0x020: /* CPTVSLL */
return s->vtol;
case 0x024: /* CPTVSLH */
return s->vtsl | (3 << 5); /* CRDY1 | CRDY2 */
case 0x040: /* MPCTR */
return s->modem.control;
case 0x044: /* MPMCCFR */
return s->modem.config;
case 0x060: /* BPCTR */
return s->bt.control;
case 0x064: /* BPMCCFR */
return s->bt.config;
case 0x080: /* AMSCFR */
return s->mixer;
case 0x084: /* AMVCTR */
return s->gain[0];
case 0x088: /* AM1VCTR */
return s->gain[1];
case 0x08c: /* AM2VCTR */
return s->gain[2];
case 0x090: /* AM3VCTR */
return s->gain[3];
case 0x094: /* ASTCTR */
return s->att;
case 0x098: /* APD1LCR */
return s->max[0];
case 0x09c: /* APD1RCR */
return s->max[1];
case 0x0a0: /* APD2LCR */
return s->max[2];
case 0x0a4: /* APD2RCR */
return s->max[3];
case 0x0a8: /* APD3LCR */
return s->max[4];
case 0x0ac: /* APD3RCR */
return s->max[5];
case 0x0b0: /* APD4R */
return s->max[6];
case 0x0b4: /* ADWR */
/* This should be write-only? Docs list it as read-only. */
return 0x0000;
case 0x0b8: /* ADRDR */
if (likely(s->codec.rxlen > 1)) {
ret = s->codec.rxbuf[s->codec.rxoff ++];
s->codec.rxlen --;
s->codec.rxoff &= EAC_BUF_LEN - 1;
return ret;
} else if (s->codec.rxlen) {
ret = s->codec.rxbuf[s->codec.rxoff ++];
s->codec.rxlen --;
s->codec.rxoff &= EAC_BUF_LEN - 1;
if (s->codec.rxavail)
omap_eac_in_refill(s);
omap_eac_in_dmarequest_update(s);
return ret;
}
return 0x0000;
case 0x0bc: /* AGCFR */
return s->codec.config[0];
case 0x0c0: /* AGCTR */
return s->codec.config[1] | ((s->codec.config[1] & 2) << 14);
case 0x0c4: /* AGCFR2 */
return s->codec.config[2];
case 0x0c8: /* AGCFR3 */
return s->codec.config[3];
case 0x0cc: /* MBPDMACTR */
case 0x0d0: /* MPDDMARR */
case 0x0d8: /* MPUDMARR */
case 0x0e4: /* BPDDMARR */
case 0x0ec: /* BPUDMARR */
return 0x0000;
case 0x100: /* VERSION_NUMBER */
return 0x0010;
case 0x104: /* SYSCONFIG */
return s->sysconfig;
case 0x108: /* SYSSTATUS */
return 1 | 0xe; /* RESETDONE | stuff */
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_eac_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_eac_s *s = (struct omap_eac_s *) opaque;
switch (addr) {
case 0x098: /* APD1LCR */
case 0x09c: /* APD1RCR */
case 0x0a0: /* APD2LCR */
case 0x0a4: /* APD2RCR */
case 0x0a8: /* APD3LCR */
case 0x0ac: /* APD3RCR */
case 0x0b0: /* APD4R */
case 0x0b8: /* ADRDR */
case 0x0d0: /* MPDDMARR */
case 0x0d8: /* MPUDMARR */
case 0x0e4: /* BPDDMARR */
case 0x0ec: /* BPUDMARR */
case 0x100: /* VERSION_NUMBER */
case 0x108: /* SYSSTATUS */
OMAP_RO_REG(addr);
return;
case 0x000: /* CPCFR1 */
s->config[0] = value & 0xff;
omap_eac_format_update(s);
break;
case 0x004: /* CPCFR2 */
s->config[1] = value & 0xff;
omap_eac_format_update(s);
break;
case 0x008: /* CPCFR3 */
s->config[2] = value & 0xff;
omap_eac_format_update(s);
break;
case 0x00c: /* CPCFR4 */
s->config[3] = value & 0xff;
omap_eac_format_update(s);
break;
case 0x010: /* CPTCTL */
/* Assuming TXF and TXE bits are read-only... */
s->control = value & 0x5f;
omap_eac_interrupt_update(s);
break;
case 0x014: /* CPTTADR */
s->address = value & 0xff;
break;
case 0x018: /* CPTDATL */
s->data &= 0xff00;
s->data |= value & 0xff;
break;
case 0x01c: /* CPTDATH */
s->data &= 0x00ff;
s->data |= value << 8;
break;
case 0x020: /* CPTVSLL */
s->vtol = value & 0xf8;
break;
case 0x024: /* CPTVSLH */
s->vtsl = value & 0x9f;
break;
case 0x040: /* MPCTR */
s->modem.control = value & 0x8f;
break;
case 0x044: /* MPMCCFR */
s->modem.config = value & 0x7fff;
break;
case 0x060: /* BPCTR */
s->bt.control = value & 0x8f;
break;
case 0x064: /* BPMCCFR */
s->bt.config = value & 0x7fff;
break;
case 0x080: /* AMSCFR */
s->mixer = value & 0x0fff;
break;
case 0x084: /* AMVCTR */
s->gain[0] = value & 0xffff;
break;
case 0x088: /* AM1VCTR */
s->gain[1] = value & 0xff7f;
break;
case 0x08c: /* AM2VCTR */
s->gain[2] = value & 0xff7f;
break;
case 0x090: /* AM3VCTR */
s->gain[3] = value & 0xff7f;
break;
case 0x094: /* ASTCTR */
s->att = value & 0xff;
break;
case 0x0b4: /* ADWR */
s->codec.txbuf[s->codec.txlen ++] = value;
if (unlikely(s->codec.txlen == EAC_BUF_LEN ||
s->codec.txlen == s->codec.txavail)) {
if (s->codec.txavail)
omap_eac_out_empty(s);
/* Discard what couldn't be written */
s->codec.txlen = 0;
}
break;
case 0x0bc: /* AGCFR */
s->codec.config[0] = value & 0x07ff;
omap_eac_format_update(s);
break;
case 0x0c0: /* AGCTR */
s->codec.config[1] = value & 0x780f;
omap_eac_format_update(s);
break;
case 0x0c4: /* AGCFR2 */
s->codec.config[2] = value & 0x003f;
omap_eac_format_update(s);
break;
case 0x0c8: /* AGCFR3 */
s->codec.config[3] = value & 0xffff;
omap_eac_format_update(s);
break;
case 0x0cc: /* MBPDMACTR */
case 0x0d4: /* MPDDMAWR */
case 0x0e0: /* MPUDMAWR */
case 0x0e8: /* BPDDMAWR */
case 0x0f0: /* BPUDMAWR */
break;
case 0x104: /* SYSCONFIG */
if (value & (1 << 1)) /* SOFTRESET */
omap_eac_reset(s);
s->sysconfig = value & 0x31d;
break;
default:
OMAP_BAD_REG(addr);
return;
}
}
static CPUReadMemoryFunc *omap_eac_readfn[] = {
omap_badwidth_read16,
omap_eac_read,
omap_badwidth_read16,
};
static CPUWriteMemoryFunc *omap_eac_writefn[] = {
omap_badwidth_write16,
omap_eac_write,
omap_badwidth_write16,
};
struct omap_eac_s *omap_eac_init(struct omap_target_agent_s *ta,
qemu_irq irq, qemu_irq *drq, omap_clk fclk, omap_clk iclk)
{
int iomemtype;
struct omap_eac_s *s = (struct omap_eac_s *)
qemu_mallocz(sizeof(struct omap_eac_s));
s->irq = irq;
s->codec.rxdrq = *drq ++;
s->codec.txdrq = *drq ++;
omap_eac_reset(s);
#ifdef HAS_AUDIO
AUD_register_card("OMAP EAC", &s->codec.card);
iomemtype = cpu_register_io_memory(omap_eac_readfn,
omap_eac_writefn, s);
omap_l4_attach(ta, 0, iomemtype);
#endif
return s;
}
/* STI/XTI (emulation interface) console - reverse engineered only */
struct omap_sti_s {
qemu_irq irq;
CharDriverState *chr;
uint32_t sysconfig;
uint32_t systest;
uint32_t irqst;
uint32_t irqen;
uint32_t clkcontrol;
uint32_t serial_config;
};
#define STI_TRACE_CONSOLE_CHANNEL 239
#define STI_TRACE_CONTROL_CHANNEL 253
static inline void omap_sti_interrupt_update(struct omap_sti_s *s)
{
qemu_set_irq(s->irq, s->irqst & s->irqen);
}
static void omap_sti_reset(struct omap_sti_s *s)
{
s->sysconfig = 0;
s->irqst = 0;
s->irqen = 0;
s->clkcontrol = 0;
s->serial_config = 0;
omap_sti_interrupt_update(s);
}
static uint32_t omap_sti_read(void *opaque, target_phys_addr_t addr)
{
struct omap_sti_s *s = (struct omap_sti_s *) opaque;
switch (addr) {
case 0x00: /* STI_REVISION */
return 0x10;
case 0x10: /* STI_SYSCONFIG */
return s->sysconfig;
case 0x14: /* STI_SYSSTATUS / STI_RX_STATUS / XTI_SYSSTATUS */
return 0x00;
case 0x18: /* STI_IRQSTATUS */
return s->irqst;
case 0x1c: /* STI_IRQSETEN / STI_IRQCLREN */
return s->irqen;
case 0x24: /* STI_ER / STI_DR / XTI_TRACESELECT */
case 0x28: /* STI_RX_DR / XTI_RXDATA */
/* TODO */
return 0;
case 0x2c: /* STI_CLK_CTRL / XTI_SCLKCRTL */
return s->clkcontrol;
case 0x30: /* STI_SERIAL_CFG / XTI_SCONFIG */
return s->serial_config;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_sti_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_sti_s *s = (struct omap_sti_s *) opaque;
switch (addr) {
case 0x00: /* STI_REVISION */
case 0x14: /* STI_SYSSTATUS / STI_RX_STATUS / XTI_SYSSTATUS */
OMAP_RO_REG(addr);
return;
case 0x10: /* STI_SYSCONFIG */
if (value & (1 << 1)) /* SOFTRESET */
omap_sti_reset(s);
s->sysconfig = value & 0xfe;
break;
case 0x18: /* STI_IRQSTATUS */
s->irqst &= ~value;
omap_sti_interrupt_update(s);
break;
case 0x1c: /* STI_IRQSETEN / STI_IRQCLREN */
s->irqen = value & 0xffff;
omap_sti_interrupt_update(s);
break;
case 0x2c: /* STI_CLK_CTRL / XTI_SCLKCRTL */
s->clkcontrol = value & 0xff;
break;
case 0x30: /* STI_SERIAL_CFG / XTI_SCONFIG */
s->serial_config = value & 0xff;
break;
case 0x24: /* STI_ER / STI_DR / XTI_TRACESELECT */
case 0x28: /* STI_RX_DR / XTI_RXDATA */
/* TODO */
return;
default:
OMAP_BAD_REG(addr);
return;
}
}
static CPUReadMemoryFunc *omap_sti_readfn[] = {
omap_badwidth_read32,
omap_badwidth_read32,
omap_sti_read,
};
static CPUWriteMemoryFunc *omap_sti_writefn[] = {
omap_badwidth_write32,
omap_badwidth_write32,
omap_sti_write,
};
static uint32_t omap_sti_fifo_read(void *opaque, target_phys_addr_t addr)
{
OMAP_BAD_REG(addr);
return 0;
}
static void omap_sti_fifo_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_sti_s *s = (struct omap_sti_s *) opaque;
int ch = addr >> 6;
uint8_t byte = value;
if (ch == STI_TRACE_CONTROL_CHANNEL) {
/* Flush channel <i>value</i>. */
qemu_chr_write(s->chr, (const uint8_t *) "\r", 1);
} else if (ch == STI_TRACE_CONSOLE_CHANNEL || 1) {
if (value == 0xc0 || value == 0xc3) {
/* Open channel <i>ch</i>. */
} else if (value == 0x00)
qemu_chr_write(s->chr, (const uint8_t *) "\n", 1);
else
qemu_chr_write(s->chr, &byte, 1);
}
}
static CPUReadMemoryFunc *omap_sti_fifo_readfn[] = {
omap_sti_fifo_read,
omap_badwidth_read8,
omap_badwidth_read8,
};
static CPUWriteMemoryFunc *omap_sti_fifo_writefn[] = {
omap_sti_fifo_write,
omap_badwidth_write8,
omap_badwidth_write8,
};
static struct omap_sti_s *omap_sti_init(struct omap_target_agent_s *ta,
target_phys_addr_t channel_base, qemu_irq irq, omap_clk clk,
CharDriverState *chr)
{
int iomemtype;
struct omap_sti_s *s = (struct omap_sti_s *)
qemu_mallocz(sizeof(struct omap_sti_s));
s->irq = irq;
omap_sti_reset(s);
s->chr = chr ?: qemu_chr_open("null", "null", NULL);
iomemtype = l4_register_io_memory(omap_sti_readfn,
omap_sti_writefn, s);
omap_l4_attach(ta, 0, iomemtype);
iomemtype = cpu_register_io_memory(omap_sti_fifo_readfn,
omap_sti_fifo_writefn, s);
cpu_register_physical_memory(channel_base, 0x10000, iomemtype);
return s;
}
/* L4 Interconnect */
struct omap_target_agent_s {
struct omap_l4_s *bus;
int regions;
struct omap_l4_region_s *start;
target_phys_addr_t base;
uint32_t component;
uint32_t control;
uint32_t status;
};
struct omap_l4_s {
target_phys_addr_t base;
int ta_num;
struct omap_target_agent_s ta[0];
};
#ifdef L4_MUX_HACK
