qemu-e2k/hw/ppc/pnv_lpc.c
Cédric Le Goater 15376c66fa ppc/pnv: add a LPC Controller model for POWER9
The LPC Controller on POWER9 is very similar to the one found on
POWER8 but accesses are now done via on MMIOs, without the XSCOM and
ECCB logic. The device tree is populated differently so we add a
specific POWER9 routine for the purpose.

SerIRQ routing is yet to be done.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190307223548.20516-7-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-03-12 14:33:04 +11:00

815 lines
25 KiB
C

/*
* QEMU PowerPC PowerNV LPC controller
*
* Copyright (c) 2016, IBM Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "sysemu/sysemu.h"
#include "target/ppc/cpu.h"
#include "qapi/error.h"
#include "qemu/log.h"
#include "hw/isa/isa.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_lpc.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/ppc/fdt.h"
#include <libfdt.h>
enum {
ECCB_CTL = 0,
ECCB_RESET = 1,
ECCB_STAT = 2,
ECCB_DATA = 3,
};
/* OPB Master LS registers */
#define OPB_MASTER_LS_IRQ_STAT 0x50
#define OPB_MASTER_IRQ_LPC 0x00000800
#define OPB_MASTER_LS_IRQ_MASK 0x54
#define OPB_MASTER_LS_IRQ_POL 0x58
#define OPB_MASTER_LS_IRQ_INPUT 0x5c
/* LPC HC registers */
#define LPC_HC_FW_SEG_IDSEL 0x24
#define LPC_HC_FW_RD_ACC_SIZE 0x28
#define LPC_HC_FW_RD_1B 0x00000000
#define LPC_HC_FW_RD_2B 0x01000000
#define LPC_HC_FW_RD_4B 0x02000000
#define LPC_HC_FW_RD_16B 0x04000000
#define LPC_HC_FW_RD_128B 0x07000000
#define LPC_HC_IRQSER_CTRL 0x30
#define LPC_HC_IRQSER_EN 0x80000000
#define LPC_HC_IRQSER_QMODE 0x40000000
#define LPC_HC_IRQSER_START_MASK 0x03000000
#define LPC_HC_IRQSER_START_4CLK 0x00000000
#define LPC_HC_IRQSER_START_6CLK 0x01000000
#define LPC_HC_IRQSER_START_8CLK 0x02000000
#define LPC_HC_IRQMASK 0x34 /* same bit defs as LPC_HC_IRQSTAT */
#define LPC_HC_IRQSTAT 0x38
#define LPC_HC_IRQ_SERIRQ0 0x80000000 /* all bits down to ... */
#define LPC_HC_IRQ_SERIRQ16 0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */
#define LPC_HC_IRQ_SERIRQ_ALL 0xffff8000
#define LPC_HC_IRQ_LRESET 0x00000400
#define LPC_HC_IRQ_SYNC_ABNORM_ERR 0x00000080
#define LPC_HC_IRQ_SYNC_NORESP_ERR 0x00000040
#define LPC_HC_IRQ_SYNC_NORM_ERR 0x00000020
#define LPC_HC_IRQ_SYNC_TIMEOUT_ERR 0x00000010
#define LPC_HC_IRQ_SYNC_TARG_TAR_ERR 0x00000008
#define LPC_HC_IRQ_SYNC_BM_TAR_ERR 0x00000004
#define LPC_HC_IRQ_SYNC_BM0_REQ 0x00000002
#define LPC_HC_IRQ_SYNC_BM1_REQ 0x00000001
#define LPC_HC_ERROR_ADDRESS 0x40
#define LPC_OPB_SIZE 0x100000000ull
#define ISA_IO_SIZE 0x00010000
#define ISA_MEM_SIZE 0x10000000
#define ISA_FW_SIZE 0x10000000
#define LPC_IO_OPB_ADDR 0xd0010000
#define LPC_IO_OPB_SIZE 0x00010000
#define LPC_MEM_OPB_ADDR 0xe0010000
#define LPC_MEM_OPB_SIZE 0x10000000
#define LPC_FW_OPB_ADDR 0xf0000000
#define LPC_FW_OPB_SIZE 0x10000000
