qemu-e2k/hw/dma/sparc32_dma.c

447 lines
13 KiB
C

/*
* QEMU Sparc32 DMA controller emulation
*
* Copyright (c) 2006 Fabrice Bellard
*
* Modifications:
* 2010-Feb-14 Artyom Tarasenko : reworked irq generation
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/hw.h"
#include "hw/sparc/sparc32_dma.h"
#include "hw/sparc/sun4m_iommu.h"
#include "hw/sysbus.h"
#include "sysemu/dma.h"
#include "qapi/error.h"
#include "trace.h"
/*
* This is the DMA controller part of chip STP2000 (Master I/O), also
* produced as NCR89C100. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
* and
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
*/
#define DMA_SIZE (4 * sizeof(uint32_t))
/* We need the mask, because one instance of the device is not page
aligned (ledma, start address 0x0010) */
#define DMA_MASK (DMA_SIZE - 1)
/* OBP says 0x20 bytes for ledma, the extras are aliased to espdma */
#define DMA_ETH_SIZE (8 * sizeof(uint32_t))
#define DMA_MAX_REG_OFFSET (2 * DMA_SIZE - 1)
#define DMA_VER 0xa0000000
#define DMA_INTR 1
#define DMA_INTREN 0x10
#define DMA_WRITE_MEM 0x100
#define DMA_EN 0x200
#define DMA_LOADED 0x04000000
#define DMA_DRAIN_FIFO 0x40
#define DMA_RESET 0x80
/* XXX SCSI and ethernet should have different read-only bit masks */
#define DMA_CSR_RO_MASK 0xfe000007
enum {
GPIO_RESET = 0,
GPIO_DMA,
};
/* Note: on sparc, the lance 16 bit bus is swapped */
void ledma_memory_read(void *opaque, hwaddr addr,
uint8_t *buf, int len, int do_bswap)
{
DMADeviceState *s = opaque;
IOMMUState *is = (IOMMUState *)s->iommu;
int i;
addr |= s->dmaregs[3];
trace_ledma_memory_read(addr, len);
if (do_bswap) {
dma_memory_read(&is->iommu_as, addr, buf, len);
} else {
addr &= ~1;
len &= ~1;
dma_memory_read(&is->iommu_as, addr, buf, len);
for(i = 0; i < len; i += 2) {
bswap16s((uint16_t *)(buf + i));
}
}
}
void ledma_memory_write(void *opaque, hwaddr addr,
uint8_t *buf, int len, int do_bswap)
{
DMADeviceState *s = opaque;
IOMMUState *is = (IOMMUState *)s->iommu;
int l, i;
uint16_t tmp_buf[32];
addr |= s->dmaregs[3];
trace_ledma_memory_write(addr, len);
if (do_bswap) {
dma_memory_write(&is->iommu_as, addr, buf, len);
} else {
addr &= ~1;
len &= ~1;
while (len > 0) {
l = len;
if (l > sizeof(tmp_buf))
l = sizeof(tmp_buf);
for(i = 0; i < l; i += 2) {
tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
}
dma_memory_write(&is->iommu_as, addr, tmp_buf, l);
len -= l;
buf += l;
addr += l;
}
}
}
static void dma_set_irq(void *opaque, int irq, int level)
{
DMADeviceState *s = opaque;
if (level) {
s->dmaregs[0] |= DMA_INTR;
if (s->dmaregs[0] & DMA_INTREN) {
trace_sparc32_dma_set_irq_raise();
qemu_irq_raise(s->irq);
}
} else {
if (s->dmaregs[0] & DMA_INTR) {
s->dmaregs[0] &= ~DMA_INTR;
if (s->dmaregs[0] & DMA_INTREN) {
trace_sparc32_dma_set_irq_lower();
qemu_irq_lower(s->irq);
}
}
}
}
void espdma_memory_read(void *opaque, uint8_t *buf, int len)
{
DMADeviceState *s = opaque;
IOMMUState *is = (IOMMUState *)s->iommu;
trace_espdma_memory_read(s->dmaregs[1], len);
dma_memory_read(&is->iommu_as, s->dmaregs[1], buf, len);
s->dmaregs[1] += len;
}
void espdma_memory_write(void *opaque, uint8_t *buf, int len)
{
DMADeviceState *s = opaque;
IOMMUState *is = (IOMMUState *)s->iommu;
trace_espdma_memory_write(s->dmaregs[1], len);
dma_memory_write(&is->iommu_as, s->dmaregs[1], buf, len);
s->dmaregs[1] += len;
}
static uint64_t dma_mem_read(void *opaque, hwaddr addr,
unsigned size)
{
DMADeviceState *s = opaque;
uint32_t saddr;
saddr = (addr & DMA_MASK) >> 2;