static int omap_l4_io_entries;
static int omap_cpu_io_entry;
static struct omap_l4_entry {
CPUReadMemoryFunc **mem_read;
CPUWriteMemoryFunc **mem_write;
void *opaque;
} *omap_l4_io_entry;
static CPUReadMemoryFunc **omap_l4_io_readb_fn;
static CPUReadMemoryFunc **omap_l4_io_readh_fn;
static CPUReadMemoryFunc **omap_l4_io_readw_fn;
static CPUWriteMemoryFunc **omap_l4_io_writeb_fn;
static CPUWriteMemoryFunc **omap_l4_io_writeh_fn;
static CPUWriteMemoryFunc **omap_l4_io_writew_fn;
static void **omap_l4_io_opaque;
int l4_register_io_memory(CPUReadMemoryFunc **mem_read,
CPUWriteMemoryFunc **mem_write, void *opaque)
{
omap_l4_io_entry[omap_l4_io_entries].mem_read = mem_read;
omap_l4_io_entry[omap_l4_io_entries].mem_write = mem_write;
omap_l4_io_entry[omap_l4_io_entries].opaque = opaque;
return omap_l4_io_entries ++;
}
static uint32_t omap_l4_io_readb(void *opaque, target_phys_addr_t addr)
{
unsigned int i = (addr - OMAP2_L4_BASE) >> TARGET_PAGE_BITS;
return omap_l4_io_readb_fn[i](omap_l4_io_opaque[i], addr);
}
static uint32_t omap_l4_io_readh(void *opaque, target_phys_addr_t addr)
{
unsigned int i = (addr - OMAP2_L4_BASE) >> TARGET_PAGE_BITS;
return omap_l4_io_readh_fn[i](omap_l4_io_opaque[i], addr);
}
static uint32_t omap_l4_io_readw(void *opaque, target_phys_addr_t addr)
{
unsigned int i = (addr - OMAP2_L4_BASE) >> TARGET_PAGE_BITS;
return omap_l4_io_readw_fn[i](omap_l4_io_opaque[i], addr);
}
static void omap_l4_io_writeb(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
unsigned int i = (addr - OMAP2_L4_BASE) >> TARGET_PAGE_BITS;
return omap_l4_io_writeb_fn[i](omap_l4_io_opaque[i], addr, value);
}
static void omap_l4_io_writeh(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
unsigned int i = (addr - OMAP2_L4_BASE) >> TARGET_PAGE_BITS;
return omap_l4_io_writeh_fn[i](omap_l4_io_opaque[i], addr, value);
}
static void omap_l4_io_writew(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
unsigned int i = (addr - OMAP2_L4_BASE) >> TARGET_PAGE_BITS;
return omap_l4_io_writew_fn[i](omap_l4_io_opaque[i], addr, value);
}
static CPUReadMemoryFunc *omap_l4_io_readfn[] = {
omap_l4_io_readb,
omap_l4_io_readh,
omap_l4_io_readw,
};
static CPUWriteMemoryFunc *omap_l4_io_writefn[] = {
omap_l4_io_writeb,
omap_l4_io_writeh,
omap_l4_io_writew,
};
#endif
struct omap_l4_s *omap_l4_init(target_phys_addr_t base, int ta_num)
{
struct omap_l4_s *bus = qemu_mallocz(
sizeof(*bus) + ta_num * sizeof(*bus->ta));
bus->ta_num = ta_num;
bus->base = base;
#ifdef L4_MUX_HACK
omap_l4_io_entries = 1;
omap_l4_io_entry = qemu_mallocz(125 * sizeof(*omap_l4_io_entry));
omap_cpu_io_entry =
cpu_register_io_memory(omap_l4_io_readfn,
omap_l4_io_writefn, bus);
# define L4_PAGES (0xb4000 / TARGET_PAGE_SIZE)
omap_l4_io_readb_fn = qemu_mallocz(sizeof(void *) * L4_PAGES);
omap_l4_io_readh_fn = qemu_mallocz(sizeof(void *) * L4_PAGES);
omap_l4_io_readw_fn = qemu_mallocz(sizeof(void *) * L4_PAGES);
omap_l4_io_writeb_fn = qemu_mallocz(sizeof(void *) * L4_PAGES);
omap_l4_io_writeh_fn = qemu_mallocz(sizeof(void *) * L4_PAGES);
omap_l4_io_writew_fn = qemu_mallocz(sizeof(void *) * L4_PAGES);
omap_l4_io_opaque = qemu_mallocz(sizeof(void *) * L4_PAGES);
#endif
return bus;
}
static uint32_t omap_l4ta_read(void *opaque, target_phys_addr_t addr)
{
struct omap_target_agent_s *s = (struct omap_target_agent_s *) opaque;
switch (addr) {
case 0x00: /* COMPONENT */
return s->component;
case 0x20: /* AGENT_CONTROL */
return s->control;
case 0x28: /* AGENT_STATUS */
return s->status;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_l4ta_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_target_agent_s *s = (struct omap_target_agent_s *) opaque;
switch (addr) {
case 0x00: /* COMPONENT */
case 0x28: /* AGENT_STATUS */
OMAP_RO_REG(addr);
break;
case 0x20: /* AGENT_CONTROL */
s->control = value & 0x01000700;
if (value & 1) /* OCP_RESET */
s->status &= ~1; /* REQ_TIMEOUT */
break;
default:
OMAP_BAD_REG(addr);
}
}
static CPUReadMemoryFunc *omap_l4ta_readfn[] = {
omap_badwidth_read16,
omap_l4ta_read,
omap_badwidth_read16,
};
static CPUWriteMemoryFunc *omap_l4ta_writefn[] = {
omap_badwidth_write32,
omap_badwidth_write32,
omap_l4ta_write,
};
#define L4TA(n) (n)
#define L4TAO(n) ((n) + 39)
static struct omap_l4_region_s {
target_phys_addr_t offset;
size_t size;
int access;
} omap_l4_region[125] = {
[ 1] = { 0x40800, 0x800, 32 }, /* Initiator agent */
[ 2] = { 0x41000, 0x1000, 32 }, /* Link agent */
[ 0] = { 0x40000, 0x800, 32 }, /* Address and protection */
[ 3] = { 0x00000, 0x1000, 32 | 16 | 8 }, /* System Control and Pinout */
[ 4] = { 0x01000, 0x1000, 32 | 16 | 8 }, /* L4TAO1 */
[ 5] = { 0x04000, 0x1000, 32 | 16 }, /* 32K Timer */
[ 6] = { 0x05000, 0x1000, 32 | 16 | 8 }, /* L4TAO2 */
[ 7] = { 0x08000, 0x800, 32 }, /* PRCM Region A */
[ 8] = { 0x08800, 0x800, 32 }, /* PRCM Region B */
[ 9] = { 0x09000, 0x1000, 32 | 16 | 8 }, /* L4TAO */
[ 10] = { 0x12000, 0x1000, 32 | 16 | 8 }, /* Test (BCM) */
[ 11] = { 0x13000, 0x1000, 32 | 16 | 8 }, /* L4TA1 */
[ 12] = { 0x14000, 0x1000, 32 }, /* Test/emulation (TAP) */
[ 13] = { 0x15000, 0x1000, 32 | 16 | 8 }, /* L4TA2 */
[ 14] = { 0x18000, 0x1000, 32 | 16 | 8 }, /* GPIO1 */
[ 16] = { 0x1a000, 0x1000, 32 | 16 | 8 }, /* GPIO2 */
[ 18] = { 0x1c000, 0x1000, 32 | 16 | 8 }, /* GPIO3 */
[ 19] = { 0x1e000, 0x1000, 32 | 16 | 8 }, /* GPIO4 */
[ 15] = { 0x19000, 0x1000, 32 | 16 | 8 }, /* Quad GPIO TOP */
[ 17] = { 0x1b000, 0x1000, 32 | 16 | 8 }, /* L4TA3 */
[ 20] = { 0x20000, 0x1000, 32 | 16 | 8 }, /* WD Timer 1 (Secure) */
[ 22] = { 0x22000, 0x1000, 32 | 16 | 8 }, /* WD Timer 2 (OMAP) */
[ 21] = { 0x21000, 0x1000, 32 | 16 | 8 }, /* Dual WD timer TOP */
[ 23] = { 0x23000, 0x1000, 32 | 16 | 8 }, /* L4TA4 */
[ 24] = { 0x28000, 0x1000, 32 | 16 | 8 }, /* GP Timer 1 */
[ 25] = { 0x29000, 0x1000, 32 | 16 | 8 }, /* L4TA7 */
[ 26] = { 0x48000, 0x2000, 32 | 16 | 8 }, /* Emulation (ARM11ETB) */
[ 27] = { 0x4a000, 0x1000, 32 | 16 | 8 }, /* L4TA9 */
[ 28] = { 0x50000, 0x400, 32 | 16 | 8 }, /* Display top */
[ 29] = { 0x50400, 0x400, 32 | 16 | 8 }, /* Display control */
[ 30] = { 0x50800, 0x400, 32 | 16 | 8 }, /* Display RFBI */
[ 31] = { 0x50c00, 0x400, 32 | 16 | 8 }, /* Display encoder */
[ 32] = { 0x51000, 0x1000, 32 | 16 | 8 }, /* L4TA10 */
[ 33] = { 0x52000, 0x400, 32 | 16 | 8 }, /* Camera top */
[ 34] = { 0x52400, 0x400, 32 | 16 | 8 }, /* Camera core */
[ 35] = { 0x52800, 0x400, 32 | 16 | 8 }, /* Camera DMA */
[ 36] = { 0x52c00, 0x400, 32 | 16 | 8 }, /* Camera MMU */
[ 37] = { 0x53000, 0x1000, 32 | 16 | 8 }, /* L4TA11 */
[ 38] = { 0x56000, 0x1000, 32 | 16 | 8 }, /* sDMA */
[ 39] = { 0x57000, 0x1000, 32 | 16 | 8 }, /* L4TA12 */
[ 40] = { 0x58000, 0x1000, 32 | 16 | 8 }, /* SSI top */
[ 41] = { 0x59000, 0x1000, 32 | 16 | 8 }, /* SSI GDD */
[ 42] = { 0x5a000, 0x1000, 32 | 16 | 8 }, /* SSI Port1 */
[ 43] = { 0x5b000, 0x1000, 32 | 16 | 8 }, /* SSI Port2 */
[ 44] = { 0x5c000, 0x1000, 32 | 16 | 8 }, /* L4TA13 */
[ 45] = { 0x5e000, 0x1000, 32 | 16 | 8 }, /* USB OTG */
[ 46] = { 0x5f000, 0x1000, 32 | 16 | 8 }, /* L4TAO4 */
[ 47] = { 0x60000, 0x1000, 32 | 16 | 8 }, /* Emulation (WIN_TRACER1SDRC) */
[ 48] = { 0x61000, 0x1000, 32 | 16 | 8 }, /* L4TA14 */
[ 49] = { 0x62000, 0x1000, 32 | 16 | 8 }, /* Emulation (WIN_TRACER2GPMC) */
[ 50] = { 0x63000, 0x1000, 32 | 16 | 8 }, /* L4TA15 */
[ 51] = { 0x64000, 0x1000, 32 | 16 | 8 }, /* Emulation (WIN_TRACER3OCM) */
[ 52] = { 0x65000, 0x1000, 32 | 16 | 8 }, /* L4TA16 */
[ 53] = { 0x66000, 0x300, 32 | 16 | 8 }, /* Emulation (WIN_TRACER4L4) */
[ 54] = { 0x67000, 0x1000, 32 | 16 | 8 }, /* L4TA17 */
[ 55] = { 0x68000, 0x1000, 32 | 16 | 8 }, /* Emulation (XTI) */
[ 56] = { 0x69000, 0x1000, 32 | 16 | 8 }, /* L4TA18 */
[ 57] = { 0x6a000, 0x1000, 16 | 8 }, /* UART1 */
[ 58] = { 0x6b000, 0x1000, 32 | 16 | 8 }, /* L4TA19 */
[ 59] = { 0x6c000, 0x1000, 16 | 8 }, /* UART2 */
[ 60] = { 0x6d000, 0x1000, 32 | 16 | 8 }, /* L4TA20 */
[ 61] = { 0x6e000, 0x1000, 16 | 8 }, /* UART3 */
[ 62] = { 0x6f000, 0x1000, 32 | 16 | 8 }, /* L4TA21 */
[ 63] = { 0x70000, 0x1000, 16 }, /* I2C1 */
[ 64] = { 0x71000, 0x1000, 32 | 16 | 8 }, /* L4TAO5 */
[ 65] = { 0x72000, 0x1000, 16 }, /* I2C2 */
[ 66] = { 0x73000, 0x1000, 32 | 16 | 8 }, /* L4TAO6 */
[ 67] = { 0x74000, 0x1000, 16 }, /* McBSP1 */
[ 68] = { 0x75000, 0x1000, 32 | 16 | 8 }, /* L4TAO7 */
[ 69] = { 0x76000, 0x1000, 16 }, /* McBSP2 */
[ 70] = { 0x77000, 0x1000, 32 | 16 | 8 }, /* L4TAO8 */
[ 71] = { 0x24000, 0x1000, 32 | 16 | 8 }, /* WD Timer 3 (DSP) */
[ 72] = { 0x25000, 0x1000, 32 | 16 | 8 }, /* L4TA5 */
[ 73] = { 0x26000, 0x1000, 32 | 16 | 8 }, /* WD Timer 4 (IVA) */
[ 74] = { 0x27000, 0x1000, 32 | 16 | 8 }, /* L4TA6 */
[ 75] = { 0x2a000, 0x1000, 32 | 16 | 8 }, /* GP Timer 2 */
[ 76] = { 0x2b000, 0x1000, 32 | 16 | 8 }, /* L4TA8 */
[ 77] = { 0x78000, 0x1000, 32 | 16 | 8 }, /* GP Timer 3 */
[ 78] = { 0x79000, 0x1000, 32 | 16 | 8 }, /* L4TA22 */
[ 79] = { 0x7a000, 0x1000, 32 | 16 | 8 }, /* GP Timer 4 */
[ 80] = { 0x7b000, 0x1000, 32 | 16 | 8 }, /* L4TA23 */
[ 81] = { 0x7c000, 0x1000, 32 | 16 | 8 }, /* GP Timer 5 */
[ 82] = { 0x7d000, 0x1000, 32 | 16 | 8 }, /* L4TA24 */
[ 83] = { 0x7e000, 0x1000, 32 | 16 | 8 }, /* GP Timer 6 */
[ 84] = { 0x7f000, 0x1000, 32 | 16 | 8 }, /* L4TA25 */
[ 85] = { 0x80000, 0x1000, 32 | 16 | 8 }, /* GP Timer 7 */
[ 86] = { 0x81000, 0x1000, 32 | 16 | 8 }, /* L4TA26 */
[ 87] = { 0x82000, 0x1000, 32 | 16 | 8 }, /* GP Timer 8 */
[ 88] = { 0x83000, 0x1000, 32 | 16 | 8 }, /* L4TA27 */
[ 89] = { 0x84000, 0x1000, 32 | 16 | 8 }, /* GP Timer 9 */
[ 90] = { 0x85000, 0x1000, 32 | 16 | 8 }, /* L4TA28 */
[ 91] = { 0x86000, 0x1000, 32 | 16 | 8 }, /* GP Timer 10 */
[ 92] = { 0x87000, 0x1000, 32 | 16 | 8 }, /* L4TA29 */
[ 93] = { 0x88000, 0x1000, 32 | 16 | 8 }, /* GP Timer 11 */
[ 94] = { 0x89000, 0x1000, 32 | 16 | 8 }, /* L4TA30 */
[ 95] = { 0x8a000, 0x1000, 32 | 16 | 8 }, /* GP Timer 12 */
[ 96] = { 0x8b000, 0x1000, 32 | 16 | 8 }, /* L4TA31 */