#define LPC_OPB_REGS_OPB_ADDR 0xc0010000
#define LPC_OPB_REGS_OPB_SIZE 0x00000060
#define LPC_OPB_REGS_OPBA_ADDR 0xc0011000
#define LPC_OPB_REGS_OPBA_SIZE 0x00000008
#define LPC_HC_REGS_OPB_ADDR 0xc0012000
#define LPC_HC_REGS_OPB_SIZE 0x00000100
static int pnv_lpc_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset)
{
const char compat[] = "ibm,power8-lpc\0ibm,lpc";
char *name;
int offset;
uint32_t lpc_pcba = PNV_XSCOM_LPC_BASE;
uint32_t reg[] = {
cpu_to_be32(lpc_pcba),
cpu_to_be32(PNV_XSCOM_LPC_SIZE)
};
name = g_strdup_printf("isa@%x", lpc_pcba);
offset = fdt_add_subnode(fdt, xscom_offset, name);
_FDT(offset);
g_free(name);
_FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
_FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
_FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
_FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
return 0;
}
/* POWER9 only */
int pnv_dt_lpc(PnvChip *chip, void *fdt, int root_offset)
{
const char compat[] = "ibm,power9-lpcm-opb\0simple-bus";
const char lpc_compat[] = "ibm,power9-lpc\0ibm,lpc";
char *name;
int offset, lpcm_offset;
uint64_t lpcm_addr = PNV9_LPCM_BASE(chip);
uint32_t opb_ranges[8] = { 0,
cpu_to_be32(lpcm_addr >> 32),
cpu_to_be32((uint32_t)lpcm_addr),
cpu_to_be32(PNV9_LPCM_SIZE / 2),
cpu_to_be32(PNV9_LPCM_SIZE / 2),
cpu_to_be32(lpcm_addr >> 32),
cpu_to_be32(PNV9_LPCM_SIZE / 2),
cpu_to_be32(PNV9_LPCM_SIZE / 2),
};
uint32_t opb_reg[4] = { cpu_to_be32(lpcm_addr >> 32),
cpu_to_be32((uint32_t)lpcm_addr),
cpu_to_be32(PNV9_LPCM_SIZE >> 32),
cpu_to_be32((uint32_t)PNV9_LPCM_SIZE),
};
uint32_t reg[2];
/*
* OPB bus
*/
name = g_strdup_printf("lpcm-opb@%"PRIx64, lpcm_addr);
lpcm_offset = fdt_add_subnode(fdt, root_offset, name);
_FDT(lpcm_offset);
g_free(name);
_FDT((fdt_setprop(fdt, lpcm_offset, "reg", opb_reg, sizeof(opb_reg))));
_FDT((fdt_setprop_cell(fdt, lpcm_offset, "#address-cells", 1)));
_FDT((fdt_setprop_cell(fdt, lpcm_offset, "#size-cells", 1)));
_FDT((fdt_setprop(fdt, lpcm_offset, "compatible", compat, sizeof(compat))));
_FDT((fdt_setprop_cell(fdt, lpcm_offset, "ibm,chip-id", chip->chip_id)));
_FDT((fdt_setprop(fdt, lpcm_offset, "ranges", opb_ranges,
sizeof(opb_ranges))));
/*
* OPB Master registers
*/
name = g_strdup_printf("opb-master@%x", LPC_OPB_REGS_OPB_ADDR);
offset = fdt_add_subnode(fdt, lpcm_offset, name);
_FDT(offset);
g_free(name);
reg[0] = cpu_to_be32(LPC_OPB_REGS_OPB_ADDR);
reg[1] = cpu_to_be32(LPC_OPB_REGS_OPB_SIZE);
_FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
_FDT((fdt_setprop_string(fdt, offset, "compatible",
"ibm,power9-lpcm-opb-master")));
/*
* OPB arbitrer registers
*/
name = g_strdup_printf("opb-arbitrer@%x", LPC_OPB_REGS_OPBA_ADDR);
offset = fdt_add_subnode(fdt, lpcm_offset, name);
_FDT(offset);
g_free(name);
reg[0] = cpu_to_be32(LPC_OPB_REGS_OPBA_ADDR);
reg[1] = cpu_to_be32(LPC_OPB_REGS_OPBA_SIZE);
_FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
_FDT((fdt_setprop_string(fdt, offset, "compatible",
"ibm,power9-lpcm-opb-arbiter")));
/*
* LPC Host Controller registers
*/
name = g_strdup_printf("lpc-controller@%x", LPC_HC_REGS_OPB_ADDR);
offset = fdt_add_subnode(fdt, lpcm_offset, name);
_FDT(offset);
g_free(name);
reg[0] = cpu_to_be32(LPC_HC_REGS_OPB_ADDR);
reg[1] = cpu_to_be32(LPC_HC_REGS_OPB_SIZE);
_FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
_FDT((fdt_setprop_string(fdt, offset, "compatible",
"ibm,power9-lpc-controller")));
name = g_strdup_printf("lpc@0");
offset = fdt_add_subnode(fdt, lpcm_offset, name);
_FDT(offset);
g_free(name);
_FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
_FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
_FDT((fdt_setprop(fdt, offset, "compatible", lpc_compat,
sizeof(lpc_compat))));
return 0;
}
/*
* These read/write handlers of the OPB address space should be common
* with the P9 LPC Controller which uses direct MMIOs.
*
* TODO: rework to use address_space_stq() and address_space_ldq()
* instead.
*/
static bool opb_read(PnvLpcController *lpc, uint32_t addr, uint8_t *data,
int sz)
{
/* XXX Handle access size limits and FW read caching here */
return !address_space_rw(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
data, sz, false);
}
static bool opb_write(PnvLpcController *lpc, uint32_t addr, uint8_t *data,
int sz)
{
/* XXX Handle access size limits here */
return !address_space_rw(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
data, sz, true);
}
#define ECCB_CTL_READ PPC_BIT(15)
#define ECCB_CTL_SZ_LSH (63 - 7)
#define ECCB_CTL_SZ_MASK PPC_BITMASK(4, 7)
#define ECCB_CTL_ADDR_MASK PPC_BITMASK(32, 63)
#define ECCB_STAT_OP_DONE PPC_BIT(52)
#define ECCB_STAT_OP_ERR PPC_BIT(52)
#define ECCB_STAT_RD_DATA_LSH (63 - 37)
#define ECCB_STAT_RD_DATA_MASK (0xffffffff << ECCB_STAT_RD_DATA_LSH)
static void pnv_lpc_do_eccb(PnvLpcController *lpc, uint64_t cmd)
{
/* XXX Check for magic bits at the top, addr size etc... */
unsigned int sz = (cmd & ECCB_CTL_SZ_MASK) >> ECCB_CTL_SZ_LSH;
uint32_t opb_addr = cmd & ECCB_CTL_ADDR_MASK;
uint8_t data[8];
bool success;
if (sz > sizeof(data)) {
qemu_log_mask(LOG_GUEST_ERROR,
"ECCB: invalid operation at @0x%08x size %d\n", opb_addr, sz);
return;
}
if (cmd & ECCB_CTL_READ) {
success = opb_read(lpc, opb_addr, data, sz);
if (success) {
lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
(((uint64_t)data[0]) << 24 |
((uint64_t)data[1]) << 16 |
((uint64_t)data[2]) << 8 |
((uint64_t)data[3])) << ECCB_STAT_RD_DATA_LSH;
} else {
lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
(0xffffffffull << ECCB_STAT_RD_DATA_LSH);
}
} else {
data[0] = lpc->eccb_data_reg >> 24;
data[1] = lpc->eccb_data_reg >> 16;
data[2] = lpc->eccb_data_reg >> 8;
data[3] = lpc->eccb_data_reg;
success = opb_write(lpc, opb_addr, data, sz);
