3ba1925545
This change is needed for w64, but also changes the code for other hosts. Signed-off-by: Stefan Weil <sw@weilnetz.de>
637 lines
25 KiB
C
637 lines
25 KiB
C
/*
|
|
* emulator main execution loop
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "config.h"
|
|
#include "cpu.h"
|
|
#include "disas.h"
|
|
#include "tcg.h"
|
|
#include "qemu-barrier.h"
|
|
#include "qtest.h"
|
|
|
|
int tb_invalidated_flag;
|
|
|
|
//#define CONFIG_DEBUG_EXEC
|
|
|
|
bool qemu_cpu_has_work(CPUArchState *env)
|
|
{
|
|
return cpu_has_work(env);
|
|
}
|
|
|
|
void cpu_loop_exit(CPUArchState *env)
|
|
{
|
|
env->current_tb = NULL;
|
|
longjmp(env->jmp_env, 1);
|
|
}
|
|
|
|
/* exit the current TB from a signal handler. The host registers are
|
|
restored in a state compatible with the CPU emulator
|
|
*/
|
|
#if defined(CONFIG_SOFTMMU)
|
|
void cpu_resume_from_signal(CPUArchState *env, void *puc)
|
|
{
|
|
/* XXX: restore cpu registers saved in host registers */
|
|
|
|
env->exception_index = -1;
|
|
longjmp(env->jmp_env, 1);
|
|
}
|
|
#endif
|
|
|
|
/* Execute the code without caching the generated code. An interpreter
|
|
could be used if available. */
|
|
static void cpu_exec_nocache(CPUArchState *env, int max_cycles,
|
|
TranslationBlock *orig_tb)
|
|
{
|
|
tcg_target_ulong next_tb;
|
|
TranslationBlock *tb;
|
|
|
|
/* Should never happen.
|
|
We only end up here when an existing TB is too long. */
|
|
if (max_cycles > CF_COUNT_MASK)
|
|
max_cycles = CF_COUNT_MASK;
|
|
|
|
tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
|
|
max_cycles);
|
|
env->current_tb = tb;
|
|
/* execute the generated code */
|
|
next_tb = tcg_qemu_tb_exec(env, tb->tc_ptr);
|
|
env->current_tb = NULL;
|
|
|
|
if ((next_tb & 3) == 2) {
|
|
/* Restore PC. This may happen if async event occurs before
|
|
the TB starts executing. */
|
|
cpu_pc_from_tb(env, tb);
|
|
}
|
|
tb_phys_invalidate(tb, -1);
|
|
tb_free(tb);
|
|
}
|
|
|
|
static TranslationBlock *tb_find_slow(CPUArchState *env,
|
|
target_ulong pc,
|
|
target_ulong cs_base,
|
|
uint64_t flags)
|
|
{
|
|
TranslationBlock *tb, **ptb1;
|
|
unsigned int h;
|
|
tb_page_addr_t phys_pc, phys_page1;
|
|
target_ulong virt_page2;
|
|
|
|
tb_invalidated_flag = 0;
|
|
|
|
/* find translated block using physical mappings */
|
|
phys_pc = get_page_addr_code(env, pc);
|
|
phys_page1 = phys_pc & TARGET_PAGE_MASK;
|
|
h = tb_phys_hash_func(phys_pc);
|
|
ptb1 = &tb_phys_hash[h];
|
|
for(;;) {
|
|
tb = *ptb1;
|
|
if (!tb)
|
|
goto not_found;
|
|
if (tb->pc == pc &&
|
|
tb->page_addr[0] == phys_page1 &&
|
|
tb->cs_base == cs_base &&
|
|
tb->flags == flags) {
|
|
/* check next page if needed */
|
|
if (tb->page_addr[1] != -1) {
|
|
tb_page_addr_t phys_page2;
|
|
|
|
virt_page2 = (pc & TARGET_PAGE_MASK) +
|
|
TARGET_PAGE_SIZE;
|
|
phys_page2 = get_page_addr_code(env, virt_page2);
|
|
if (tb->page_addr[1] == phys_page2)
|
|
goto found;
|
|
} else {
|
|
goto found;
|
|
}
|
|
}
|
|
ptb1 = &tb->phys_hash_next;
|
|
}
|
|
not_found:
|
|
/* if no translated code available, then translate it now */
|
|
tb = tb_gen_code(env, pc, cs_base, flags, 0);
|
|
|
|
found:
|
|
/* Move the last found TB to the head of the list */
|
|
if (likely(*ptb1)) {
|
|
*ptb1 = tb->phys_hash_next;
|
|
tb->phys_hash_next = tb_phys_hash[h];
|
|
tb_phys_hash[h] = tb;
|
|
}
|
|
/* we add the TB in the virtual pc hash table */
|
|
env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
|
|
return tb;
|
|
}
|
|
|
|
static inline TranslationBlock *tb_find_fast(CPUArchState *env)
|
|
{
|
|
TranslationBlock *tb;
|
|
target_ulong cs_base, pc;
|
|
int flags;
|
|
|
|
/* we record a subset of the CPU state. It will
|
|
always be the same before a given translated block
|
|
is executed. */
|
|
cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
|
|
tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
|
|
if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