[ 97] = { 0x90000, 0x1000, 16 }, /* EAC */
[ 98] = { 0x91000, 0x1000, 32 | 16 | 8 }, /* L4TA32 */
[ 99] = { 0x92000, 0x1000, 16 }, /* FAC */
[100] = { 0x93000, 0x1000, 32 | 16 | 8 }, /* L4TA33 */
[101] = { 0x94000, 0x1000, 32 | 16 | 8 }, /* IPC (MAILBOX) */
[102] = { 0x95000, 0x1000, 32 | 16 | 8 }, /* L4TA34 */
[103] = { 0x98000, 0x1000, 32 | 16 | 8 }, /* SPI1 */
[104] = { 0x99000, 0x1000, 32 | 16 | 8 }, /* L4TA35 */
[105] = { 0x9a000, 0x1000, 32 | 16 | 8 }, /* SPI2 */
[106] = { 0x9b000, 0x1000, 32 | 16 | 8 }, /* L4TA36 */
[107] = { 0x9c000, 0x1000, 16 | 8 }, /* MMC SDIO */
[108] = { 0x9d000, 0x1000, 32 | 16 | 8 }, /* L4TAO9 */
[109] = { 0x9e000, 0x1000, 32 | 16 | 8 }, /* MS_PRO */
[110] = { 0x9f000, 0x1000, 32 | 16 | 8 }, /* L4TAO10 */
[111] = { 0xa0000, 0x1000, 32 }, /* RNG */
[112] = { 0xa1000, 0x1000, 32 | 16 | 8 }, /* L4TAO11 */
[113] = { 0xa2000, 0x1000, 32 }, /* DES3DES */
[114] = { 0xa3000, 0x1000, 32 | 16 | 8 }, /* L4TAO12 */
[115] = { 0xa4000, 0x1000, 32 }, /* SHA1MD5 */
[116] = { 0xa5000, 0x1000, 32 | 16 | 8 }, /* L4TAO13 */
[117] = { 0xa6000, 0x1000, 32 }, /* AES */
[118] = { 0xa7000, 0x1000, 32 | 16 | 8 }, /* L4TA37 */
[119] = { 0xa8000, 0x2000, 32 }, /* PKA */
[120] = { 0xaa000, 0x1000, 32 | 16 | 8 }, /* L4TA38 */
[121] = { 0xb0000, 0x1000, 32 }, /* MG */
[122] = { 0xb1000, 0x1000, 32 | 16 | 8 },
[123] = { 0xb2000, 0x1000, 32 }, /* HDQ/1-Wire */
[124] = { 0xb3000, 0x1000, 32 | 16 | 8 }, /* L4TA39 */
};
static struct omap_l4_agent_info_s {
int ta;
int region;
int regions;
int ta_region;
} omap_l4_agent_info[54] = {
{ 0, 0, 3, 2 }, /* L4IA initiatior agent */
{ L4TAO(1), 3, 2, 1 }, /* Control and pinout module */
{ L4TAO(2), 5, 2, 1 }, /* 32K timer */
{ L4TAO(3), 7, 3, 2 }, /* PRCM */
{ L4TA(1), 10, 2, 1 }, /* BCM */
{ L4TA(2), 12, 2, 1 }, /* Test JTAG */
{ L4TA(3), 14, 6, 3 }, /* Quad GPIO */
{ L4TA(4), 20, 4, 3 }, /* WD timer 1/2 */
{ L4TA(7), 24, 2, 1 }, /* GP timer 1 */
{ L4TA(9), 26, 2, 1 }, /* ATM11 ETB */
{ L4TA(10), 28, 5, 4 }, /* Display subsystem */
{ L4TA(11), 33, 5, 4 }, /* Camera subsystem */
{ L4TA(12), 38, 2, 1 }, /* sDMA */
{ L4TA(13), 40, 5, 4 }, /* SSI */
{ L4TAO(4), 45, 2, 1 }, /* USB */
{ L4TA(14), 47, 2, 1 }, /* Win Tracer1 */
{ L4TA(15), 49, 2, 1 }, /* Win Tracer2 */
{ L4TA(16), 51, 2, 1 }, /* Win Tracer3 */
{ L4TA(17), 53, 2, 1 }, /* Win Tracer4 */
{ L4TA(18), 55, 2, 1 }, /* XTI */
{ L4TA(19), 57, 2, 1 }, /* UART1 */
{ L4TA(20), 59, 2, 1 }, /* UART2 */
{ L4TA(21), 61, 2, 1 }, /* UART3 */
{ L4TAO(5), 63, 2, 1 }, /* I2C1 */
{ L4TAO(6), 65, 2, 1 }, /* I2C2 */
{ L4TAO(7), 67, 2, 1 }, /* McBSP1 */
{ L4TAO(8), 69, 2, 1 }, /* McBSP2 */
{ L4TA(5), 71, 2, 1 }, /* WD Timer 3 (DSP) */
{ L4TA(6), 73, 2, 1 }, /* WD Timer 4 (IVA) */
{ L4TA(8), 75, 2, 1 }, /* GP Timer 2 */
{ L4TA(22), 77, 2, 1 }, /* GP Timer 3 */
{ L4TA(23), 79, 2, 1 }, /* GP Timer 4 */
{ L4TA(24), 81, 2, 1 }, /* GP Timer 5 */
{ L4TA(25), 83, 2, 1 }, /* GP Timer 6 */
{ L4TA(26), 85, 2, 1 }, /* GP Timer 7 */
{ L4TA(27), 87, 2, 1 }, /* GP Timer 8 */
{ L4TA(28), 89, 2, 1 }, /* GP Timer 9 */
{ L4TA(29), 91, 2, 1 }, /* GP Timer 10 */
{ L4TA(30), 93, 2, 1 }, /* GP Timer 11 */
{ L4TA(31), 95, 2, 1 }, /* GP Timer 12 */
{ L4TA(32), 97, 2, 1 }, /* EAC */
{ L4TA(33), 99, 2, 1 }, /* FAC */
{ L4TA(34), 101, 2, 1 }, /* IPC */
{ L4TA(35), 103, 2, 1 }, /* SPI1 */
{ L4TA(36), 105, 2, 1 }, /* SPI2 */
{ L4TAO(9), 107, 2, 1 }, /* MMC SDIO */
{ L4TAO(10), 109, 2, 1 },
{ L4TAO(11), 111, 2, 1 }, /* RNG */
{ L4TAO(12), 113, 2, 1 }, /* DES3DES */
{ L4TAO(13), 115, 2, 1 }, /* SHA1MD5 */
{ L4TA(37), 117, 2, 1 }, /* AES */
{ L4TA(38), 119, 2, 1 }, /* PKA */
{ -1, 121, 2, 1 },
{ L4TA(39), 123, 2, 1 }, /* HDQ/1-Wire */
};
#define omap_l4ta(bus, cs) omap_l4ta_get(bus, L4TA(cs))
#define omap_l4tao(bus, cs) omap_l4ta_get(bus, L4TAO(cs))
struct omap_target_agent_s *omap_l4ta_get(struct omap_l4_s *bus, int cs)
{
int i, iomemtype;
struct omap_target_agent_s *ta = 0;
struct omap_l4_agent_info_s *info = 0;
for (i = 0; i < bus->ta_num; i ++)
if (omap_l4_agent_info[i].ta == cs) {
ta = &bus->ta[i];
info = &omap_l4_agent_info[i];
break;
}
if (!ta) {
fprintf(stderr, "%s: bad target agent (%i)\n", __FUNCTION__, cs);
exit(-1);
}
ta->bus = bus;
ta->start = &omap_l4_region[info->region];
ta->regions = info->regions;
ta->component = ('Q' << 24) | ('E' << 16) | ('M' << 8) | ('U' << 0);
ta->status = 0x00000000;
ta->control = 0x00000200; /* XXX 01000200 for L4TAO */
iomemtype = l4_register_io_memory(omap_l4ta_readfn,
omap_l4ta_writefn, ta);
ta->base = omap_l4_attach(ta, info->ta_region, iomemtype);
return ta;
}
target_phys_addr_t omap_l4_attach(struct omap_target_agent_s *ta, int region,
int iotype)
{
target_phys_addr_t base;
ssize_t size;
#ifdef L4_MUX_HACK
int i;
#endif
if (region < 0 || region >= ta->regions) {
fprintf(stderr, "%s: bad io region (%i)\n", __FUNCTION__, region);
exit(-1);
}
base = ta->bus->base + ta->start[region].offset;
size = ta->start[region].size;
if (iotype) {
#ifndef L4_MUX_HACK
cpu_register_physical_memory(base, size, iotype);
#else
cpu_register_physical_memory(base, size, omap_cpu_io_entry);
i = (base - ta->bus->base) / TARGET_PAGE_SIZE;
for (; size > 0; size -= TARGET_PAGE_SIZE, i ++) {
omap_l4_io_readb_fn[i] = omap_l4_io_entry[iotype].mem_read[0];
omap_l4_io_readh_fn[i] = omap_l4_io_entry[iotype].mem_read[1];
omap_l4_io_readw_fn[i] = omap_l4_io_entry[iotype].mem_read[2];
omap_l4_io_writeb_fn[i] = omap_l4_io_entry[iotype].mem_write[0];
omap_l4_io_writeh_fn[i] = omap_l4_io_entry[iotype].mem_write[1];
omap_l4_io_writew_fn[i] = omap_l4_io_entry[iotype].mem_write[2];
omap_l4_io_opaque[i] = omap_l4_io_entry[iotype].opaque;
}
#endif
}
return base;
}
/* TEST-Chip-level TAP */
static uint32_t omap_tap_read(void *opaque, target_phys_addr_t addr)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
switch (addr) {
case 0x204: /* IDCODE_reg */
switch (s->mpu_model) {
case omap2420:
case omap2422:
case omap2423:
return 0x5b5d902f; /* ES 2.2 */
case omap2430:
return 0x5b68a02f; /* ES 2.2 */
case omap3430:
return 0x1b7ae02f; /* ES 2 */
default:
hw_error("%s: Bad mpu model\n", __FUNCTION__);
}
case 0x208: /* PRODUCTION_ID_reg for OMAP2 */
case 0x210: /* PRODUCTION_ID_reg for OMAP3 */
switch (s->mpu_model) {
case omap2420:
return 0x000254f0; /* POP ESHS2.1.1 in N91/93/95, ES2 in N800 */
case omap2422:
return 0x000400f0;
case omap2423:
return 0x000800f0;
case omap2430:
return 0x000000f0;
case omap3430:
return 0x000000f0;
default:
hw_error("%s: Bad mpu model\n", __FUNCTION__);
}
case 0x20c:
switch (s->mpu_model) {
case omap2420:
case omap2422:
case omap2423:
return 0xcafeb5d9; /* ES 2.2 */
case omap2430:
return 0xcafeb68a; /* ES 2.2 */
case omap3430:
return 0xcafeb7ae; /* ES 2 */
default:
hw_error("%s: Bad mpu model\n", __FUNCTION__);
}
case 0x218: /* DIE_ID_reg */
return ('Q' << 24) | ('E' << 16) | ('M' << 8) | ('U' << 0);
case 0x21c: /* DIE_ID_reg */
return 0x54 << 24;
case 0x220: /* DIE_ID_reg */
return ('Q' << 24) | ('E' << 16) | ('M' << 8) | ('U' << 0);
case 0x224: /* DIE_ID_reg */
return ('Q' << 24) | ('E' << 16) | ('M' << 8) | ('U' << 0);
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_tap_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
OMAP_BAD_REG(addr);
}
static CPUReadMemoryFunc *omap_tap_readfn[] = {
omap_badwidth_read32,
omap_badwidth_read32,
omap_tap_read,
};
static CPUWriteMemoryFunc *omap_tap_writefn[] = {
omap_badwidth_write32,
omap_badwidth_write32,
omap_tap_write,
};
void omap_tap_init(struct omap_target_agent_s *ta,
struct omap_mpu_state_s *mpu)
{
omap_l4_attach(ta, 0, l4_register_io_memory(
omap_tap_readfn, omap_tap_writefn, mpu));
}
/* Power, Reset, and Clock Management */
struct omap_prcm_s {
qemu_irq irq[3];
struct omap_mpu_state_s *mpu;
uint32_t irqst[3];
uint32_t irqen[3];
uint32_t sysconfig;
uint32_t voltctrl;
uint32_t scratch[20];
uint32_t clksrc[1];
uint32_t clkout[1];
uint32_t clkemul[1];
uint32_t clkpol[1];
uint32_t clksel[8];
uint32_t clken[12];
uint32_t clkctrl[4];
uint32_t clkidle[7];
uint32_t setuptime[2];
uint32_t wkup[3];
uint32_t wken[3];
uint32_t wkst[3];
uint32_t rst[4];
uint32_t rstctrl[1];
uint32_t power[4];
uint32_t rsttime_wkup;
uint32_t ev;
uint32_t evtime[2];
int dpll_lock, apll_lock[2];
};
static void omap_prcm_int_update(struct omap_prcm_s *s, int dom)
{
qemu_set_irq(s->irq[dom], s->irqst[dom] & s->irqen[dom]);
/* XXX or is the mask applied before PRCM_IRQSTATUS_* ? */
}
static uint32_t omap_prcm_read(void *opaque, target_phys_addr_t addr)
{
struct omap_prcm_s *s = (struct omap_prcm_s *) opaque;
uint32_t ret;
switch (addr) {
case 0x000: /* PRCM_REVISION */
return 0x10;
case 0x010: /* PRCM_SYSCONFIG */
return s->sysconfig;
case 0x018: /* PRCM_IRQSTATUS_MPU */
return s->irqst[0];
case 0x01c: /* PRCM_IRQENABLE_MPU */
return s->irqen[0];
case 0x050: /* PRCM_VOLTCTRL */
return s->voltctrl;
case 0x054: /* PRCM_VOLTST */
return s->voltctrl & 3;
case 0x060: /* PRCM_CLKSRC_CTRL */
return s->clksrc[0];
case 0x070: /* PRCM_CLKOUT_CTRL */
return s->clkout[0];
case 0x078: /* PRCM_CLKEMUL_CTRL */
return s->clkemul[0];
case 0x080: /* PRCM_CLKCFG_CTRL */
case 0x084: /* PRCM_CLKCFG_STATUS */
return 0;
case 0x090: /* PRCM_VOLTSETUP */
return s->setuptime[0];
case 0x094: /* PRCM_CLKSSETUP */
return s->setuptime[1];
case 0x098: /* PRCM_POLCTRL */
return s->clkpol[0];
case 0x0b0: /* GENERAL_PURPOSE1 */
case 0x0b4: /* GENERAL_PURPOSE2 */
case 0x0b8: /* GENERAL_PURPOSE3 */
case 0x0bc: /* GENERAL_PURPOSE4 */
case 0x0c0: /* GENERAL_PURPOSE5 */
case 0x0c4: /* GENERAL_PURPOSE6 */
case 0x0c8: /* GENERAL_PURPOSE7 */
case 0x0cc: /* GENERAL_PURPOSE8 */
case 0x0d0: /* GENERAL_PURPOSE9 */
case 0x0d4: /* GENERAL_PURPOSE10 */
case 0x0d8: /* GENERAL_PURPOSE11 */
case 0x0dc: /* GENERAL_PURPOSE12 */
case 0x0e0: /* GENERAL_PURPOSE13 */
case 0x0e4: /* GENERAL_PURPOSE14 */
case 0x0e8: /* GENERAL_PURPOSE15 */
case 0x0ec: /* GENERAL_PURPOSE16 */
case 0x0f0: /* GENERAL_PURPOSE17 */