lpc->eccb_stat_reg = ECCB_STAT_OP_DONE;
}
/* XXX Which error bit (if any) to signal OPB error ? */
}
static uint64_t pnv_lpc_xscom_read(void *opaque, hwaddr addr, unsigned size)
{
PnvLpcController *lpc = PNV_LPC(opaque);
uint32_t offset = addr >> 3;
uint64_t val = 0;
switch (offset & 3) {
case ECCB_CTL:
case ECCB_RESET:
val = 0;
break;
case ECCB_STAT:
val = lpc->eccb_stat_reg;
lpc->eccb_stat_reg = 0;
break;
case ECCB_DATA:
val = ((uint64_t)lpc->eccb_data_reg) << 32;
break;
}
return val;
}
static void pnv_lpc_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvLpcController *lpc = PNV_LPC(opaque);
uint32_t offset = addr >> 3;
switch (offset & 3) {
case ECCB_CTL:
pnv_lpc_do_eccb(lpc, val);
break;
case ECCB_RESET:
/* XXXX */
break;
case ECCB_STAT:
break;
case ECCB_DATA:
lpc->eccb_data_reg = val >> 32;
break;
}
}
static const MemoryRegionOps pnv_lpc_xscom_ops = {
.read = pnv_lpc_xscom_read,
.write = pnv_lpc_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static uint64_t pnv_lpc_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
PnvLpcController *lpc = PNV_LPC(opaque);
uint64_t val = 0;
uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
MemTxResult result;
switch (size) {
case 4:
val = address_space_ldl(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
&result);
break;
case 1:
val = address_space_ldub(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
&result);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
HWADDR_PRIx " invalid size %d\n", addr, size);
return 0;
}
if (result != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
HWADDR_PRIx "\n", addr);
}
return val;
}
static void pnv_lpc_mmio_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvLpcController *lpc = PNV_LPC(opaque);
uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
MemTxResult result;
switch (size) {
case 4:
address_space_stl(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
&result);
break;
case 1:
address_space_stb(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
&result);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
HWADDR_PRIx " invalid size %d\n", addr, size);
return;
}
if (result != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
HWADDR_PRIx "\n", addr);
}
}
static const MemoryRegionOps pnv_lpc_mmio_ops = {
.read = pnv_lpc_mmio_read,
.write = pnv_lpc_mmio_write,
.impl = {
.min_access_size = 1,
.max_access_size = 4,
},
.endianness = DEVICE_BIG_ENDIAN,
};
static void pnv_lpc_eval_irqs(PnvLpcController *lpc)
{
bool lpc_to_opb_irq = false;
PnvLpcClass *plc = PNV_LPC_GET_CLASS(lpc);
/* Update LPC controller to OPB line */
if (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_EN) {
uint32_t irqs;
irqs = lpc->lpc_hc_irqstat & lpc->lpc_hc_irqmask;
lpc_to_opb_irq = (irqs != 0);
}
/* We don't honor the polarity register, it's pointless and unused
* anyway
*/