|
|
tb->flags != flags)) {
|
|
tb = tb_find_slow(env, pc, cs_base, flags);
|
|
}
|
|
return tb;
|
|
}
|
|
|
|
static CPUDebugExcpHandler *debug_excp_handler;
|
|
|
|
CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
|
|
{
|
|
CPUDebugExcpHandler *old_handler = debug_excp_handler;
|
|
|
|
debug_excp_handler = handler;
|
|
return old_handler;
|
|
}
|
|
|
|
static void cpu_handle_debug_exception(CPUArchState *env)
|
|
{
|
|
CPUWatchpoint *wp;
|
|
|
|
if (!env->watchpoint_hit) {
|
|
QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
|
wp->flags &= ~BP_WATCHPOINT_HIT;
|
|
}
|
|
}
|
|
if (debug_excp_handler) {
|
|
debug_excp_handler(env);
|
|
}
|
|
}
|
|
|
|
/* main execution loop */
|
|
|
|
volatile sig_atomic_t exit_request;
|
|
|
|
int cpu_exec(CPUArchState *env)
|
|
{
|
|
int ret, interrupt_request;
|
|
TranslationBlock *tb;
|
|
uint8_t *tc_ptr;
|
|
tcg_target_ulong next_tb;
|
|
|
|
if (env->halted) {
|
|
if (!cpu_has_work(env)) {
|
|
return EXCP_HALTED;
|
|
}
|
|
|
|
env->halted = 0;
|
|
}
|
|
|
|
cpu_single_env = env;
|
|
|
|
if (unlikely(exit_request)) {
|
|
env->exit_request = 1;
|
|
}
|
|
|
|
#if defined(TARGET_I386)
|
|
/* put eflags in CPU temporary format */
|
|
CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
|
DF = 1 - (2 * ((env->eflags >> 10) & 1));
|
|
CC_OP = CC_OP_EFLAGS;
|
|
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
|
#elif defined(TARGET_SPARC)
|
|
#elif defined(TARGET_M68K)
|
|
env->cc_op = CC_OP_FLAGS;
|
|
env->cc_dest = env->sr & 0xf;
|
|
env->cc_x = (env->sr >> 4) & 1;
|
|
#elif defined(TARGET_ALPHA)
|
|
#elif defined(TARGET_ARM)
|
|
#elif defined(TARGET_UNICORE32)
|
|
#elif defined(TARGET_PPC)
|
|
env->reserve_addr = -1;
|
|
#elif defined(TARGET_LM32)
|
|
#elif defined(TARGET_MICROBLAZE)
|
|
#elif defined(TARGET_MIPS)
|
|
#elif defined(TARGET_SH4)
|
|
#elif defined(TARGET_CRIS)
|
|
#elif defined(TARGET_S390X)
|
|
#elif defined(TARGET_XTENSA)
|
|
/* XXXXX */
|
|
#else
|
|
#error unsupported target CPU
|
|
#endif
|
|
env->exception_index = -1;
|
|
|
|
/* prepare setjmp context for exception handling */
|
|
for(;;) {
|
|
if (setjmp(env->jmp_env) == 0) {
|
|
/* if an exception is pending, we execute it here */
|
|
if (env->exception_index >= 0) {
|
|
if (env->exception_index >= EXCP_INTERRUPT) {
|
|
/* exit request from the cpu execution loop */
|
|
ret = env->exception_index;
|
|
if (ret == EXCP_DEBUG) {
|
|
cpu_handle_debug_exception(env);
|
|
}
|
|
break;
|
|
} else {
|
|
#if defined(CONFIG_USER_ONLY)
|
|
/* if user mode only, we simulate a fake exception
|
|
which will be handled outside the cpu execution
|
|
loop */
|
|
#if defined(TARGET_I386)
|
|
do_interrupt(env);
|
|
#endif
|
|
ret = env->exception_index;
|
|
break;
|
|
#else
|
|
do_interrupt(env);
|
|
env->exception_index = -1;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
next_tb = 0; /* force lookup of first TB */
|
|
for(;;) {
|
|
interrupt_request = env->interrupt_request;
|
|
if (unlikely(interrupt_request)) {
|
|
if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
|
|
/* Mask out external interrupts for this step. */
|
|
interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_DEBUG) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
|
|
env->exception_index = EXCP_DEBUG;
|
|
cpu_loop_exit(env);
|
|
}
|
|
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
|
|
defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
|
|
defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
|
|
if (interrupt_request & CPU_INTERRUPT_HALT) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_HALT;
|
|
env->halted = 1;
|
|
env->exception_index = EXCP_HLT;
|
|
cpu_loop_exit(env);
|
|
}
|
|
#endif
|
|
#if defined(TARGET_I386)
|
|
if (interrupt_request & CPU_INTERRUPT_INIT) {
|
|
svm_check_intercept(env, SVM_EXIT_INIT);
|
|
do_cpu_init(env);
|
|
env->exception_index = EXCP_HALTED;
|
|
cpu_loop_exit(env);
|
|