case 0x0f4: /* GENERAL_PURPOSE18 */
case 0x0f8: /* GENERAL_PURPOSE19 */
case 0x0fc: /* GENERAL_PURPOSE20 */
return s->scratch[(addr - 0xb0) >> 2];
case 0x140: /* CM_CLKSEL_MPU */
return s->clksel[0];
case 0x148: /* CM_CLKSTCTRL_MPU */
return s->clkctrl[0];
case 0x158: /* RM_RSTST_MPU */
return s->rst[0];
case 0x1c8: /* PM_WKDEP_MPU */
return s->wkup[0];
case 0x1d4: /* PM_EVGENCTRL_MPU */
return s->ev;
case 0x1d8: /* PM_EVEGENONTIM_MPU */
return s->evtime[0];
case 0x1dc: /* PM_EVEGENOFFTIM_MPU */
return s->evtime[1];
case 0x1e0: /* PM_PWSTCTRL_MPU */
return s->power[0];
case 0x1e4: /* PM_PWSTST_MPU */
return 0;
case 0x200: /* CM_FCLKEN1_CORE */
return s->clken[0];
case 0x204: /* CM_FCLKEN2_CORE */
return s->clken[1];
case 0x210: /* CM_ICLKEN1_CORE */
return s->clken[2];
case 0x214: /* CM_ICLKEN2_CORE */
return s->clken[3];
case 0x21c: /* CM_ICLKEN4_CORE */
return s->clken[4];
case 0x220: /* CM_IDLEST1_CORE */
/* TODO: check the actual iclk status */
return 0x7ffffff9;
case 0x224: /* CM_IDLEST2_CORE */
/* TODO: check the actual iclk status */
return 0x00000007;
case 0x22c: /* CM_IDLEST4_CORE */
/* TODO: check the actual iclk status */
return 0x0000001f;
case 0x230: /* CM_AUTOIDLE1_CORE */
return s->clkidle[0];
case 0x234: /* CM_AUTOIDLE2_CORE */
return s->clkidle[1];
case 0x238: /* CM_AUTOIDLE3_CORE */
return s->clkidle[2];
case 0x23c: /* CM_AUTOIDLE4_CORE */
return s->clkidle[3];
case 0x240: /* CM_CLKSEL1_CORE */
return s->clksel[1];
case 0x244: /* CM_CLKSEL2_CORE */
return s->clksel[2];
case 0x248: /* CM_CLKSTCTRL_CORE */
return s->clkctrl[1];
case 0x2a0: /* PM_WKEN1_CORE */
return s->wken[0];
case 0x2a4: /* PM_WKEN2_CORE */
return s->wken[1];
case 0x2b0: /* PM_WKST1_CORE */
return s->wkst[0];
case 0x2b4: /* PM_WKST2_CORE */
return s->wkst[1];
case 0x2c8: /* PM_WKDEP_CORE */
return 0x1e;
case 0x2e0: /* PM_PWSTCTRL_CORE */
return s->power[1];
case 0x2e4: /* PM_PWSTST_CORE */
return 0x000030 | (s->power[1] & 0xfc00);
case 0x300: /* CM_FCLKEN_GFX */
return s->clken[5];
case 0x310: /* CM_ICLKEN_GFX */
return s->clken[6];
case 0x320: /* CM_IDLEST_GFX */
/* TODO: check the actual iclk status */
return 0x00000001;
case 0x340: /* CM_CLKSEL_GFX */
return s->clksel[3];
case 0x348: /* CM_CLKSTCTRL_GFX */
return s->clkctrl[2];
case 0x350: /* RM_RSTCTRL_GFX */
return s->rstctrl[0];
case 0x358: /* RM_RSTST_GFX */
return s->rst[1];
case 0x3c8: /* PM_WKDEP_GFX */
return s->wkup[1];
case 0x3e0: /* PM_PWSTCTRL_GFX */
return s->power[2];
case 0x3e4: /* PM_PWSTST_GFX */
return s->power[2] & 3;
case 0x400: /* CM_FCLKEN_WKUP */
return s->clken[7];
case 0x410: /* CM_ICLKEN_WKUP */
return s->clken[8];
case 0x420: /* CM_IDLEST_WKUP */
/* TODO: check the actual iclk status */
return 0x0000003f;
case 0x430: /* CM_AUTOIDLE_WKUP */
return s->clkidle[4];
case 0x440: /* CM_CLKSEL_WKUP */
return s->clksel[4];
case 0x450: /* RM_RSTCTRL_WKUP */
return 0;
case 0x454: /* RM_RSTTIME_WKUP */
return s->rsttime_wkup;
case 0x458: /* RM_RSTST_WKUP */
return s->rst[2];
case 0x4a0: /* PM_WKEN_WKUP */
return s->wken[2];
case 0x4b0: /* PM_WKST_WKUP */
return s->wkst[2];
case 0x500: /* CM_CLKEN_PLL */
return s->clken[9];
case 0x520: /* CM_IDLEST_CKGEN */
ret = 0x0000070 | (s->apll_lock[0] << 9) | (s->apll_lock[1] << 8);
if (!(s->clksel[6] & 3))
/* Core uses 32-kHz clock */
ret |= 3 << 0;
else if (!s->dpll_lock)
/* DPLL not locked, core uses ref_clk */
ret |= 1 << 0;
else
/* Core uses DPLL */
ret |= 2 << 0;
return ret;
case 0x530: /* CM_AUTOIDLE_PLL */
return s->clkidle[5];
case 0x540: /* CM_CLKSEL1_PLL */
return s->clksel[5];
case 0x544: /* CM_CLKSEL2_PLL */
return s->clksel[6];
case 0x800: /* CM_FCLKEN_DSP */
return s->clken[10];
case 0x810: /* CM_ICLKEN_DSP */
return s->clken[11];
case 0x820: /* CM_IDLEST_DSP */
/* TODO: check the actual iclk status */
return 0x00000103;
case 0x830: /* CM_AUTOIDLE_DSP */
return s->clkidle[6];
case 0x840: /* CM_CLKSEL_DSP */
return s->clksel[7];
case 0x848: /* CM_CLKSTCTRL_DSP */
return s->clkctrl[3];
case 0x850: /* RM_RSTCTRL_DSP */
return 0;
case 0x858: /* RM_RSTST_DSP */
return s->rst[3];
case 0x8c8: /* PM_WKDEP_DSP */
return s->wkup[2];
case 0x8e0: /* PM_PWSTCTRL_DSP */
return s->power[3];
case 0x8e4: /* PM_PWSTST_DSP */
return 0x008030 | (s->power[3] & 0x3003);
case 0x8f0: /* PRCM_IRQSTATUS_DSP */
return s->irqst[1];
case 0x8f4: /* PRCM_IRQENABLE_DSP */
return s->irqen[1];
case 0x8f8: /* PRCM_IRQSTATUS_IVA */
return s->irqst[2];
case 0x8fc: /* PRCM_IRQENABLE_IVA */
return s->irqen[2];
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_prcm_apll_update(struct omap_prcm_s *s)
{
int mode[2];
mode[0] = (s->clken[9] >> 6) & 3;
s->apll_lock[0] = (mode[0] == 3);
mode[1] = (s->clken[9] >> 2) & 3;
s->apll_lock[1] = (mode[1] == 3);
/* TODO: update clocks */
if (mode[0] == 1 || mode[0] == 2 || mode[1] == 1 || mode[2] == 2)
fprintf(stderr, "%s: bad EN_54M_PLL or bad EN_96M_PLL\n",
__FUNCTION__);
}
static void omap_prcm_dpll_update(struct omap_prcm_s *s)
{
omap_clk dpll = omap_findclk(s->mpu, "dpll");
omap_clk dpll_x2 = omap_findclk(s->mpu, "dpll");
omap_clk core = omap_findclk(s->mpu, "core_clk");
int mode = (s->clken[9] >> 0) & 3;
int mult, div;
mult = (s->clksel[5] >> 12) & 0x3ff;
div = (s->clksel[5] >> 8) & 0xf;
if (mult == 0 || mult == 1)
mode = 1; /* Bypass */
s->dpll_lock = 0;
switch (mode) {
case 0:
fprintf(stderr, "%s: bad EN_DPLL\n", __FUNCTION__);
break;
case 1: /* Low-power bypass mode (Default) */
case 2: /* Fast-relock bypass mode */
omap_clk_setrate(dpll, 1, 1);
omap_clk_setrate(dpll_x2, 1, 1);
break;
case 3: /* Lock mode */
s->dpll_lock = 1; /* After 20 FINT cycles (ref_clk / (div + 1)). */
omap_clk_setrate(dpll, div + 1, mult);
omap_clk_setrate(dpll_x2, div + 1, mult * 2);
break;
}
switch ((s->clksel[6] >> 0) & 3) {
case 0:
omap_clk_reparent(core, omap_findclk(s->mpu, "clk32-kHz"));
break;
case 1:
omap_clk_reparent(core, dpll);
break;
case 2:
/* Default */
omap_clk_reparent(core, dpll_x2);
break;
case 3:
fprintf(stderr, "%s: bad CORE_CLK_SRC\n", __FUNCTION__);
break;
}
}
static void omap_prcm_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_prcm_s *s = (struct omap_prcm_s *) opaque;
switch (addr) {
case 0x000: /* PRCM_REVISION */
case 0x054: /* PRCM_VOLTST */
case 0x084: /* PRCM_CLKCFG_STATUS */
case 0x1e4: /* PM_PWSTST_MPU */
case 0x220: /* CM_IDLEST1_CORE */
case 0x224: /* CM_IDLEST2_CORE */
case 0x22c: /* CM_IDLEST4_CORE */
case 0x2c8: /* PM_WKDEP_CORE */
case 0x2e4: /* PM_PWSTST_CORE */
case 0x320: /* CM_IDLEST_GFX */
case 0x3e4: /* PM_PWSTST_GFX */
case 0x420: /* CM_IDLEST_WKUP */
case 0x520: /* CM_IDLEST_CKGEN */
case 0x820: /* CM_IDLEST_DSP */
case 0x8e4: /* PM_PWSTST_DSP */
OMAP_RO_REG(addr);
return;
case 0x010: /* PRCM_SYSCONFIG */
s->sysconfig = value & 1;
break;
case 0x018: /* PRCM_IRQSTATUS_MPU */
s->irqst[0] &= ~value;
omap_prcm_int_update(s, 0);
break;
case 0x01c: /* PRCM_IRQENABLE_MPU */
s->irqen[0] = value & 0x3f;
omap_prcm_int_update(s, 0);
break;
case 0x050: /* PRCM_VOLTCTRL */
s->voltctrl = value & 0xf1c3;
break;
case 0x060: /* PRCM_CLKSRC_CTRL */
s->clksrc[0] = value & 0xdb;
/* TODO update clocks */
break;
case 0x070: /* PRCM_CLKOUT_CTRL */
s->clkout[0] = value & 0xbbbb;
/* TODO update clocks */
break;
case 0x078: /* PRCM_CLKEMUL_CTRL */
s->clkemul[0] = value & 1;
/* TODO update clocks */
break;
case 0x080: /* PRCM_CLKCFG_CTRL */
break;
case 0x090: /* PRCM_VOLTSETUP */
s->setuptime[0] = value & 0xffff;
break;
case 0x094: /* PRCM_CLKSSETUP */
s->setuptime[1] = value & 0xffff;
break;
case 0x098: /* PRCM_POLCTRL */
s->clkpol[0] = value & 0x701;
break;
case 0x0b0: /* GENERAL_PURPOSE1 */
case 0x0b4: /* GENERAL_PURPOSE2 */
case 0x0b8: /* GENERAL_PURPOSE3 */
case 0x0bc: /* GENERAL_PURPOSE4 */
case 0x0c0: /* GENERAL_PURPOSE5 */
case 0x0c4: /* GENERAL_PURPOSE6 */
case 0x0c8: /* GENERAL_PURPOSE7 */
case 0x0cc: /* GENERAL_PURPOSE8 */
case 0x0d0: /* GENERAL_PURPOSE9 */
case 0x0d4: /* GENERAL_PURPOSE10 */
case 0x0d8: /* GENERAL_PURPOSE11 */
case 0x0dc: /* GENERAL_PURPOSE12 */
case 0x0e0: /* GENERAL_PURPOSE13 */
case 0x0e4: /* GENERAL_PURPOSE14 */
case 0x0e8: /* GENERAL_PURPOSE15 */
case 0x0ec: /* GENERAL_PURPOSE16 */
case 0x0f0: /* GENERAL_PURPOSE17 */
case 0x0f4: /* GENERAL_PURPOSE18 */
case 0x0f8: /* GENERAL_PURPOSE19 */
case 0x0fc: /* GENERAL_PURPOSE20 */
s->scratch[(addr - 0xb0) >> 2] = value;
break;
case 0x140: /* CM_CLKSEL_MPU */
s->clksel[0] = value & 0x1f;
/* TODO update clocks */
break;
case 0x148: /* CM_CLKSTCTRL_MPU */
s->clkctrl[0] = value & 0x1f;
break;
case 0x158: /* RM_RSTST_MPU */
s->rst[0] &= ~value;
break;
case 0x1c8: /* PM_WKDEP_MPU */
s->wkup[0] = value & 0x15;
break;
case 0x1d4: /* PM_EVGENCTRL_MPU */
s->ev = value & 0x1f;
break;
case 0x1d8: /* PM_EVEGENONTIM_MPU */
s->evtime[0] = value;
break;
case 0x1dc: /* PM_EVEGENOFFTIM_MPU */
s->evtime[1] = value;
break;
case 0x1e0: /* PM_PWSTCTRL_MPU */
s->power[0] = value & 0xc0f;
break;
case 0x200: /* CM_FCLKEN1_CORE */
s->clken[0] = value & 0xbfffffff;
/* TODO update clocks */
/* The EN_EAC bit only gets/puts func_96m_clk. */
break;
case 0x204: /* CM_FCLKEN2_CORE */
s->clken[1] = value & 0x00000007;
/* TODO update clocks */
break;
case 0x210: /* CM_ICLKEN1_CORE */
s->clken[2] = value & 0xfffffff9;
/* TODO update clocks */
/* The EN_EAC bit only gets/puts core_l4_iclk. */
break;
case 0x214: /* CM_ICLKEN2_CORE */
s->clken[3] = value & 0x00000007;
/* TODO update clocks */
break;
case 0x21c: /* CM_ICLKEN4_CORE */
s->clken[4] = value & 0x0000001f;
/* TODO update clocks */
break;
case 0x230: /* CM_AUTOIDLE1_CORE */
s->clkidle[0] = value & 0xfffffff9;
/* TODO update clocks */
break;
case 0x234: /* CM_AUTOIDLE2_CORE */
s->clkidle[1] = value & 0x00000007;
/* TODO update clocks */
break;
case 0x238: /* CM_AUTOIDLE3_CORE */
s->clkidle[2] = value & 0x00000007;
/* TODO update clocks */
break;
case 0x23c: /* CM_AUTOIDLE4_CORE */
s->clkidle[3] = value & 0x0000001f;
/* TODO update clocks */