if (lpc_to_opb_irq) {
lpc->opb_irq_input |= OPB_MASTER_IRQ_LPC;
} else {
lpc->opb_irq_input &= ~OPB_MASTER_IRQ_LPC;
}
/* Update OPB internal latch */
lpc->opb_irq_stat |= lpc->opb_irq_input & lpc->opb_irq_mask;
/* Reflect the interrupt */
pnv_psi_irq_set(lpc->psi, plc->psi_irq, lpc->opb_irq_stat != 0);
}
static uint64_t lpc_hc_read(void *opaque, hwaddr addr, unsigned size)
{
PnvLpcController *lpc = opaque;
uint64_t val = 0xfffffffffffffffful;
switch (addr) {
case LPC_HC_FW_SEG_IDSEL:
val = lpc->lpc_hc_fw_seg_idsel;
break;
case LPC_HC_FW_RD_ACC_SIZE:
val = lpc->lpc_hc_fw_rd_acc_size;
break;
case LPC_HC_IRQSER_CTRL:
val = lpc->lpc_hc_irqser_ctrl;
break;
case LPC_HC_IRQMASK:
val = lpc->lpc_hc_irqmask;
break;
case LPC_HC_IRQSTAT:
val = lpc->lpc_hc_irqstat;
break;
case LPC_HC_ERROR_ADDRESS:
val = lpc->lpc_hc_error_addr;
break;
default:
qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
HWADDR_PRIx "\n", addr);
}
return val;
}
static void lpc_hc_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
PnvLpcController *lpc = opaque;
/* XXX Filter out reserved bits */
switch (addr) {
case LPC_HC_FW_SEG_IDSEL:
/* XXX Actually figure out how that works as this impact
* memory regions/aliases
*/
lpc->lpc_hc_fw_seg_idsel = val;
break;
case LPC_HC_FW_RD_ACC_SIZE:
lpc->lpc_hc_fw_rd_acc_size = val;
break;
case LPC_HC_IRQSER_CTRL:
lpc->lpc_hc_irqser_ctrl = val;
pnv_lpc_eval_irqs(lpc);
break;
case LPC_HC_IRQMASK:
lpc->lpc_hc_irqmask = val;
pnv_lpc_eval_irqs(lpc);
break;
case LPC_HC_IRQSTAT:
lpc->lpc_hc_irqstat &= ~val;
pnv_lpc_eval_irqs(lpc);
break;
case LPC_HC_ERROR_ADDRESS:
break;
default:
qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
HWADDR_PRIx "\n", addr);
}
}
static const MemoryRegionOps lpc_hc_ops = {
.read = lpc_hc_read,
.write = lpc_hc_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static uint64_t opb_master_read(void *opaque, hwaddr addr, unsigned size)
{
PnvLpcController *lpc = opaque;
uint64_t val = 0xfffffffffffffffful;
switch (addr) {
case OPB_MASTER_LS_IRQ_STAT:
val = lpc->opb_irq_stat;
break;
case OPB_MASTER_LS_IRQ_MASK:
val = lpc->opb_irq_mask;
break;
case OPB_MASTER_LS_IRQ_POL:
val = lpc->opb_irq_pol;
break;
case OPB_MASTER_LS_IRQ_INPUT:
val = lpc->opb_irq_input;
break;
default:
qemu_log_mask(LOG_UNIMP, "OPBM: read on unimplemented register: 0x%"
HWADDR_PRIx "\n", addr);
}
return val;
}
static void opb_master_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvLpcController *lpc = opaque;
switch (addr) {
case OPB_MASTER_LS_IRQ_STAT:
lpc->opb_irq_stat &= ~val;
pnv_lpc_eval_irqs(lpc);
break;
case OPB_MASTER_LS_IRQ_MASK:
lpc->opb_irq_mask = val;
pnv_lpc_eval_irqs(lpc);
break;
case OPB_MASTER_LS_IRQ_POL:
lpc->opb_irq_pol = val;
pnv_lpc_eval_irqs(lpc);
break;
case OPB_MASTER_LS_IRQ_INPUT:
/* Read only */
break;
default:
qemu_log_mask(LOG_UNIMP, "OPBM: write on unimplemented register: 0x%"