} else if (interrupt_request & CPU_INTERRUPT_SIPI) {
|
|
do_cpu_sipi(env);
|
|
} else if (env->hflags2 & HF2_GIF_MASK) {
|
|
if ((interrupt_request & CPU_INTERRUPT_SMI) &&
|
|
!(env->hflags & HF_SMM_MASK)) {
|
|
svm_check_intercept(env, SVM_EXIT_SMI);
|
|
env->interrupt_request &= ~CPU_INTERRUPT_SMI;
|
|
do_smm_enter(env);
|
|
next_tb = 0;
|
|
} else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
|
|
!(env->hflags2 & HF2_NMI_MASK)) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_NMI;
|
|
env->hflags2 |= HF2_NMI_MASK;
|
|
do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
|
|
next_tb = 0;
|
|
} else if (interrupt_request & CPU_INTERRUPT_MCE) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_MCE;
|
|
do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
|
|
next_tb = 0;
|
|
} else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(((env->hflags2 & HF2_VINTR_MASK) &&
|
|
(env->hflags2 & HF2_HIF_MASK)) ||
|
|
(!(env->hflags2 & HF2_VINTR_MASK) &&
|
|
(env->eflags & IF_MASK &&
|
|
!(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
|
|
int intno;
|
|
svm_check_intercept(env, SVM_EXIT_INTR);
|
|
env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
|
|
intno = cpu_get_pic_interrupt(env);
|
|
qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
|
|
do_interrupt_x86_hardirq(env, intno, 1);
|
|
/* ensure that no TB jump will be modified as
|
|
the program flow was changed */
|
|
next_tb = 0;
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
} else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
|
|
(env->eflags & IF_MASK) &&
|
|
!(env->hflags & HF_INHIBIT_IRQ_MASK)) {
|
|
int intno;
|
|
/* FIXME: this should respect TPR */
|
|
svm_check_intercept(env, SVM_EXIT_VINTR);
|
|
intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
|
|
qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
|
|
do_interrupt_x86_hardirq(env, intno, 1);
|
|
env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
|
|
next_tb = 0;
|
|
#endif
|
|
}
|
|
}
|
|
#elif defined(TARGET_PPC)
|
|
if ((interrupt_request & CPU_INTERRUPT_RESET)) {
|
|
cpu_state_reset(env);
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
ppc_hw_interrupt(env);
|
|
if (env->pending_interrupts == 0)
|
|
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_LM32)
|
|
if ((interrupt_request & CPU_INTERRUPT_HARD)
|
|
&& (env->ie & IE_IE)) {
|
|
env->exception_index = EXCP_IRQ;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_MICROBLAZE)
|
|
if ((interrupt_request & CPU_INTERRUPT_HARD)
|
|
&& (env->sregs[SR_MSR] & MSR_IE)
|
|
&& !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
|
|
&& !(env->iflags & (D_FLAG | IMM_FLAG))) {
|
|
env->exception_index = EXCP_IRQ;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_MIPS)
|
|
if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
cpu_mips_hw_interrupts_pending(env)) {
|
|
/* Raise it */
|
|
env->exception_index = EXCP_EXT_INTERRUPT;
|
|
env->error_code = 0;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_SPARC)
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
if (cpu_interrupts_enabled(env) &&
|
|
env->interrupt_index > 0) {
|
|
int pil = env->interrupt_index & 0xf;
|
|
int type = env->interrupt_index & 0xf0;
|
|
|
|
if (((type == TT_EXTINT) &&
|
|
cpu_pil_allowed(env, pil)) ||
|
|
type != TT_EXTINT) {
|
|
env->exception_index = env->interrupt_index;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
}
|
|
}
|
|
#elif defined(TARGET_ARM)
|
|
if (interrupt_request & CPU_INTERRUPT_FIQ
|
|
&& !(env->uncached_cpsr & CPSR_F)) {
|
|
env->exception_index = EXCP_FIQ;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
/* ARMv7-M interrupt return works by loading a magic value
|
|
into the PC. On real hardware the load causes the
|
|
return to occur. The qemu implementation performs the
|
|
jump normally, then does the exception return when the
|
|
CPU tries to execute code at the magic address.