break;
case 0x240: /* CM_CLKSEL1_CORE */
s->clksel[1] = value & 0x0fffbf7f;
/* TODO update clocks */
break;
case 0x244: /* CM_CLKSEL2_CORE */
s->clksel[2] = value & 0x00fffffc;
/* TODO update clocks */
break;
case 0x248: /* CM_CLKSTCTRL_CORE */
s->clkctrl[1] = value & 0x7;
break;
case 0x2a0: /* PM_WKEN1_CORE */
s->wken[0] = value & 0x04667ff8;
break;
case 0x2a4: /* PM_WKEN2_CORE */
s->wken[1] = value & 0x00000005;
break;
case 0x2b0: /* PM_WKST1_CORE */
s->wkst[0] &= ~value;
break;
case 0x2b4: /* PM_WKST2_CORE */
s->wkst[1] &= ~value;
break;
case 0x2e0: /* PM_PWSTCTRL_CORE */
s->power[1] = (value & 0x00fc3f) | (1 << 2);
break;
case 0x300: /* CM_FCLKEN_GFX */
s->clken[5] = value & 6;
/* TODO update clocks */
break;
case 0x310: /* CM_ICLKEN_GFX */
s->clken[6] = value & 1;
/* TODO update clocks */
break;
case 0x340: /* CM_CLKSEL_GFX */
s->clksel[3] = value & 7;
/* TODO update clocks */
break;
case 0x348: /* CM_CLKSTCTRL_GFX */
s->clkctrl[2] = value & 1;
break;
case 0x350: /* RM_RSTCTRL_GFX */
s->rstctrl[0] = value & 1;
/* TODO: reset */
break;
case 0x358: /* RM_RSTST_GFX */
s->rst[1] &= ~value;
break;
case 0x3c8: /* PM_WKDEP_GFX */
s->wkup[1] = value & 0x13;
break;
case 0x3e0: /* PM_PWSTCTRL_GFX */
s->power[2] = (value & 0x00c0f) | (3 << 2);
break;
case 0x400: /* CM_FCLKEN_WKUP */
s->clken[7] = value & 0xd;
/* TODO update clocks */
break;
case 0x410: /* CM_ICLKEN_WKUP */
s->clken[8] = value & 0x3f;
/* TODO update clocks */
break;
case 0x430: /* CM_AUTOIDLE_WKUP */
s->clkidle[4] = value & 0x0000003f;
/* TODO update clocks */
break;
case 0x440: /* CM_CLKSEL_WKUP */
s->clksel[4] = value & 3;
/* TODO update clocks */
break;
case 0x450: /* RM_RSTCTRL_WKUP */
/* TODO: reset */
if (value & 2)
qemu_system_reset_request();
break;
case 0x454: /* RM_RSTTIME_WKUP */
s->rsttime_wkup = value & 0x1fff;
break;
case 0x458: /* RM_RSTST_WKUP */
s->rst[2] &= ~value;
break;
case 0x4a0: /* PM_WKEN_WKUP */
s->wken[2] = value & 0x00000005;
break;
case 0x4b0: /* PM_WKST_WKUP */
s->wkst[2] &= ~value;
break;
case 0x500: /* CM_CLKEN_PLL */
if (value & 0xffffff30)
fprintf(stderr, "%s: write 0s in CM_CLKEN_PLL for "
"future compatiblity\n", __FUNCTION__);
if ((s->clken[9] ^ value) & 0xcc) {
s->clken[9] &= ~0xcc;
s->clken[9] |= value & 0xcc;
omap_prcm_apll_update(s);
}
if ((s->clken[9] ^ value) & 3) {
s->clken[9] &= ~3;
s->clken[9] |= value & 3;
omap_prcm_dpll_update(s);
}
break;
case 0x530: /* CM_AUTOIDLE_PLL */
s->clkidle[5] = value & 0x000000cf;
/* TODO update clocks */
break;
case 0x540: /* CM_CLKSEL1_PLL */
if (value & 0xfc4000d7)
fprintf(stderr, "%s: write 0s in CM_CLKSEL1_PLL for "
"future compatiblity\n", __FUNCTION__);
if ((s->clksel[5] ^ value) & 0x003fff00) {
s->clksel[5] = value & 0x03bfff28;
omap_prcm_dpll_update(s);
}
/* TODO update the other clocks */
s->clksel[5] = value & 0x03bfff28;
break;
case 0x544: /* CM_CLKSEL2_PLL */
if (value & ~3)
fprintf(stderr, "%s: write 0s in CM_CLKSEL2_PLL[31:2] for "
"future compatiblity\n", __FUNCTION__);
if (s->clksel[6] != (value & 3)) {
s->clksel[6] = value & 3;
omap_prcm_dpll_update(s);
}
break;
case 0x800: /* CM_FCLKEN_DSP */
s->clken[10] = value & 0x501;
/* TODO update clocks */
break;
case 0x810: /* CM_ICLKEN_DSP */
s->clken[11] = value & 0x2;
/* TODO update clocks */
break;
case 0x830: /* CM_AUTOIDLE_DSP */
s->clkidle[6] = value & 0x2;
/* TODO update clocks */
break;
case 0x840: /* CM_CLKSEL_DSP */
s->clksel[7] = value & 0x3fff;
/* TODO update clocks */
break;
case 0x848: /* CM_CLKSTCTRL_DSP */
s->clkctrl[3] = value & 0x101;
break;
case 0x850: /* RM_RSTCTRL_DSP */
/* TODO: reset */
break;
case 0x858: /* RM_RSTST_DSP */
s->rst[3] &= ~value;
break;
case 0x8c8: /* PM_WKDEP_DSP */
s->wkup[2] = value & 0x13;
break;
case 0x8e0: /* PM_PWSTCTRL_DSP */
s->power[3] = (value & 0x03017) | (3 << 2);
break;
case 0x8f0: /* PRCM_IRQSTATUS_DSP */
s->irqst[1] &= ~value;
omap_prcm_int_update(s, 1);
break;
case 0x8f4: /* PRCM_IRQENABLE_DSP */
s->irqen[1] = value & 0x7;
omap_prcm_int_update(s, 1);
break;
case 0x8f8: /* PRCM_IRQSTATUS_IVA */
s->irqst[2] &= ~value;
omap_prcm_int_update(s, 2);
break;
case 0x8fc: /* PRCM_IRQENABLE_IVA */
s->irqen[2] = value & 0x7;
omap_prcm_int_update(s, 2);
break;
default:
OMAP_BAD_REG(addr);
return;
}
}
static CPUReadMemoryFunc *omap_prcm_readfn[] = {
omap_badwidth_read32,
omap_badwidth_read32,
omap_prcm_read,
};
static CPUWriteMemoryFunc *omap_prcm_writefn[] = {
omap_badwidth_write32,
omap_badwidth_write32,
omap_prcm_write,
};
static void omap_prcm_reset(struct omap_prcm_s *s)
{
s->sysconfig = 0;
s->irqst[0] = 0;
s->irqst[1] = 0;
s->irqst[2] = 0;
s->irqen[0] = 0;
s->irqen[1] = 0;
s->irqen[2] = 0;
s->voltctrl = 0x1040;
s->ev = 0x14;
s->evtime[0] = 0;
s->evtime[1] = 0;
s->clkctrl[0] = 0;
s->clkctrl[1] = 0;
s->clkctrl[2] = 0;
s->clkctrl[3] = 0;
s->clken[1] = 7;
s->clken[3] = 7;
s->clken[4] = 0;
s->clken[5] = 0;
s->clken[6] = 0;
s->clken[7] = 0xc;
s->clken[8] = 0x3e;
s->clken[9] = 0x0d;
s->clken[10] = 0;
s->clken[11] = 0;
s->clkidle[0] = 0;
s->clkidle[2] = 7;
s->clkidle[3] = 0;
s->clkidle[4] = 0;
s->clkidle[5] = 0x0c;
s->clkidle[6] = 0;
s->clksel[0] = 0x01;
s->clksel[1] = 0x02100121;
s->clksel[2] = 0x00000000;
s->clksel[3] = 0x01;
s->clksel[4] = 0;
s->clksel[7] = 0x0121;
s->wkup[0] = 0x15;
s->wkup[1] = 0x13;
s->wkup[2] = 0x13;
s->wken[0] = 0x04667ff8;
s->wken[1] = 0x00000005;
s->wken[2] = 5;
s->wkst[0] = 0;
s->wkst[1] = 0;
s->wkst[2] = 0;
s->power[0] = 0x00c;
s->power[1] = 4;
s->power[2] = 0x0000c;
s->power[3] = 0x14;
s->rstctrl[0] = 1;
s->rst[3] = 1;
omap_prcm_apll_update(s);
omap_prcm_dpll_update(s);
}
static void omap_prcm_coldreset(struct omap_prcm_s *s)
{
s->setuptime[0] = 0;
s->setuptime[1] = 0;
memset(&s->scratch, 0, sizeof(s->scratch));
s->rst[0] = 0x01;
s->rst[1] = 0x00;
s->rst[2] = 0x01;
s->clken[0] = 0;
s->clken[2] = 0;
s->clkidle[1] = 0;
s->clksel[5] = 0;
s->clksel[6] = 2;
s->clksrc[0] = 0x43;
s->clkout[0] = 0x0303;
s->clkemul[0] = 0;
s->clkpol[0] = 0x100;
s->rsttime_wkup = 0x1002;
omap_prcm_reset(s);
}
struct omap_prcm_s *omap_prcm_init(struct omap_target_agent_s *ta,
qemu_irq mpu_int, qemu_irq dsp_int, qemu_irq iva_int,
struct omap_mpu_state_s *mpu)
{
int iomemtype;
struct omap_prcm_s *s = (struct omap_prcm_s *)
qemu_mallocz(sizeof(struct omap_prcm_s));
s->irq[0] = mpu_int;
s->irq[1] = dsp_int;
s->irq[2] = iva_int;
s->mpu = mpu;
omap_prcm_coldreset(s);
iomemtype = l4_register_io_memory(omap_prcm_readfn,
omap_prcm_writefn, s);
omap_l4_attach(ta, 0, iomemtype);
omap_l4_attach(ta, 1, iomemtype);
return s;
}
/* System and Pinout control */
struct omap_sysctl_s {
struct omap_mpu_state_s *mpu;
uint32_t sysconfig;
uint32_t devconfig;
uint32_t psaconfig;
uint32_t padconf[0x45];
uint8_t obs;
uint32_t msuspendmux[5];
};
static uint32_t omap_sysctl_read8(void *opaque, target_phys_addr_t addr)
{
struct omap_sysctl_s *s = (struct omap_sysctl_s *) opaque;
int pad_offset, byte_offset;
int value;
switch (addr) {
case 0x030 ... 0x140: /* CONTROL_PADCONF - only used in the POP */
pad_offset = (addr - 0x30) >> 2;
byte_offset = (addr - 0x30) & (4 - 1);
value = s->padconf[pad_offset];
value = (value >> (byte_offset * 8)) & 0xff;
return value;
default:
break;
}
OMAP_BAD_REG(addr);
return 0;
}
static uint32_t omap_sysctl_read(void *opaque, target_phys_addr_t addr)
{
struct omap_sysctl_s *s = (struct omap_sysctl_s *) opaque;
switch (addr) {
case 0x000: /* CONTROL_REVISION */
return 0x20;
case 0x010: /* CONTROL_SYSCONFIG */
return s->sysconfig;
case 0x030 ... 0x140: /* CONTROL_PADCONF - only used in the POP */
return s->padconf[(addr - 0x30) >> 2];
case 0x270: /* CONTROL_DEBOBS */
return s->obs;
case 0x274: /* CONTROL_DEVCONF */
return s->devconfig;
case 0x28c: /* CONTROL_EMU_SUPPORT */
return 0;
case 0x290: /* CONTROL_MSUSPENDMUX_0 */
return s->msuspendmux[0];
case 0x294: /* CONTROL_MSUSPENDMUX_1 */
return s->msuspendmux[1];
case 0x298: /* CONTROL_MSUSPENDMUX_2 */
return s->msuspendmux[2];
case 0x29c: /* CONTROL_MSUSPENDMUX_3 */
return s->msuspendmux[3];
case 0x2a0: /* CONTROL_MSUSPENDMUX_4 */
return s->msuspendmux[4];
case 0x2a4: /* CONTROL_MSUSPENDMUX_5 */
return 0;
case 0x2b8: /* CONTROL_PSA_CTRL */
return s->psaconfig;
case 0x2bc: /* CONTROL_PSA_CMD */
case 0x2c0: /* CONTROL_PSA_VALUE */
return 0;
case 0x2b0: /* CONTROL_SEC_CTRL */
return 0x800000f1;
case 0x2d0: /* CONTROL_SEC_EMU */
return 0x80000015;
case 0x2d4: /* CONTROL_SEC_TAP */
return 0x8000007f;
case 0x2b4: /* CONTROL_SEC_TEST */
case 0x2f0: /* CONTROL_SEC_STATUS */
case 0x2f4: /* CONTROL_SEC_ERR_STATUS */
/* Secure mode is not present on general-pusrpose device. Outside
* secure mode these values cannot be read or written. */
return 0;
case 0x2d8: /* CONTROL_OCM_RAM_PERM */
return 0xff;
case 0x2dc: /* CONTROL_OCM_PUB_RAM_ADD */
case 0x2e0: /* CONTROL_EXT_SEC_RAM_START_ADD */
case 0x2e4: /* CONTROL_EXT_SEC_RAM_STOP_ADD */
/* No secure mode so no Extended Secure RAM present. */
return 0;
case 0x2f8: /* CONTROL_STATUS */
/* Device Type => General-purpose */
return 0x0300;
case 0x2fc: /* CONTROL_GENERAL_PURPOSE_STATUS */
case 0x300: /* CONTROL_RPUB_KEY_H_0 */
case 0x304: /* CONTROL_RPUB_KEY_H_1 */
case 0x308: /* CONTROL_RPUB_KEY_H_2 */
case 0x30c: /* CONTROL_RPUB_KEY_H_3 */
return 0xdecafbad;
case 0x310: /* CONTROL_RAND_KEY_0 */
case 0x314: /* CONTROL_RAND_KEY_1 */
case 0x318: /* CONTROL_RAND_KEY_2 */
case 0x31c: /* CONTROL_RAND_KEY_3 */
case 0x320: /* CONTROL_CUST_KEY_0 */
case 0x324: /* CONTROL_CUST_KEY_1 */
case 0x330: /* CONTROL_TEST_KEY_0 */
case 0x334: /* CONTROL_TEST_KEY_1 */
case 0x338: /* CONTROL_TEST_KEY_2 */
case 0x33c: /* CONTROL_TEST_KEY_3 */
case 0x340: /* CONTROL_TEST_KEY_4 */
case 0x344: /* CONTROL_TEST_KEY_5 */
case 0x348: /* CONTROL_TEST_KEY_6 */
case 0x34c: /* CONTROL_TEST_KEY_7 */
case 0x350: /* CONTROL_TEST_KEY_8 */
case 0x354: /* CONTROL_TEST_KEY_9 */
/* Can only be accessed in secure mode and when C_FieldAccEnable
* bit is set in CONTROL_SEC_CTRL.