HWADDR_PRIx " val=0x%08"PRIx64"\n", addr, val);
}
}
static const MemoryRegionOps opb_master_ops = {
.read = opb_master_read,
.write = opb_master_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void pnv_lpc_power8_realize(DeviceState *dev, Error **errp)
{
PnvLpcController *lpc = PNV_LPC(dev);
PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
Error *local_err = NULL;
plc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* P8 uses a XSCOM region for LPC registers */
pnv_xscom_region_init(&lpc->xscom_regs, OBJECT(lpc),
&pnv_lpc_xscom_ops, lpc, "xscom-lpc",
PNV_XSCOM_LPC_SIZE);
}
static void pnv_lpc_power8_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
PnvLpcClass *plc = PNV_LPC_CLASS(klass);
dc->desc = "PowerNV LPC Controller POWER8";
xdc->dt_xscom = pnv_lpc_dt_xscom;
plc->psi_irq = PSIHB_IRQ_LPC_I2C;
device_class_set_parent_realize(dc, pnv_lpc_power8_realize,
&plc->parent_realize);
}
static const TypeInfo pnv_lpc_power8_info = {
.name = TYPE_PNV8_LPC,
.parent = TYPE_PNV_LPC,
.instance_size = sizeof(PnvLpcController),
.class_init = pnv_lpc_power8_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_PNV_XSCOM_INTERFACE },
{ }
}
};
static void pnv_lpc_power9_realize(DeviceState *dev, Error **errp)
{
PnvLpcController *lpc = PNV_LPC(dev);
PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
Error *local_err = NULL;
plc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* P9 uses a MMIO region */
memory_region_init_io(&lpc->xscom_regs, OBJECT(lpc), &pnv_lpc_mmio_ops,
lpc, "lpcm", PNV9_LPCM_SIZE);
}
static void pnv_lpc_power9_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvLpcClass *plc = PNV_LPC_CLASS(klass);
dc->desc = "PowerNV LPC Controller POWER9";
plc->psi_irq = PSIHB9_IRQ_LPCHC;
device_class_set_parent_realize(dc, pnv_lpc_power9_realize,
&plc->parent_realize);
}
static const TypeInfo pnv_lpc_power9_info = {
.name = TYPE_PNV9_LPC,
.parent = TYPE_PNV_LPC,
.instance_size = sizeof(PnvLpcController),
.class_init = pnv_lpc_power9_class_init,
};
static void pnv_lpc_realize(DeviceState *dev, Error **errp)
{
PnvLpcController *lpc = PNV_LPC(dev);
Object *obj;
Error *local_err = NULL;
obj = object_property_get_link(OBJECT(dev), "psi", &local_err);
if (!obj) {
error_propagate(errp, local_err);
error_prepend(errp, "required link 'psi' not found: ");
return;
}
/* The LPC controller needs PSI to generate interrupts */
lpc->psi = PNV_PSI(obj);
/* Reg inits */
lpc->lpc_hc_fw_rd_acc_size = LPC_HC_FW_RD_4B;
/* Create address space and backing MR for the OPB bus */
memory_region_init(&lpc->opb_mr, OBJECT(dev), "lpc-opb", 0x100000000ull);
address_space_init(&lpc->opb_as, &lpc->opb_mr, "lpc-opb");
/* Create ISA IO and Mem space regions which are the root of
* the ISA bus (ie, ISA address spaces). We don't create a
* separate one for FW which we alias to memory.
