qemu-e2k/tests/test-crypto-hash.c

215 lines
6.4 KiB
C

/*
* QEMU Crypto hash algorithms
*
* Copyright (c) 2015 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
*/
#include <glib.h>
#include "crypto/init.h"
#include "crypto/hash.h"
#define INPUT_TEXT "Hiss hisss Hissss hiss Hiss hisss Hiss hiss"
#define INPUT_TEXT1 "Hiss hisss "
#define INPUT_TEXT2 "Hissss hiss "
#define INPUT_TEXT3 "Hiss hisss Hiss hiss"
#define OUTPUT_MD5 "628d206371563035ab8ef62f492bdec9"
#define OUTPUT_SHA1 "b2e74f26758a3a421e509cee045244b78753cc02"
#define OUTPUT_SHA256 "bc757abb0436586f392b437e5dd24096" \
"f7f224de6b74d4d86e2abc6121b160d0"
#define OUTPUT_MD5_B64 "Yo0gY3FWMDWrjvYvSSveyQ=="
#define OUTPUT_SHA1_B64 "sudPJnWKOkIeUJzuBFJEt4dTzAI="
#define OUTPUT_SHA256_B64 "vHV6uwQ2WG85K0N+XdJAlvfyJN5rdNTYbiq8YSGxYNA="
static const char *expected_outputs[] = {
[QCRYPTO_HASH_ALG_MD5] = OUTPUT_MD5,
[QCRYPTO_HASH_ALG_SHA1] = OUTPUT_SHA1,
[QCRYPTO_HASH_ALG_SHA256] = OUTPUT_SHA256,
};
static const char *expected_outputs_b64[] = {
[QCRYPTO_HASH_ALG_MD5] = OUTPUT_MD5_B64,
[QCRYPTO_HASH_ALG_SHA1] = OUTPUT_SHA1_B64,
[QCRYPTO_HASH_ALG_SHA256] = OUTPUT_SHA256_B64,
};
static const int expected_lens[] = {
[QCRYPTO_HASH_ALG_MD5] = 16,
[QCRYPTO_HASH_ALG_SHA1] = 20,
[QCRYPTO_HASH_ALG_SHA256] = 32,
};
static const char hex[] = "0123456789abcdef";
/* Test with dynamic allocation */
static void test_hash_alloc(void)
{
size_t i;
g_assert(qcrypto_init(NULL) == 0);
for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) {
uint8_t *result = NULL;
size_t resultlen = 0;
int ret;
size_t j;
ret = qcrypto_hash_bytes(i,
INPUT_TEXT,
strlen(INPUT_TEXT),
&result,
&resultlen,
NULL);
g_assert(ret == 0);
g_assert(resultlen == expected_lens[i]);
for (j = 0; j < resultlen; j++) {
g_assert(expected_outputs[i][j * 2] == hex[(result[j] >> 4) & 0xf]);
g_assert(expected_outputs[i][j * 2 + 1] == hex[result[j] & 0xf]);
}
g_free(result);
}
}
/* Test with caller preallocating */
static void test_hash_prealloc(void)
{
size_t i;
g_assert(qcrypto_init(NULL) == 0);
for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) {
uint8_t *result;
size_t resultlen;
int ret;
size_t j;
resultlen = expected_lens[i];
result = g_new0(uint8_t, resultlen);
ret = qcrypto_hash_bytes(i,
INPUT_TEXT,
strlen(INPUT_TEXT),
&result,
&resultlen,
NULL);
g_assert(ret == 0);
g_assert(resultlen == expected_lens[i]);
for (j = 0; j < resultlen; j++) {
g_assert(expected_outputs[i][j * 2] == hex[(result[j] >> 4) & 0xf]);
g_assert(expected_outputs[i][j * 2 + 1] == hex[result[j] & 0xf]);
}
g_free(result);
}
}
/* Test with dynamic allocation */
static void test_hash_iov(void)
{
size_t i;
g_assert(qcrypto_init(NULL) == 0);
for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) {
struct iovec iov[3] = {
{ .iov_base = (char *)INPUT_TEXT1, .iov_len = strlen(INPUT_TEXT1) },
{ .iov_base = (char *)INPUT_TEXT2, .iov_len = strlen(INPUT_TEXT2) },
{ .iov_base = (char *)INPUT_TEXT3, .iov_len = strlen(INPUT_TEXT3) },
};
uint8_t *result = NULL;
size_t resultlen = 0;
int ret;
size_t j;
ret = qcrypto_hash_bytesv(i,
iov, 3,
&result,
&resultlen,
NULL);
g_assert(ret == 0);
g_assert(resultlen == expected_lens[i]);
for (j = 0; j < resultlen; j++) {
g_assert(expected_outputs[i][j * 2] == hex[(result[j] >> 4) & 0xf]);
g_assert(expected_outputs[i][j * 2 + 1] == hex[result[j] & 0xf]);
}
g_free(result);
}
}
/* Test with printable hashing */
static void test_hash_digest(void)
{
size_t i;
g_assert(qcrypto_init(NULL) == 0);
for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) {
int ret;
char *digest;
size_t digestsize;
digestsize = qcrypto_hash_digest_len(i);
g_assert_cmpint(digestsize * 2, ==, strlen(expected_outputs[i]));
ret = qcrypto_hash_digest(i,
INPUT_TEXT,
strlen(INPUT_TEXT),
&digest,
NULL);
g_assert(ret == 0);
g_assert(g_str_equal(digest, expected_outputs[i]));
g_free(digest);
}
}
/* Test with base64 encoding */
static void test_hash_base64(void)
{
size_t i;
g_assert(qcrypto_init(NULL) == 0);
for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) {
int ret;
char *digest;
ret = qcrypto_hash_base64(i,
INPUT_TEXT,
strlen(INPUT_TEXT),
&digest,
NULL);
g_assert(ret == 0);
g_assert(g_str_equal(digest, expected_outputs_b64[i]));
g_free(digest);
}
}
int main(int argc, char **argv)
{
g_test_init(&argc, &argv, NULL);
g_test_add_func("/crypto/hash/iov", test_hash_iov);
g_test_add_func("/crypto/hash/alloc", test_hash_alloc);
g_test_add_func("/crypto/hash/prealloc", test_hash_prealloc);
g_test_add_func("/crypto/hash/digest", test_hash_digest);
g_test_add_func("/crypto/hash/base64", test_hash_base64);
return g_test_run();
}