* TODO: otherwise an interconnect access error is generated. */
return 0;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_sysctl_write8(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_sysctl_s *s = (struct omap_sysctl_s *) opaque;
int pad_offset, byte_offset;
int prev_value;
switch (addr) {
case 0x030 ... 0x140: /* CONTROL_PADCONF - only used in the POP */
pad_offset = (addr - 0x30) >> 2;
byte_offset = (addr - 0x30) & (4 - 1);
prev_value = s->padconf[pad_offset];
prev_value &= ~(0xff << (byte_offset * 8));
prev_value |= ((value & 0x1f1f1f1f) << (byte_offset * 8)) & 0x1f1f1f1f;
s->padconf[pad_offset] = prev_value;
break;
default:
OMAP_BAD_REG(addr);
break;
}
}
static void omap_sysctl_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_sysctl_s *s = (struct omap_sysctl_s *) opaque;
switch (addr) {
case 0x000: /* CONTROL_REVISION */
case 0x2a4: /* CONTROL_MSUSPENDMUX_5 */
case 0x2c0: /* CONTROL_PSA_VALUE */
case 0x2f8: /* CONTROL_STATUS */
case 0x2fc: /* CONTROL_GENERAL_PURPOSE_STATUS */
case 0x300: /* CONTROL_RPUB_KEY_H_0 */
case 0x304: /* CONTROL_RPUB_KEY_H_1 */
case 0x308: /* CONTROL_RPUB_KEY_H_2 */
case 0x30c: /* CONTROL_RPUB_KEY_H_3 */
case 0x310: /* CONTROL_RAND_KEY_0 */
case 0x314: /* CONTROL_RAND_KEY_1 */
case 0x318: /* CONTROL_RAND_KEY_2 */
case 0x31c: /* CONTROL_RAND_KEY_3 */
case 0x320: /* CONTROL_CUST_KEY_0 */
case 0x324: /* CONTROL_CUST_KEY_1 */
case 0x330: /* CONTROL_TEST_KEY_0 */
case 0x334: /* CONTROL_TEST_KEY_1 */
case 0x338: /* CONTROL_TEST_KEY_2 */
case 0x33c: /* CONTROL_TEST_KEY_3 */
case 0x340: /* CONTROL_TEST_KEY_4 */
case 0x344: /* CONTROL_TEST_KEY_5 */
case 0x348: /* CONTROL_TEST_KEY_6 */
case 0x34c: /* CONTROL_TEST_KEY_7 */
case 0x350: /* CONTROL_TEST_KEY_8 */
case 0x354: /* CONTROL_TEST_KEY_9 */
OMAP_RO_REG(addr);
return;
case 0x010: /* CONTROL_SYSCONFIG */
s->sysconfig = value & 0x1e;
break;
case 0x030 ... 0x140: /* CONTROL_PADCONF - only used in the POP */
/* XXX: should check constant bits */
s->padconf[(addr - 0x30) >> 2] = value & 0x1f1f1f1f;
break;
case 0x270: /* CONTROL_DEBOBS */
s->obs = value & 0xff;
break;
case 0x274: /* CONTROL_DEVCONF */
s->devconfig = value & 0xffffc7ff;
break;
case 0x28c: /* CONTROL_EMU_SUPPORT */
break;
case 0x290: /* CONTROL_MSUSPENDMUX_0 */
s->msuspendmux[0] = value & 0x3fffffff;
break;
case 0x294: /* CONTROL_MSUSPENDMUX_1 */
s->msuspendmux[1] = value & 0x3fffffff;
break;
case 0x298: /* CONTROL_MSUSPENDMUX_2 */
s->msuspendmux[2] = value & 0x3fffffff;
break;
case 0x29c: /* CONTROL_MSUSPENDMUX_3 */
s->msuspendmux[3] = value & 0x3fffffff;
break;
case 0x2a0: /* CONTROL_MSUSPENDMUX_4 */
s->msuspendmux[4] = value & 0x3fffffff;
break;
case 0x2b8: /* CONTROL_PSA_CTRL */
s->psaconfig = value & 0x1c;
s->psaconfig |= (value & 0x20) ? 2 : 1;
break;
case 0x2bc: /* CONTROL_PSA_CMD */
break;
case 0x2b0: /* CONTROL_SEC_CTRL */
case 0x2b4: /* CONTROL_SEC_TEST */
case 0x2d0: /* CONTROL_SEC_EMU */
case 0x2d4: /* CONTROL_SEC_TAP */
case 0x2d8: /* CONTROL_OCM_RAM_PERM */
case 0x2dc: /* CONTROL_OCM_PUB_RAM_ADD */
case 0x2e0: /* CONTROL_EXT_SEC_RAM_START_ADD */
case 0x2e4: /* CONTROL_EXT_SEC_RAM_STOP_ADD */
case 0x2f0: /* CONTROL_SEC_STATUS */
case 0x2f4: /* CONTROL_SEC_ERR_STATUS */
break;
default:
OMAP_BAD_REG(addr);
return;
}
}
static CPUReadMemoryFunc *omap_sysctl_readfn[] = {
omap_sysctl_read8,
omap_badwidth_read32, /* TODO */
omap_sysctl_read,
};
static CPUWriteMemoryFunc *omap_sysctl_writefn[] = {
omap_sysctl_write8,
omap_badwidth_write32, /* TODO */
omap_sysctl_write,
};
static void omap_sysctl_reset(struct omap_sysctl_s *s)
{
/* (power-on reset) */
s->sysconfig = 0;
s->obs = 0;
s->devconfig = 0x0c000000;
s->msuspendmux[0] = 0x00000000;
s->msuspendmux[1] = 0x00000000;
s->msuspendmux[2] = 0x00000000;
s->msuspendmux[3] = 0x00000000;
s->msuspendmux[4] = 0x00000000;
s->psaconfig = 1;
s->padconf[0x00] = 0x000f0f0f;
s->padconf[0x01] = 0x00000000;
s->padconf[0x02] = 0x00000000;
s->padconf[0x03] = 0x00000000;
s->padconf[0x04] = 0x00000000;
s->padconf[0x05] = 0x00000000;
s->padconf[0x06] = 0x00000000;
s->padconf[0x07] = 0x00000000;
s->padconf[0x08] = 0x08080800;
s->padconf[0x09] = 0x08080808;
s->padconf[0x0a] = 0x08080808;
s->padconf[0x0b] = 0x08080808;
s->padconf[0x0c] = 0x08080808;
s->padconf[0x0d] = 0x08080800;
s->padconf[0x0e] = 0x08080808;
s->padconf[0x0f] = 0x08080808;
s->padconf[0x10] = 0x18181808; /* | 0x07070700 if SBoot3 */
s->padconf[0x11] = 0x18181818; /* | 0x07070707 if SBoot3 */
s->padconf[0x12] = 0x18181818; /* | 0x07070707 if SBoot3 */
s->padconf[0x13] = 0x18181818; /* | 0x07070707 if SBoot3 */
s->padconf[0x14] = 0x18181818; /* | 0x00070707 if SBoot3 */
s->padconf[0x15] = 0x18181818;
s->padconf[0x16] = 0x18181818; /* | 0x07000000 if SBoot3 */
s->padconf[0x17] = 0x1f001f00;
s->padconf[0x18] = 0x1f1f1f1f;
s->padconf[0x19] = 0x00000000;
s->padconf[0x1a] = 0x1f180000;
s->padconf[0x1b] = 0x00001f1f;
s->padconf[0x1c] = 0x1f001f00;
s->padconf[0x1d] = 0x00000000;
s->padconf[0x1e] = 0x00000000;
s->padconf[0x1f] = 0x08000000;
s->padconf[0x20] = 0x08080808;
s->padconf[0x21] = 0x08080808;
s->padconf[0x22] = 0x0f080808;
s->padconf[0x23] = 0x0f0f0f0f;
s->padconf[0x24] = 0x000f0f0f;
s->padconf[0x25] = 0x1f1f1f0f;
s->padconf[0x26] = 0x080f0f1f;
s->padconf[0x27] = 0x070f1808;
s->padconf[0x28] = 0x0f070707;
s->padconf[0x29] = 0x000f0f1f;
s->padconf[0x2a] = 0x0f0f0f1f;
s->padconf[0x2b] = 0x08000000;
s->padconf[0x2c] = 0x0000001f;
s->padconf[0x2d] = 0x0f0f1f00;
s->padconf[0x2e] = 0x1f1f0f0f;
s->padconf[0x2f] = 0x0f1f1f1f;
s->padconf[0x30] = 0x0f0f0f0f;
s->padconf[0x31] = 0x0f1f0f1f;
s->padconf[0x32] = 0x0f0f0f0f;
s->padconf[0x33] = 0x0f1f0f1f;
s->padconf[0x34] = 0x1f1f0f0f;
s->padconf[0x35] = 0x0f0f1f1f;
s->padconf[0x36] = 0x0f0f1f0f;
s->padconf[0x37] = 0x0f0f0f0f;
s->padconf[0x38] = 0x1f18180f;
s->padconf[0x39] = 0x1f1f1f1f;
s->padconf[0x3a] = 0x00001f1f;
s->padconf[0x3b] = 0x00000000;
s->padconf[0x3c] = 0x00000000;
s->padconf[0x3d] = 0x0f0f0f0f;
s->padconf[0x3e] = 0x18000f0f;
s->padconf[0x3f] = 0x00070000;
s->padconf[0x40] = 0x00000707;
s->padconf[0x41] = 0x0f1f0700;
s->padconf[0x42] = 0x1f1f070f;
s->padconf[0x43] = 0x0008081f;
s->padconf[0x44] = 0x00000800;
}
struct omap_sysctl_s *omap_sysctl_init(struct omap_target_agent_s *ta,
omap_clk iclk, struct omap_mpu_state_s *mpu)
{
int iomemtype;
struct omap_sysctl_s *s = (struct omap_sysctl_s *)
qemu_mallocz(sizeof(struct omap_sysctl_s));
s->mpu = mpu;
omap_sysctl_reset(s);
iomemtype = l4_register_io_memory(omap_sysctl_readfn,
omap_sysctl_writefn, s);
omap_l4_attach(ta, 0, iomemtype);
return s;
}
/* SDRAM Controller Subsystem */
struct omap_sdrc_s {
uint8_t config;
};
static void omap_sdrc_reset(struct omap_sdrc_s *s)
{
s->config = 0x10;
}
static uint32_t omap_sdrc_read(void *opaque, target_phys_addr_t addr)
{
struct omap_sdrc_s *s = (struct omap_sdrc_s *) opaque;
switch (addr) {
case 0x00: /* SDRC_REVISION */
return 0x20;
case 0x10: /* SDRC_SYSCONFIG */
return s->config;
case 0x14: /* SDRC_SYSSTATUS */
return 1; /* RESETDONE */
case 0x40: /* SDRC_CS_CFG */
case 0x44: /* SDRC_SHARING */
case 0x48: /* SDRC_ERR_ADDR */
case 0x4c: /* SDRC_ERR_TYPE */
case 0x60: /* SDRC_DLLA_SCTRL */
case 0x64: /* SDRC_DLLA_STATUS */
case 0x68: /* SDRC_DLLB_CTRL */
case 0x6c: /* SDRC_DLLB_STATUS */
case 0x70: /* SDRC_POWER */
case 0x80: /* SDRC_MCFG_0 */
case 0x84: /* SDRC_MR_0 */
case 0x88: /* SDRC_EMR1_0 */
case 0x8c: /* SDRC_EMR2_0 */
case 0x90: /* SDRC_EMR3_0 */
case 0x94: /* SDRC_DCDL1_CTRL */
case 0x98: /* SDRC_DCDL2_CTRL */
case 0x9c: /* SDRC_ACTIM_CTRLA_0 */
case 0xa0: /* SDRC_ACTIM_CTRLB_0 */
case 0xa4: /* SDRC_RFR_CTRL_0 */
case 0xa8: /* SDRC_MANUAL_0 */
case 0xb0: /* SDRC_MCFG_1 */
case 0xb4: /* SDRC_MR_1 */
case 0xb8: /* SDRC_EMR1_1 */
case 0xbc: /* SDRC_EMR2_1 */
case 0xc0: /* SDRC_EMR3_1 */
case 0xc4: /* SDRC_ACTIM_CTRLA_1 */
case 0xc8: /* SDRC_ACTIM_CTRLB_1 */
case 0xd4: /* SDRC_RFR_CTRL_1 */
case 0xd8: /* SDRC_MANUAL_1 */
return 0x00;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_sdrc_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_sdrc_s *s = (struct omap_sdrc_s *) opaque;
switch (addr) {
case 0x00: /* SDRC_REVISION */
case 0x14: /* SDRC_SYSSTATUS */
case 0x48: /* SDRC_ERR_ADDR */
case 0x64: /* SDRC_DLLA_STATUS */
case 0x6c: /* SDRC_DLLB_STATUS */
OMAP_RO_REG(addr);
return;
case 0x10: /* SDRC_SYSCONFIG */
if ((value >> 3) != 0x2)
fprintf(stderr, "%s: bad SDRAM idle mode %i\n",
__FUNCTION__, value >> 3);
if (value & 2)
omap_sdrc_reset(s);
s->config = value & 0x18;
break;
case 0x40: /* SDRC_CS_CFG */
case 0x44: /* SDRC_SHARING */
case 0x4c: /* SDRC_ERR_TYPE */
case 0x60: /* SDRC_DLLA_SCTRL */
case 0x68: /* SDRC_DLLB_CTRL */
case 0x70: /* SDRC_POWER */
case 0x80: /* SDRC_MCFG_0 */
case 0x84: /* SDRC_MR_0 */
case 0x88: /* SDRC_EMR1_0 */
case 0x8c: /* SDRC_EMR2_0 */
case 0x90: /* SDRC_EMR3_0 */
case 0x94: /* SDRC_DCDL1_CTRL */
case 0x98: /* SDRC_DCDL2_CTRL */
case 0x9c: /* SDRC_ACTIM_CTRLA_0 */
case 0xa0: /* SDRC_ACTIM_CTRLB_0 */
case 0xa4: /* SDRC_RFR_CTRL_0 */
case 0xa8: /* SDRC_MANUAL_0 */
case 0xb0: /* SDRC_MCFG_1 */
case 0xb4: /* SDRC_MR_1 */
case 0xb8: /* SDRC_EMR1_1 */
case 0xbc: /* SDRC_EMR2_1 */
case 0xc0: /* SDRC_EMR3_1 */
case 0xc4: /* SDRC_ACTIM_CTRLA_1 */
case 0xc8: /* SDRC_ACTIM_CTRLB_1 */
case 0xd4: /* SDRC_RFR_CTRL_1 */
case 0xd8: /* SDRC_MANUAL_1 */
break;
default:
OMAP_BAD_REG(addr);
return;
}
}
static CPUReadMemoryFunc *omap_sdrc_readfn[] = {
omap_badwidth_read32,
omap_badwidth_read32,
omap_sdrc_read,
};
static CPUWriteMemoryFunc *omap_sdrc_writefn[] = {
omap_badwidth_write32,
omap_badwidth_write32,
omap_sdrc_write,
};
struct omap_sdrc_s *omap_sdrc_init(target_phys_addr_t base)
{
int iomemtype;
struct omap_sdrc_s *s = (struct omap_sdrc_s *)
qemu_mallocz(sizeof(struct omap_sdrc_s));
omap_sdrc_reset(s);
iomemtype = cpu_register_io_memory(omap_sdrc_readfn,
omap_sdrc_writefn, s);
cpu_register_physical_memory(base, 0x1000, iomemtype);
return s;
}
/* General-Purpose Memory Controller */
struct omap_gpmc_s {
qemu_irq irq;
uint8_t sysconfig;
uint16_t irqst;
uint16_t irqen;
uint16_t timeout;
uint16_t config;
uint32_t prefconfig[2];
int prefcontrol;
int preffifo;
int prefcount;
struct omap_gpmc_cs_file_s {
uint32_t config[7];
target_phys_addr_t base;
size_t size;
int iomemtype;
void (*base_update)(void *opaque, target_phys_addr_t new);
void (*unmap)(void *opaque);
void *opaque;
} cs_file[8];
int ecc_cs;
int ecc_ptr;
uint32_t ecc_cfg;
ECCState ecc[9];
};
static void omap_gpmc_int_update(struct omap_gpmc_s *s)
{
qemu_set_irq(s->irq, s->irqen & s->irqst);
}
static void omap_gpmc_cs_map(struct omap_gpmc_cs_file_s *f, int base, int mask)
{
/* TODO: check for overlapping regions and report access errors */
if ((mask != 0x8 && mask != 0xc && mask != 0xe && mask != 0xf) ||
(base < 0 || base >= 0x40) ||
(base & 0x0f & ~mask)) {
fprintf(stderr, "%s: wrong cs address mapping/decoding!\n",
__FUNCTION__);
return;
}
if (!f->opaque)
return;
f->base = base << 24;
f->size = (0x0fffffff & ~(mask << 24)) + 1;
/* TODO: rather than setting the size of the mapping (which should be
* constant), the mask should cause wrapping of the address space, so