|
|
This will cause the magic PC value to be pushed to
|
|
the stack if an interrupt occurred at the wrong time.
|
|
We avoid this by disabling interrupts when
|
|
pc contains a magic address. */
|
|
if (interrupt_request & CPU_INTERRUPT_HARD
|
|
&& ((IS_M(env) && env->regs[15] < 0xfffffff0)
|
|
|| !(env->uncached_cpsr & CPSR_I))) {
|
|
env->exception_index = EXCP_IRQ;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_UNICORE32)
|
|
if (interrupt_request & CPU_INTERRUPT_HARD
|
|
&& !(env->uncached_asr & ASR_I)) {
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_SH4)
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_ALPHA)
|
|
{
|
|
int idx = -1;
|
|
/* ??? This hard-codes the OSF/1 interrupt levels. */
|
|
switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) {
|
|
case 0 ... 3:
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
idx = EXCP_DEV_INTERRUPT;
|
|
}
|
|
/* FALLTHRU */
|
|
case 4:
|
|
if (interrupt_request & CPU_INTERRUPT_TIMER) {
|
|
idx = EXCP_CLK_INTERRUPT;
|
|
}
|
|
/* FALLTHRU */
|
|
case 5:
|
|
if (interrupt_request & CPU_INTERRUPT_SMP) {
|
|
idx = EXCP_SMP_INTERRUPT;
|
|
}
|
|
/* FALLTHRU */
|
|
case 6:
|
|
if (interrupt_request & CPU_INTERRUPT_MCHK) {
|
|
idx = EXCP_MCHK;
|
|
}
|
|
}
|
|
if (idx >= 0) {
|
|
env->exception_index = idx;
|
|
env->error_code = 0;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
}
|
|
#elif defined(TARGET_CRIS)
|
|
if (interrupt_request & CPU_INTERRUPT_HARD
|
|
&& (env->pregs[PR_CCS] & I_FLAG)
|
|
&& !env->locked_irq) {
|
|
env->exception_index = EXCP_IRQ;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_NMI
|
|
&& (env->pregs[PR_CCS] & M_FLAG)) {
|
|
env->exception_index = EXCP_NMI;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_M68K)
|
|
if (interrupt_request & CPU_INTERRUPT_HARD
|
|
&& ((env->sr & SR_I) >> SR_I_SHIFT)
|
|
< env->pending_level) {
|
|
/* Real hardware gets the interrupt vector via an
|
|
IACK cycle at this point. Current emulated
|
|
hardware doesn't rely on this, so we
|
|
provide/save the vector when the interrupt is
|
|
first signalled. */
|
|
env->exception_index = env->pending_vector;
|
|
do_interrupt_m68k_hardirq(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
|
|
if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(env->psw.mask & PSW_MASK_EXT)) {
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_XTENSA)
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
env->exception_index = EXC_IRQ;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#endif
|
|
/* Don't use the cached interrupt_request value,
|
|
do_interrupt may have updated the EXITTB flag. */
|
|
if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
|
|
/* ensure that no TB jump will be modified as
|
|
the program flow was changed */
|
|
next_tb = 0;
|
|
}
|
|
}
|
|
if (unlikely(env->exit_request)) {
|
|
env->exit_request = 0;
|
|
env->exception_index = EXCP_INTERRUPT;
|
|
cpu_loop_exit(env);
|
|
}
|
|
#if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
|
|
if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
|
|
/* restore flags in standard format */
|
|
#if defined(TARGET_I386)
|
|
env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
|
|
| (DF & DF_MASK);
|
|
log_cpu_state(env, X86_DUMP_CCOP);
|
|
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
|
#elif defined(TARGET_M68K)
|
|
cpu_m68k_flush_flags(env, env->cc_op);
|
|
env->cc_op = CC_OP_FLAGS;
|
|
env->sr = (env->sr & 0xffe0)
|
|
| env->cc_dest | (env->cc_x << 4);