*/
memory_region_init(&lpc->isa_io, OBJECT(dev), "isa-io", ISA_IO_SIZE);
memory_region_init(&lpc->isa_mem, OBJECT(dev), "isa-mem", ISA_MEM_SIZE);
memory_region_init(&lpc->isa_fw, OBJECT(dev), "isa-fw", ISA_FW_SIZE);
/* Create windows from the OPB space to the ISA space */
memory_region_init_alias(&lpc->opb_isa_io, OBJECT(dev), "lpc-isa-io",
&lpc->isa_io, 0, LPC_IO_OPB_SIZE);
memory_region_add_subregion(&lpc->opb_mr, LPC_IO_OPB_ADDR,
&lpc->opb_isa_io);
memory_region_init_alias(&lpc->opb_isa_mem, OBJECT(dev), "lpc-isa-mem",
&lpc->isa_mem, 0, LPC_MEM_OPB_SIZE);
memory_region_add_subregion(&lpc->opb_mr, LPC_MEM_OPB_ADDR,
&lpc->opb_isa_mem);
memory_region_init_alias(&lpc->opb_isa_fw, OBJECT(dev), "lpc-isa-fw",
&lpc->isa_fw, 0, LPC_FW_OPB_SIZE);
memory_region_add_subregion(&lpc->opb_mr, LPC_FW_OPB_ADDR,
&lpc->opb_isa_fw);
/* Create MMIO regions for LPC HC and OPB registers */
memory_region_init_io(&lpc->opb_master_regs, OBJECT(dev), &opb_master_ops,
lpc, "lpc-opb-master", LPC_OPB_REGS_OPB_SIZE);
memory_region_add_subregion(&lpc->opb_mr, LPC_OPB_REGS_OPB_ADDR,
&lpc->opb_master_regs);
memory_region_init_io(&lpc->lpc_hc_regs, OBJECT(dev), &lpc_hc_ops, lpc,
"lpc-hc", LPC_HC_REGS_OPB_SIZE);
memory_region_add_subregion(&lpc->opb_mr, LPC_HC_REGS_OPB_ADDR,
&lpc->lpc_hc_regs);
}
static void pnv_lpc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = pnv_lpc_realize;
dc->desc = "PowerNV LPC Controller";
}
static const TypeInfo pnv_lpc_info = {
.name = TYPE_PNV_LPC,
.parent = TYPE_DEVICE,
.class_init = pnv_lpc_class_init,
.class_size = sizeof(PnvLpcClass),
.abstract = true,
};
static void pnv_lpc_register_types(void)
{
type_register_static(&pnv_lpc_info);
type_register_static(&pnv_lpc_power8_info);
type_register_static(&pnv_lpc_power9_info);
}
type_init(pnv_lpc_register_types)
/* If we don't use the built-in LPC interrupt deserializer, we need
* to provide a set of qirqs for the ISA bus or things will go bad.
*
* Most machines using pre-Naples chips (without said deserializer)
* have a CPLD that will collect the SerIRQ and shoot them as a
* single level interrupt to the P8 chip. So let's setup a hook
* for doing just that.
*/
static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level)
{
PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
uint32_t old_state = pnv->cpld_irqstate;
PnvLpcController *lpc = PNV_LPC(opaque);
if (level) {
pnv->cpld_irqstate |= 1u << n;
} else {
pnv->cpld_irqstate &= ~(1u << n);
}
if (pnv->cpld_irqstate != old_state) {
pnv_psi_irq_set(lpc->psi, PSIHB_IRQ_EXTERNAL, pnv->cpld_irqstate != 0);
}
}
static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level)
{
PnvLpcController *lpc = PNV_LPC(opaque);
/* The Naples HW latches the 1 levels, clearing is done by SW */
if (level) {
lpc->lpc_hc_irqstat |= LPC_HC_IRQ_SERIRQ0 >> n;
pnv_lpc_eval_irqs(lpc);
}
}
ISABus *pnv_lpc_isa_create(PnvLpcController *lpc, bool use_cpld, Error **errp)
{
Error *local_err = NULL;
ISABus *isa_bus;
qemu_irq *irqs;
qemu_irq_handler handler;
/* let isa_bus_new() create its own bridge on SysBus otherwise
* devices speficied on the command line won't find the bus and
* will fail to create.
*/
isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return NULL;
}
/* Not all variants have a working serial irq decoder. If not,
* handling of LPC interrupts becomes a platform issue (some
* platforms have a CPLD to do it).
*/
if (use_cpld) {
handler = pnv_lpc_isa_irq_handler_cpld;
} else {
handler = pnv_lpc_isa_irq_handler;
}
irqs = qemu_allocate_irqs(handler, lpc, ISA_NUM_IRQS);
isa_bus_irqs(isa_bus, irqs);
return isa_bus;
}