* that the same memory becomes accessible at every <i>size</i> bytes
* starting from <i>base</i>. */
if (f->iomemtype)
cpu_register_physical_memory(f->base, f->size, f->iomemtype);
if (f->base_update)
f->base_update(f->opaque, f->base);
}
static void omap_gpmc_cs_unmap(struct omap_gpmc_cs_file_s *f)
{
if (f->size) {
if (f->unmap)
f->unmap(f->opaque);
if (f->iomemtype)
cpu_register_physical_memory(f->base, f->size, IO_MEM_UNASSIGNED);
f->base = 0;
f->size = 0;
}
}
static void omap_gpmc_reset(struct omap_gpmc_s *s)
{
int i;
s->sysconfig = 0;
s->irqst = 0;
s->irqen = 0;
omap_gpmc_int_update(s);
s->timeout = 0;
s->config = 0xa00;
s->prefconfig[0] = 0x00004000;
s->prefconfig[1] = 0x00000000;
s->prefcontrol = 0;
s->preffifo = 0;
s->prefcount = 0;
for (i = 0; i < 8; i ++) {
if (s->cs_file[i].config[6] & (1 << 6)) /* CSVALID */
omap_gpmc_cs_unmap(s->cs_file + i);
s->cs_file[i].config[0] = i ? 1 << 12 : 0;
s->cs_file[i].config[1] = 0x101001;
s->cs_file[i].config[2] = 0x020201;
s->cs_file[i].config[3] = 0x10031003;
s->cs_file[i].config[4] = 0x10f1111;
s->cs_file[i].config[5] = 0;
s->cs_file[i].config[6] = 0xf00 | (i ? 0 : 1 << 6);
if (s->cs_file[i].config[6] & (1 << 6)) /* CSVALID */
omap_gpmc_cs_map(&s->cs_file[i],
s->cs_file[i].config[6] & 0x1f, /* MASKADDR */
(s->cs_file[i].config[6] >> 8 & 0xf)); /* BASEADDR */
}
omap_gpmc_cs_map(s->cs_file, 0, 0xf);
s->ecc_cs = 0;
s->ecc_ptr = 0;
s->ecc_cfg = 0x3fcff000;
for (i = 0; i < 9; i ++)
ecc_reset(&s->ecc[i]);
}
static uint32_t omap_gpmc_read(void *opaque, target_phys_addr_t addr)
{
struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
int cs;
struct omap_gpmc_cs_file_s *f;
switch (addr) {
case 0x000: /* GPMC_REVISION */
return 0x20;
case 0x010: /* GPMC_SYSCONFIG */
return s->sysconfig;
case 0x014: /* GPMC_SYSSTATUS */
return 1; /* RESETDONE */
case 0x018: /* GPMC_IRQSTATUS */
return s->irqst;
case 0x01c: /* GPMC_IRQENABLE */
return s->irqen;
case 0x040: /* GPMC_TIMEOUT_CONTROL */
return s->timeout;
case 0x044: /* GPMC_ERR_ADDRESS */
case 0x048: /* GPMC_ERR_TYPE */
return 0;
case 0x050: /* GPMC_CONFIG */
return s->config;
case 0x054: /* GPMC_STATUS */
return 0x001;
case 0x060 ... 0x1d4:
cs = (addr - 0x060) / 0x30;
addr -= cs * 0x30;
f = s->cs_file + cs;
switch (addr) {
case 0x60: /* GPMC_CONFIG1 */
return f->config[0];
case 0x64: /* GPMC_CONFIG2 */
return f->config[1];
case 0x68: /* GPMC_CONFIG3 */
return f->config[2];
case 0x6c: /* GPMC_CONFIG4 */
return f->config[3];
case 0x70: /* GPMC_CONFIG5 */
return f->config[4];
case 0x74: /* GPMC_CONFIG6 */
return f->config[5];
case 0x78: /* GPMC_CONFIG7 */
return f->config[6];
case 0x84: /* GPMC_NAND_DATA */
return 0;
}
break;
case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
return s->prefconfig[0];
case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
return s->prefconfig[1];
case 0x1ec: /* GPMC_PREFETCH_CONTROL */
return s->prefcontrol;
case 0x1f0: /* GPMC_PREFETCH_STATUS */
return (s->preffifo << 24) |
((s->preffifo >
((s->prefconfig[0] >> 8) & 0x7f) ? 1 : 0) << 16) |
s->prefcount;
case 0x1f4: /* GPMC_ECC_CONFIG */
return s->ecc_cs;
case 0x1f8: /* GPMC_ECC_CONTROL */
return s->ecc_ptr;
case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
return s->ecc_cfg;
case 0x200 ... 0x220: /* GPMC_ECC_RESULT */
cs = (addr & 0x1f) >> 2;
/* TODO: check correctness */
return
((s->ecc[cs].cp & 0x07) << 0) |
((s->ecc[cs].cp & 0x38) << 13) |
((s->ecc[cs].lp[0] & 0x1ff) << 3) |
((s->ecc[cs].lp[1] & 0x1ff) << 19);
case 0x230: /* GPMC_TESTMODE_CTRL */
return 0;
case 0x234: /* GPMC_PSA_LSB */
case 0x238: /* GPMC_PSA_MSB */
return 0x00000000;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_gpmc_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
int cs;
struct omap_gpmc_cs_file_s *f;
switch (addr) {
case 0x000: /* GPMC_REVISION */
case 0x014: /* GPMC_SYSSTATUS */
case 0x054: /* GPMC_STATUS */
case 0x1f0: /* GPMC_PREFETCH_STATUS */
case 0x200 ... 0x220: /* GPMC_ECC_RESULT */
case 0x234: /* GPMC_PSA_LSB */
case 0x238: /* GPMC_PSA_MSB */
OMAP_RO_REG(addr);
break;
case 0x010: /* GPMC_SYSCONFIG */
if ((value >> 3) == 0x3)
fprintf(stderr, "%s: bad SDRAM idle mode %i\n",
__FUNCTION__, value >> 3);
if (value & 2)
omap_gpmc_reset(s);
s->sysconfig = value & 0x19;
break;
case 0x018: /* GPMC_IRQSTATUS */
s->irqen = ~value;
omap_gpmc_int_update(s);
break;
case 0x01c: /* GPMC_IRQENABLE */
s->irqen = value & 0xf03;
omap_gpmc_int_update(s);
break;
case 0x040: /* GPMC_TIMEOUT_CONTROL */
s->timeout = value & 0x1ff1;
break;
case 0x044: /* GPMC_ERR_ADDRESS */
case 0x048: /* GPMC_ERR_TYPE */
break;
case 0x050: /* GPMC_CONFIG */
s->config = value & 0xf13;
break;
case 0x060 ... 0x1d4:
cs = (addr - 0x060) / 0x30;
addr -= cs * 0x30;
f = s->cs_file + cs;
switch (addr) {
case 0x60: /* GPMC_CONFIG1 */
f->config[0] = value & 0xffef3e13;
break;
case 0x64: /* GPMC_CONFIG2 */
f->config[1] = value & 0x001f1f8f;
break;
case 0x68: /* GPMC_CONFIG3 */
f->config[2] = value & 0x001f1f8f;
break;
case 0x6c: /* GPMC_CONFIG4 */
f->config[3] = value & 0x1f8f1f8f;
break;
case 0x70: /* GPMC_CONFIG5 */
f->config[4] = value & 0x0f1f1f1f;
break;
case 0x74: /* GPMC_CONFIG6 */
f->config[5] = value & 0x00000fcf;
break;
case 0x78: /* GPMC_CONFIG7 */
if ((f->config[6] ^ value) & 0xf7f) {
if (f->config[6] & (1 << 6)) /* CSVALID */
omap_gpmc_cs_unmap(f);
if (value & (1 << 6)) /* CSVALID */
omap_gpmc_cs_map(f, value & 0x1f, /* MASKADDR */
(value >> 8 & 0xf)); /* BASEADDR */
}
f->config[6] = value & 0x00000f7f;
break;
case 0x7c: /* GPMC_NAND_COMMAND */
case 0x80: /* GPMC_NAND_ADDRESS */
case 0x84: /* GPMC_NAND_DATA */
break;
default:
goto bad_reg;
}
break;
case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
s->prefconfig[0] = value & 0x7f8f7fbf;
/* TODO: update interrupts, fifos, dmas */
break;
case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
s->prefconfig[1] = value & 0x3fff;
break;
case 0x1ec: /* GPMC_PREFETCH_CONTROL */
s->prefcontrol = value & 1;
if (s->prefcontrol) {
if (s->prefconfig[0] & 1)
s->preffifo = 0x40;
else
s->preffifo = 0x00;
}
/* TODO: start */
break;
case 0x1f4: /* GPMC_ECC_CONFIG */
s->ecc_cs = 0x8f;
break;
case 0x1f8: /* GPMC_ECC_CONTROL */
if (value & (1 << 8))
for (cs = 0; cs < 9; cs ++)
ecc_reset(&s->ecc[cs]);
s->ecc_ptr = value & 0xf;
if (s->ecc_ptr == 0 || s->ecc_ptr > 9) {
s->ecc_ptr = 0;
s->ecc_cs &= ~1;
}
break;
case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
s->ecc_cfg = value & 0x3fcff1ff;
break;
case 0x230: /* GPMC_TESTMODE_CTRL */
if (value & 7)
fprintf(stderr, "%s: test mode enable attempt\n", __FUNCTION__);
break;
default:
bad_reg:
OMAP_BAD_REG(addr);
return;
}
}
static CPUReadMemoryFunc *omap_gpmc_readfn[] = {
omap_badwidth_read32, /* TODO */
omap_badwidth_read32, /* TODO */
omap_gpmc_read,
};
static CPUWriteMemoryFunc *omap_gpmc_writefn[] = {
omap_badwidth_write32, /* TODO */
omap_badwidth_write32, /* TODO */
omap_gpmc_write,
};
struct omap_gpmc_s *omap_gpmc_init(target_phys_addr_t base, qemu_irq irq)
{
int iomemtype;
struct omap_gpmc_s *s = (struct omap_gpmc_s *)
qemu_mallocz(sizeof(struct omap_gpmc_s));
omap_gpmc_reset(s);
iomemtype = cpu_register_io_memory(omap_gpmc_readfn,
omap_gpmc_writefn, s);
cpu_register_physical_memory(base, 0x1000, iomemtype);
return s;
}
void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, int iomemtype,
void (*base_upd)(void *opaque, target_phys_addr_t new),
void (*unmap)(void *opaque), void *opaque)
{
struct omap_gpmc_cs_file_s *f;
if (cs < 0 || cs >= 8) {
fprintf(stderr, "%s: bad chip-select %i\n", __FUNCTION__, cs);
exit(-1);
}
f = &s->cs_file[cs];
f->iomemtype = iomemtype;
f->base_update = base_upd;
f->unmap = unmap;
f->opaque = opaque;
if (f->config[6] & (1 << 6)) /* CSVALID */
omap_gpmc_cs_map(f, f->config[6] & 0x1f, /* MASKADDR */
(f->config[6] >> 8 & 0xf)); /* BASEADDR */
}
/* General chip reset */
static void omap2_mpu_reset(void *opaque)
{
struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
omap_inth_reset(mpu->ih[0]);
omap_dma_reset(mpu->dma);
omap_prcm_reset(mpu->prcm);
omap_sysctl_reset(mpu->sysc);
omap_gp_timer_reset(mpu->gptimer[0]);
omap_gp_timer_reset(mpu->gptimer[1]);
omap_gp_timer_reset(mpu->gptimer[2]);
omap_gp_timer_reset(mpu->gptimer[3]);
omap_gp_timer_reset(mpu->gptimer[4]);
omap_gp_timer_reset(mpu->gptimer[5]);
omap_gp_timer_reset(mpu->gptimer[6]);
omap_gp_timer_reset(mpu->gptimer[7]);
omap_gp_timer_reset(mpu->gptimer[8]);
omap_gp_timer_reset(mpu->gptimer[9]);
omap_gp_timer_reset(mpu->gptimer[10]);
omap_gp_timer_reset(mpu->gptimer[11]);
omap_synctimer_reset(&mpu->synctimer);
omap_sdrc_reset(mpu->sdrc);
omap_gpmc_reset(mpu->gpmc);
omap_dss_reset(mpu->dss);
omap_uart_reset(mpu->uart[0]);
omap_uart_reset(mpu->uart[1]);
omap_uart_reset(mpu->uart[2]);
omap_mmc_reset(mpu->mmc);
omap_gpif_reset(mpu->gpif);
omap_mcspi_reset(mpu->mcspi[0]);
omap_mcspi_reset(mpu->mcspi[1]);
omap_i2c_reset(mpu->i2c[0]);
omap_i2c_reset(mpu->i2c[1]);
cpu_reset(mpu->env);
}
static int omap2_validate_addr(struct omap_mpu_state_s *s,
target_phys_addr_t addr)
{
return 1;
}
static const struct dma_irq_map omap2_dma_irq_map[] = {
{ 0, OMAP_INT_24XX_SDMA_IRQ0 },
{ 0, OMAP_INT_24XX_SDMA_IRQ1 },
{ 0, OMAP_INT_24XX_SDMA_IRQ2 },
{ 0, OMAP_INT_24XX_SDMA_IRQ3 },
};
struct omap_mpu_state_s *omap2420_mpu_init(unsigned long sdram_size,
const char *core)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
qemu_mallocz(sizeof(struct omap_mpu_state_s));
ram_addr_t sram_base, q2_base;
qemu_irq *cpu_irq;
qemu_irq dma_irqs[4];
omap_clk gpio_clks[4];
int sdindex;
int i;
/* Core */
s->mpu_model = omap2420;
s->env = cpu_init(core ?: "arm1136-r2");
if (!s->env) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
s->sdram_size = sdram_size;
s->sram_size = OMAP242X_SRAM_SIZE;
s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
/* Clocks */
omap_clk_init(s);
/* Memory-mapped stuff */
cpu_register_physical_memory(OMAP2_Q2_BASE, s->sdram_size,
(q2_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
cpu_register_physical_memory(OMAP2_SRAM_BASE, s->sram_size,
(sram_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
s->l4 = omap_l4_init(OMAP2_L4_BASE, 54);
/* Actually mapped at any 2K boundary in the ARM11 private-peripheral if */
cpu_irq = arm_pic_init_cpu(s->env);
s->ih[0] = omap2_inth_init(0x480fe000, 0x1000, 3, &s->irq[0],
cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
omap_findclk(s, "mpu_intc_fclk"),
omap_findclk(s, "mpu_intc_iclk"));
s->prcm = omap_prcm_init(omap_l4tao(s->l4, 3),
s->irq[0][OMAP_INT_24XX_PRCM_MPU_IRQ], NULL, NULL, s);
s->sysc = omap_sysctl_init(omap_l4tao(s->l4, 1),
omap_findclk(s, "omapctrl_iclk"), s);
for (i = 0; i < 4; i ++)
dma_irqs[i] =
s->irq[omap2_dma_irq_map[i].ih][omap2_dma_irq_map[i].intr];
s->dma = omap_dma4_init(0x48056000, dma_irqs, s, 256, 32,
omap_findclk(s, "sdma_iclk"),
omap_findclk(s, "sdma_fclk"));
s->port->addr_valid = omap2_validate_addr;
/* Register SDRAM and SRAM ports for fast DMA transfers. */
soc_dma_port_add_mem_ram(s->dma, q2_base, OMAP2_Q2_BASE, s->sdram_size);
soc_dma_port_add_mem_ram(s->dma, sram_base, OMAP2_SRAM_BASE, s->sram_size);