|
|
log_cpu_state(env, 0);
|
|
#else
|
|
log_cpu_state(env, 0);
|
|
#endif
|
|
}
|
|
#endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
|
|
spin_lock(&tb_lock);
|
|
tb = tb_find_fast(env);
|
|
/* Note: we do it here to avoid a gcc bug on Mac OS X when
|
|
doing it in tb_find_slow */
|
|
if (tb_invalidated_flag) {
|
|
/* as some TB could have been invalidated because
|
|
of memory exceptions while generating the code, we
|
|
must recompute the hash index here */
|
|
next_tb = 0;
|
|
tb_invalidated_flag = 0;
|
|
}
|
|
#ifdef CONFIG_DEBUG_EXEC
|
|
qemu_log_mask(CPU_LOG_EXEC, "Trace %p [" TARGET_FMT_lx "] %s\n",
|
|
tb->tc_ptr, tb->pc,
|
|
lookup_symbol(tb->pc));
|
|
#endif
|
|
/* see if we can patch the calling TB. When the TB
|
|
spans two pages, we cannot safely do a direct
|
|
jump. */
|
|
if (next_tb != 0 && tb->page_addr[1] == -1) {
|
|
tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
|
|
}
|
|
spin_unlock(&tb_lock);
|
|
|
|
/* cpu_interrupt might be called while translating the
|
|
TB, but before it is linked into a potentially
|
|
infinite loop and becomes env->current_tb. Avoid
|
|
starting execution if there is a pending interrupt. */
|
|
env->current_tb = tb;
|
|
barrier();
|
|
if (likely(!env->exit_request)) {
|
|
tc_ptr = tb->tc_ptr;
|
|
/* execute the generated code */
|
|
next_tb = tcg_qemu_tb_exec(env, tc_ptr);
|
|
if ((next_tb & 3) == 2) {
|
|
/* Instruction counter expired. */
|
|
int insns_left;
|
|
tb = (TranslationBlock *)(next_tb & ~3);
|
|
/* Restore PC. */
|
|
cpu_pc_from_tb(env, tb);
|
|
insns_left = env->icount_decr.u32;
|
|
if (env->icount_extra && insns_left >= 0) {
|
|
/* Refill decrementer and continue execution. */
|
|
env->icount_extra += insns_left;
|
|
if (env->icount_extra > 0xffff) {
|
|
insns_left = 0xffff;
|
|
} else {
|
|
insns_left = env->icount_extra;
|
|
}
|
|
env->icount_extra -= insns_left;
|
|
env->icount_decr.u16.low = insns_left;
|
|
} else {
|
|
if (insns_left > 0) {
|
|
/* Execute remaining instructions. */
|
|
cpu_exec_nocache(env, insns_left, tb);
|
|
}
|
|
env->exception_index = EXCP_INTERRUPT;
|
|
next_tb = 0;
|
|
cpu_loop_exit(env);
|
|
}
|
|
}
|
|
}
|
|
env->current_tb = NULL;
|
|
/* reset soft MMU for next block (it can currently
|
|
only be set by a memory fault) */
|
|
} /* for(;;) */
|
|
} else {
|
|
/* Reload env after longjmp - the compiler may have smashed all
|
|
* local variables as longjmp is marked 'noreturn'. */
|
|
env = cpu_single_env;
|
|
}
|
|
} /* for(;;) */
|
|
|
|
|
|
#if defined(TARGET_I386)
|
|
/* restore flags in standard format */
|
|
env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
|
|
| (DF & DF_MASK);
|
|
#elif defined(TARGET_ARM)
|
|
/* XXX: Save/restore host fpu exception state?. */
|
|
#elif defined(TARGET_UNICORE32)
|
|
#elif defined(TARGET_SPARC)
|
|
#elif defined(TARGET_PPC)
|
|
#elif defined(TARGET_LM32)
|
|
#elif defined(TARGET_M68K)
|
|
cpu_m68k_flush_flags(env, env->cc_op);
|
|
env->cc_op = CC_OP_FLAGS;
|
|
env->sr = (env->sr & 0xffe0)
|
|
| env->cc_dest | (env->cc_x << 4);
|
|
#elif defined(TARGET_MICROBLAZE)
|
|
#elif defined(TARGET_MIPS)
|
|
#elif defined(TARGET_SH4)
|
|
#elif defined(TARGET_ALPHA)
|
|
#elif defined(TARGET_CRIS)
|
|
#elif defined(TARGET_S390X)
|
|
#elif defined(TARGET_XTENSA)
|
|
/* XXXXX */
|
|
#else
|
|
#error unsupported target CPU
|
|
#endif
|
|
|
|
/* fail safe : never use cpu_single_env outside cpu_exec() */
|
|
cpu_single_env = NULL;
|
|
return ret;
|
|
}
|