trace_sparc32_dma_mem_readl(addr, s->dmaregs[saddr]);
return s->dmaregs[saddr];
}
static void dma_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
DMADeviceState *s = opaque;
uint32_t saddr;
saddr = (addr & DMA_MASK) >> 2;
trace_sparc32_dma_mem_writel(addr, s->dmaregs[saddr], val);
switch (saddr) {
case 0:
if (val & DMA_INTREN) {
if (s->dmaregs[0] & DMA_INTR) {
trace_sparc32_dma_set_irq_raise();
qemu_irq_raise(s->irq);
}
} else {
if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) {
trace_sparc32_dma_set_irq_lower();
qemu_irq_lower(s->irq);
}
}
if (val & DMA_RESET) {
qemu_irq_raise(s->gpio[GPIO_RESET]);
qemu_irq_lower(s->gpio[GPIO_RESET]);
} else if (val & DMA_DRAIN_FIFO) {
val &= ~DMA_DRAIN_FIFO;
} else if (val == 0)
val = DMA_DRAIN_FIFO;
if (val & DMA_EN && !(s->dmaregs[0] & DMA_EN)) {
trace_sparc32_dma_enable_raise();
qemu_irq_raise(s->gpio[GPIO_DMA]);
} else if (!(val & DMA_EN) && !!(s->dmaregs[0] & DMA_EN)) {
trace_sparc32_dma_enable_lower();
qemu_irq_lower(s->gpio[GPIO_DMA]);
}
val &= ~DMA_CSR_RO_MASK;
val |= DMA_VER;
s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val;
break;
case 1:
s->dmaregs[0] |= DMA_LOADED;
/* fall through */
default:
s->dmaregs[saddr] = val;
break;
}
}
static const MemoryRegionOps dma_mem_ops = {
.read = dma_mem_read,
.write = dma_mem_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void sparc32_dma_device_reset(DeviceState *d)
{
DMADeviceState *s = SPARC32_DMA_DEVICE(d);
memset(s->dmaregs, 0, DMA_SIZE);
s->dmaregs[0] = DMA_VER;
}
static const VMStateDescription vmstate_sparc32_dma_device = {
.name ="sparc32_dma",
.version_id = 2,
.minimum_version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(dmaregs, DMADeviceState, DMA_REGS),
VMSTATE_END_OF_LIST()
}
};
static void sparc32_dma_device_init(Object *obj)
{
DeviceState *dev = DEVICE(obj);
DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
sysbus_init_irq(sbd, &s->irq);
sysbus_init_mmio(sbd, &s->iomem);
object_property_add_link(OBJECT(dev), "iommu", TYPE_SUN4M_IOMMU,
(Object **) &s->iommu,
qdev_prop_allow_set_link_before_realize,
0, NULL);
qdev_init_gpio_in(dev, dma_set_irq, 1);
qdev_init_gpio_out(dev, s->gpio, 2);
}
static void sparc32_dma_device_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = sparc32_dma_device_reset;
dc->vmsd = &vmstate_sparc32_dma_device;
}
static const TypeInfo sparc32_dma_device_info = {
.name = TYPE_SPARC32_DMA_DEVICE,
.parent = TYPE_SYS_BUS_DEVICE,
.abstract = true,
.instance_size = sizeof(DMADeviceState),
.instance_init = sparc32_dma_device_init,
.class_init = sparc32_dma_device_class_init,
};
static void sparc32_espdma_device_init(Object *obj)
{
DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
"espdma-mmio", DMA_SIZE);
}
static void sparc32_espdma_device_realize(DeviceState *dev, Error **errp)
{
DeviceState *d;
SysBusESPState *sysbus;
ESPState *esp;
d = qdev_create(NULL, TYPE_ESP);
object_property_add_child(OBJECT(dev), "esp", OBJECT(d), errp);
sysbus = ESP_STATE(d);
esp = &sysbus->esp;
esp->dma_memory_read = espdma_memory_read;
esp->dma_memory_write = espdma_memory_write;
esp->dma_opaque = SPARC32_DMA_DEVICE(dev);
sysbus->it_shift = 2;
esp->dma_enabled = 1;
qdev_init_nofail(d);
}
static void sparc32_espdma_device_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = sparc32_espdma_device_realize;
}
static const TypeInfo sparc32_espdma_device_info = {
.name = TYPE_SPARC32_ESPDMA_DEVICE,
.parent = TYPE_SPARC32_DMA_DEVICE,
.instance_size = sizeof(ESPDMADeviceState),
.instance_init = sparc32_espdma_device_init,