s->uart[0] = omap2_uart_init(omap_l4ta(s->l4, 19),
s->irq[0][OMAP_INT_24XX_UART1_IRQ],
omap_findclk(s, "uart1_fclk"),
omap_findclk(s, "uart1_iclk"),
s->drq[OMAP24XX_DMA_UART1_TX],
s->drq[OMAP24XX_DMA_UART1_RX], serial_hds[0]);
s->uart[1] = omap2_uart_init(omap_l4ta(s->l4, 20),
s->irq[0][OMAP_INT_24XX_UART2_IRQ],
omap_findclk(s, "uart2_fclk"),
omap_findclk(s, "uart2_iclk"),
s->drq[OMAP24XX_DMA_UART2_TX],
s->drq[OMAP24XX_DMA_UART2_RX],
serial_hds[0] ? serial_hds[1] : 0);
s->uart[2] = omap2_uart_init(omap_l4ta(s->l4, 21),
s->irq[0][OMAP_INT_24XX_UART3_IRQ],
omap_findclk(s, "uart3_fclk"),
omap_findclk(s, "uart3_iclk"),
s->drq[OMAP24XX_DMA_UART3_TX],
s->drq[OMAP24XX_DMA_UART3_RX],
serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0);
s->gptimer[0] = omap_gp_timer_init(omap_l4ta(s->l4, 7),
s->irq[0][OMAP_INT_24XX_GPTIMER1],
omap_findclk(s, "wu_gpt1_clk"),
omap_findclk(s, "wu_l4_iclk"));
s->gptimer[1] = omap_gp_timer_init(omap_l4ta(s->l4, 8),
s->irq[0][OMAP_INT_24XX_GPTIMER2],
omap_findclk(s, "core_gpt2_clk"),
omap_findclk(s, "core_l4_iclk"));
s->gptimer[2] = omap_gp_timer_init(omap_l4ta(s->l4, 22),
s->irq[0][OMAP_INT_24XX_GPTIMER3],
omap_findclk(s, "core_gpt3_clk"),
omap_findclk(s, "core_l4_iclk"));
s->gptimer[3] = omap_gp_timer_init(omap_l4ta(s->l4, 23),
s->irq[0][OMAP_INT_24XX_GPTIMER4],
omap_findclk(s, "core_gpt4_clk"),
omap_findclk(s, "core_l4_iclk"));
s->gptimer[4] = omap_gp_timer_init(omap_l4ta(s->l4, 24),
s->irq[0][OMAP_INT_24XX_GPTIMER5],
omap_findclk(s, "core_gpt5_clk"),
omap_findclk(s, "core_l4_iclk"));
s->gptimer[5] = omap_gp_timer_init(omap_l4ta(s->l4, 25),
s->irq[0][OMAP_INT_24XX_GPTIMER6],
omap_findclk(s, "core_gpt6_clk"),
omap_findclk(s, "core_l4_iclk"));
s->gptimer[6] = omap_gp_timer_init(omap_l4ta(s->l4, 26),
s->irq[0][OMAP_INT_24XX_GPTIMER7],
omap_findclk(s, "core_gpt7_clk"),
omap_findclk(s, "core_l4_iclk"));
s->gptimer[7] = omap_gp_timer_init(omap_l4ta(s->l4, 27),
s->irq[0][OMAP_INT_24XX_GPTIMER8],
omap_findclk(s, "core_gpt8_clk"),
omap_findclk(s, "core_l4_iclk"));
s->gptimer[8] = omap_gp_timer_init(omap_l4ta(s->l4, 28),
s->irq[0][OMAP_INT_24XX_GPTIMER9],
omap_findclk(s, "core_gpt9_clk"),
omap_findclk(s, "core_l4_iclk"));
s->gptimer[9] = omap_gp_timer_init(omap_l4ta(s->l4, 29),
s->irq[0][OMAP_INT_24XX_GPTIMER10],
omap_findclk(s, "core_gpt10_clk"),
omap_findclk(s, "core_l4_iclk"));
s->gptimer[10] = omap_gp_timer_init(omap_l4ta(s->l4, 30),
s->irq[0][OMAP_INT_24XX_GPTIMER11],
omap_findclk(s, "core_gpt11_clk"),
omap_findclk(s, "core_l4_iclk"));
s->gptimer[11] = omap_gp_timer_init(omap_l4ta(s->l4, 31),
s->irq[0][OMAP_INT_24XX_GPTIMER12],
omap_findclk(s, "core_gpt12_clk"),
omap_findclk(s, "core_l4_iclk"));
omap_tap_init(omap_l4ta(s->l4, 2), s);
omap_synctimer_init(omap_l4tao(s->l4, 2), s,
omap_findclk(s, "clk32-kHz"),
omap_findclk(s, "core_l4_iclk"));
s->i2c[0] = omap2_i2c_init(omap_l4tao(s->l4, 5),
s->irq[0][OMAP_INT_24XX_I2C1_IRQ],
&s->drq[OMAP24XX_DMA_I2C1_TX],
omap_findclk(s, "i2c1.fclk"),
omap_findclk(s, "i2c1.iclk"));
s->i2c[1] = omap2_i2c_init(omap_l4tao(s->l4, 6),
s->irq[0][OMAP_INT_24XX_I2C2_IRQ],
&s->drq[OMAP24XX_DMA_I2C2_TX],
omap_findclk(s, "i2c2.fclk"),
omap_findclk(s, "i2c2.iclk"));
gpio_clks[0] = omap_findclk(s, "gpio1_dbclk");
gpio_clks[1] = omap_findclk(s, "gpio2_dbclk");
gpio_clks[2] = omap_findclk(s, "gpio3_dbclk");
gpio_clks[3] = omap_findclk(s, "gpio4_dbclk");
s->gpif = omap2_gpio_init(omap_l4ta(s->l4, 3),
&s->irq[0][OMAP_INT_24XX_GPIO_BANK1],
gpio_clks, omap_findclk(s, "gpio_iclk"), 4);
s->sdrc = omap_sdrc_init(0x68009000);
s->gpmc = omap_gpmc_init(0x6800a000, s->irq[0][OMAP_INT_24XX_GPMC_IRQ]);
sdindex = drive_get_index(IF_SD, 0, 0);
if (sdindex == -1) {
fprintf(stderr, "qemu: missing SecureDigital device\n");
exit(1);
}
s->mmc = omap2_mmc_init(omap_l4tao(s->l4, 9), drives_table[sdindex].bdrv,
s->irq[0][OMAP_INT_24XX_MMC_IRQ],
&s->drq[OMAP24XX_DMA_MMC1_TX],
omap_findclk(s, "mmc_fclk"), omap_findclk(s, "mmc_iclk"));
s->mcspi[0] = omap_mcspi_init(omap_l4ta(s->l4, 35), 4,
s->irq[0][OMAP_INT_24XX_MCSPI1_IRQ],
&s->drq[OMAP24XX_DMA_SPI1_TX0],
omap_findclk(s, "spi1_fclk"),
omap_findclk(s, "spi1_iclk"));
s->mcspi[1] = omap_mcspi_init(omap_l4ta(s->l4, 36), 2,
s->irq[0][OMAP_INT_24XX_MCSPI2_IRQ],
&s->drq[OMAP24XX_DMA_SPI2_TX0],
omap_findclk(s, "spi2_fclk"),
omap_findclk(s, "spi2_iclk"));
s->dss = omap_dss_init(omap_l4ta(s->l4, 10), 0x68000800,
/* XXX wire M_IRQ_25, D_L2_IRQ_30 and I_IRQ_13 together */
s->irq[0][OMAP_INT_24XX_DSS_IRQ], s->drq[OMAP24XX_DMA_DSS],
omap_findclk(s, "dss_clk1"), omap_findclk(s, "dss_clk2"),
omap_findclk(s, "dss_54m_clk"),
omap_findclk(s, "dss_l3_iclk"),
omap_findclk(s, "dss_l4_iclk"));
omap_sti_init(omap_l4ta(s->l4, 18), 0x54000000,
s->irq[0][OMAP_INT_24XX_STI], omap_findclk(s, "emul_ck"),
serial_hds[0] && serial_hds[1] && serial_hds[2] ?
serial_hds[3] : 0);
s->eac = omap_eac_init(omap_l4ta(s->l4, 32),
s->irq[0][OMAP_INT_24XX_EAC_IRQ],
/* Ten consecutive lines */
&s->drq[OMAP24XX_DMA_EAC_AC_RD],
omap_findclk(s, "func_96m_clk"),
omap_findclk(s, "core_l4_iclk"));
/* All register mappings (includin those not currenlty implemented):
* SystemControlMod 48000000 - 48000fff
* SystemControlL4 48001000 - 48001fff
* 32kHz Timer Mod 48004000 - 48004fff
* 32kHz Timer L4 48005000 - 48005fff
* PRCM ModA 48008000 - 480087ff
* PRCM ModB 48008800 - 48008fff
* PRCM L4 48009000 - 48009fff
* TEST-BCM Mod 48012000 - 48012fff
* TEST-BCM L4 48013000 - 48013fff
* TEST-TAP Mod 48014000 - 48014fff
* TEST-TAP L4 48015000 - 48015fff
* GPIO1 Mod 48018000 - 48018fff
* GPIO Top 48019000 - 48019fff
* GPIO2 Mod 4801a000 - 4801afff
* GPIO L4 4801b000 - 4801bfff
* GPIO3 Mod 4801c000 - 4801cfff
* GPIO4 Mod 4801e000 - 4801efff
* WDTIMER1 Mod 48020000 - 48010fff
* WDTIMER Top 48021000 - 48011fff
* WDTIMER2 Mod 48022000 - 48012fff
* WDTIMER L4 48023000 - 48013fff
* WDTIMER3 Mod 48024000 - 48014fff
* WDTIMER3 L4 48025000 - 48015fff
* WDTIMER4 Mod 48026000 - 48016fff
* WDTIMER4 L4 48027000 - 48017fff
* GPTIMER1 Mod 48028000 - 48018fff
* GPTIMER1 L4 48029000 - 48019fff
* GPTIMER2 Mod 4802a000 - 4801afff
* GPTIMER2 L4 4802b000 - 4801bfff
* L4-Config AP 48040000 - 480407ff
* L4-Config IP 48040800 - 48040fff
* L4-Config LA 48041000 - 48041fff
* ARM11ETB Mod 48048000 - 48049fff
* ARM11ETB L4 4804a000 - 4804afff
* DISPLAY Top 48050000 - 480503ff
* DISPLAY DISPC 48050400 - 480507ff
* DISPLAY RFBI 48050800 - 48050bff
* DISPLAY VENC 48050c00 - 48050fff
* DISPLAY L4 48051000 - 48051fff
* CAMERA Top 48052000 - 480523ff
* CAMERA core 48052400 - 480527ff
* CAMERA DMA 48052800 - 48052bff
* CAMERA MMU 48052c00 - 48052fff
* CAMERA L4 48053000 - 48053fff
* SDMA Mod 48056000 - 48056fff
* SDMA L4 48057000 - 48057fff
* SSI Top 48058000 - 48058fff
* SSI GDD 48059000 - 48059fff
* SSI Port1 4805a000 - 4805afff
* SSI Port2 4805b000 - 4805bfff
* SSI L4 4805c000 - 4805cfff
* USB Mod 4805e000 - 480fefff
* USB L4 4805f000 - 480fffff
* WIN_TRACER1 Mod 48060000 - 48060fff
* WIN_TRACER1 L4 48061000 - 48061fff
* WIN_TRACER2 Mod 48062000 - 48062fff
* WIN_TRACER2 L4 48063000 - 48063fff
* WIN_TRACER3 Mod 48064000 - 48064fff
* WIN_TRACER3 L4 48065000 - 48065fff
* WIN_TRACER4 Top 48066000 - 480660ff
* WIN_TRACER4 ETT 48066100 - 480661ff
* WIN_TRACER4 WT 48066200 - 480662ff
* WIN_TRACER4 L4 48067000 - 48067fff
* XTI Mod 48068000 - 48068fff
* XTI L4 48069000 - 48069fff
* UART1 Mod 4806a000 - 4806afff
* UART1 L4 4806b000 - 4806bfff
* UART2 Mod 4806c000 - 4806cfff
* UART2 L4 4806d000 - 4806dfff
* UART3 Mod 4806e000 - 4806efff
* UART3 L4 4806f000 - 4806ffff
* I2C1 Mod 48070000 - 48070fff
* I2C1 L4 48071000 - 48071fff
* I2C2 Mod 48072000 - 48072fff
* I2C2 L4 48073000 - 48073fff
* McBSP1 Mod 48074000 - 48074fff
* McBSP1 L4 48075000 - 48075fff
* McBSP2 Mod 48076000 - 48076fff
* McBSP2 L4 48077000 - 48077fff
* GPTIMER3 Mod 48078000 - 48078fff
* GPTIMER3 L4 48079000 - 48079fff
* GPTIMER4 Mod 4807a000 - 4807afff
* GPTIMER4 L4 4807b000 - 4807bfff
* GPTIMER5 Mod 4807c000 - 4807cfff
* GPTIMER5 L4 4807d000 - 4807dfff
* GPTIMER6 Mod 4807e000 - 4807efff
* GPTIMER6 L4 4807f000 - 4807ffff
* GPTIMER7 Mod 48080000 - 48080fff
* GPTIMER7 L4 48081000 - 48081fff
* GPTIMER8 Mod 48082000 - 48082fff
* GPTIMER8 L4 48083000 - 48083fff
* GPTIMER9 Mod 48084000 - 48084fff
* GPTIMER9 L4 48085000 - 48085fff
* GPTIMER10 Mod 48086000 - 48086fff
* GPTIMER10 L4 48087000 - 48087fff
* GPTIMER11 Mod 48088000 - 48088fff
* GPTIMER11 L4 48089000 - 48089fff
* GPTIMER12 Mod 4808a000 - 4808afff
* GPTIMER12 L4 4808b000 - 4808bfff
* EAC Mod 48090000 - 48090fff
* EAC L4 48091000 - 48091fff
* FAC Mod 48092000 - 48092fff
* FAC L4 48093000 - 48093fff
* MAILBOX Mod 48094000 - 48094fff
* MAILBOX L4 48095000 - 48095fff
* SPI1 Mod 48098000 - 48098fff
* SPI1 L4 48099000 - 48099fff
* SPI2 Mod 4809a000 - 4809afff
* SPI2 L4 4809b000 - 4809bfff
* MMC/SDIO Mod 4809c000 - 4809cfff
* MMC/SDIO L4 4809d000 - 4809dfff
* MS_PRO Mod 4809e000 - 4809efff
* MS_PRO L4 4809f000 - 4809ffff
* RNG Mod 480a0000 - 480a0fff
* RNG L4 480a1000 - 480a1fff
* DES3DES Mod 480a2000 - 480a2fff
* DES3DES L4 480a3000 - 480a3fff
* SHA1MD5 Mod 480a4000 - 480a4fff
* SHA1MD5 L4 480a5000 - 480a5fff
* AES Mod 480a6000 - 480a6fff
* AES L4 480a7000 - 480a7fff
* PKA Mod 480a8000 - 480a9fff
* PKA L4 480aa000 - 480aafff
* MG Mod 480b0000 - 480b0fff
* MG L4 480b1000 - 480b1fff
* HDQ/1-wire Mod 480b2000 - 480b2fff
* HDQ/1-wire L4 480b3000 - 480b3fff
* MPU interrupt 480fe000 - 480fefff
* STI channel base 54000000 - 5400ffff
* IVA RAM 5c000000 - 5c01ffff
* IVA ROM 5c020000 - 5c027fff
* IMG_BUF_A 5c040000 - 5c040fff
* IMG_BUF_B 5c042000 - 5c042fff
* VLCDS 5c048000 - 5c0487ff
* IMX_COEF 5c049000 - 5c04afff
* IMX_CMD 5c051000 - 5c051fff
* VLCDQ 5c053000 - 5c0533ff
* VLCDH 5c054000 - 5c054fff
* SEQ_CMD 5c055000 - 5c055fff
* IMX_REG 5c056000 - 5c0560ff
* VLCD_REG 5c056100 - 5c0561ff
* SEQ_REG 5c056200 - 5c0562ff
* IMG_BUF_REG 5c056300 - 5c0563ff
* SEQIRQ_REG 5c056400 - 5c0564ff
* OCP_REG 5c060000 - 5c060fff
* SYSC_REG 5c070000 - 5c070fff
* MMU_REG 5d000000 - 5d000fff
* sDMA R 68000400 - 680005ff
* sDMA W 68000600 - 680007ff
* Display Control 68000800 - 680009ff
* DSP subsystem 68000a00 - 68000bff
* MPU subsystem 68000c00 - 68000dff
* IVA subsystem 68001000 - 680011ff
* USB 68001200 - 680013ff
* Camera 68001400 - 680015ff
* VLYNQ (firewall) 68001800 - 68001bff
* VLYNQ 68001e00 - 68001fff
* SSI 68002000 - 680021ff
* L4 68002400 - 680025ff
* DSP (firewall) 68002800 - 68002bff
* DSP subsystem 68002e00 - 68002fff
* IVA (firewall) 68003000 - 680033ff
* IVA 68003600 - 680037ff
* GFX 68003a00 - 68003bff
* CMDWR emulation 68003c00 - 68003dff
* SMS 68004000 - 680041ff
* OCM 68004200 - 680043ff
* GPMC 68004400 - 680045ff
* RAM (firewall) 68005000 - 680053ff
* RAM (err login) 68005400 - 680057ff
* ROM (firewall) 68005800 - 68005bff
* ROM (err login) 68005c00 - 68005fff
* GPMC (firewall) 68006000 - 680063ff
* GPMC (err login) 68006400 - 680067ff
* SMS (err login) 68006c00 - 68006fff
* SMS registers 68008000 - 68008fff
* SDRC registers 68009000 - 68009fff
* GPMC registers 6800a000 6800afff
*/
qemu_register_reset(omap2_mpu_reset, 0, s);
return s;
}