.class_init = sparc32_espdma_device_class_init,
};
static void sparc32_ledma_device_init(Object *obj)
{
DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
"ledma-mmio", DMA_SIZE);
}
static void sparc32_ledma_device_realize(DeviceState *dev, Error **errp)
{
DeviceState *d;
NICInfo *nd = &nd_table[0];
qemu_check_nic_model(nd, TYPE_LANCE);
d = qdev_create(NULL, TYPE_LANCE);
object_property_add_child(OBJECT(dev), "lance", OBJECT(d), errp);
qdev_set_nic_properties(d, nd);
qdev_prop_set_ptr(d, "dma", dev);
qdev_init_nofail(d);
}
static void sparc32_ledma_device_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = sparc32_ledma_device_realize;
}
static const TypeInfo sparc32_ledma_device_info = {
.name = TYPE_SPARC32_LEDMA_DEVICE,
.parent = TYPE_SPARC32_DMA_DEVICE,
.instance_size = sizeof(LEDMADeviceState),
.instance_init = sparc32_ledma_device_init,
.class_init = sparc32_ledma_device_class_init,
};
static void sparc32_dma_realize(DeviceState *dev, Error **errp)
{
SPARC32DMAState *s = SPARC32_DMA(dev);
DeviceState *espdma, *esp, *ledma, *lance;
SysBusDevice *sbd;
Object *iommu;
iommu = object_resolve_path_type("", TYPE_SUN4M_IOMMU, NULL);
if (!iommu) {
error_setg(errp, "unable to locate sun4m IOMMU device");
return;
}
espdma = qdev_create(NULL, TYPE_SPARC32_ESPDMA_DEVICE);
object_property_set_link(OBJECT(espdma), iommu, "iommu", errp);
object_property_add_child(OBJECT(s), "espdma", OBJECT(espdma), errp);
qdev_init_nofail(espdma);
esp = DEVICE(object_resolve_path_component(OBJECT(espdma), "esp"));
sbd = SYS_BUS_DEVICE(esp);
sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(espdma, 0));
qdev_connect_gpio_out(espdma, 0, qdev_get_gpio_in(esp, 0));
qdev_connect_gpio_out(espdma, 1, qdev_get_gpio_in(esp, 1));
sbd = SYS_BUS_DEVICE(espdma);
memory_region_add_subregion(&s->dmamem, 0x0,
sysbus_mmio_get_region(sbd, 0));
ledma = qdev_create(NULL, TYPE_SPARC32_LEDMA_DEVICE);
object_property_set_link(OBJECT(ledma), iommu, "iommu", errp);
object_property_add_child(OBJECT(s), "ledma", OBJECT(ledma), errp);
qdev_init_nofail(ledma);
lance = DEVICE(object_resolve_path_component(OBJECT(ledma), "lance"));
sbd = SYS_BUS_DEVICE(lance);
sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(ledma, 0));
qdev_connect_gpio_out(ledma, 0, qdev_get_gpio_in(lance, 0));
sbd = SYS_BUS_DEVICE(ledma);
memory_region_add_subregion(&s->dmamem, 0x10,
sysbus_mmio_get_region(sbd, 0));
/* Add ledma alias to handle SunOS 5.7 - Solaris 9 invalid access bug */
memory_region_init_alias(&s->ledma_alias, OBJECT(dev), "ledma-alias",
sysbus_mmio_get_region(sbd, 0), 0x4, 0x4);
memory_region_add_subregion(&s->dmamem, 0x20, &s->ledma_alias);
}
static void sparc32_dma_init(Object *obj)
{
SPARC32DMAState *s = SPARC32_DMA(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
memory_region_init(&s->dmamem, OBJECT(s), "dma", DMA_SIZE + DMA_ETH_SIZE);
sysbus_init_mmio(sbd, &s->dmamem);
}
static void sparc32_dma_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = sparc32_dma_realize;
}
static const TypeInfo sparc32_dma_info = {
.name = TYPE_SPARC32_DMA,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(SPARC32DMAState),
.instance_init = sparc32_dma_init,
.class_init = sparc32_dma_class_init,
};
static void sparc32_dma_register_types(void)
{
type_register_static(&sparc32_dma_device_info);
type_register_static(&sparc32_espdma_device_info);
type_register_static(&sparc32_ledma_device_info);
type_register_static(&sparc32_dma_info);
}
type_init(sparc32_dma_register_types)